Skip to main content
. 2016 Sep 30;6:34180. doi: 10.1038/srep34180

Figure 5.

Figure 5

(a) Reconstructed PSF from data obtained by the AWR compares well to the theoretical expected PSF with magnetic relaxation of a first-order Debye model. The calculation used the same value of τ (2.3 μs) validated in prior work34. (b) The FWHM of reconstructed PSFs from AWR data (n = 3) closely matches (R2 = 0.972) actual spatial resolution measured from MPI scanner images (3.5 T/m gradient 23 kHz)34. This shows the AWR can accurately predict for MPI tracer imaging performance. (c) The AWR signal (PSF peak amplitude) is linear with Resovist iron mass with sensitivity of 13.1 μV/μg for sine wave and 8.3 μV/μg for triangular wave before amplification. Three experimental repeats were taken per data point (n = 3). We estimate the detection limit (SNR = 1) to be ~20 ng and ~30 ng respectively with 6.25 s total acquisition time (25 averages). The AWR is thus a sensitive and quantitative sensor for magnetic particles. The difference in sensitivity between sine and triangular wave is due to differences in the waveform velocity at the zero-crossing point.