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ABSTRACT: Efficient delivery of drugs to living cells is still a
major challenge. Currently, most methods rely on the
endocytotic pathway resulting in low delivery efficiency due
to limited endosomal escape and/or degradation in lysosomes.
Here, we report a new method for direct drug delivery into the
cytosol of live cells in vitro and in vivo utilizing targeted
membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid
bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of
liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of
endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane.
This method thus allows for the quick and efficient delivery of drugs and is expected to have many in vitro, ex vivo, and in vivo
applications.

■ INTRODUCTION

The plasma membrane is the protecting interface between cells
and their surrounding environment. Uptake of nutrients occurs
through this interface using specialized mechanisms such as
endocytosis.1 Nutrients, or drugs for that matter, are frequently
internalized into small transport vesicles called endosomes,
which are derived from the cell membrane. For many medicines
to become an active drug, they have to enter the cell’s cytosol.
However, the detrimental environment inside these endosomes
can result in degradation of the drug. To date, intracellular
delivery of macromolecules is still a major challenge in research
and therapeutic applications.2,3 It is therefore highly desirable
to develop new alternative delivery methods that circumvent
the endocytosis pathway. So far, all attempts in drug delivery
using particles as carriers have been unsuccessful in avoiding
this pathway,4 hence current efforts to develop ways of
enhancing endosomal escape.5

Cell penetrating peptides (CPPs) have been studied
extensively to achieve efficient uptake into the cytosol.
However, the current view is that CPPs conjugated to large
molecular weight cargo (e.g., liposomes) predominantly are
internalized via endocytosis.6−8 Moreover, the positive charge
of CPPs such as the Tat peptide9 leads to unfavorable
interaction with blood components. Other transfection
techniques have been devised, such as viral vectors10 and
physical methods.2,11,12 These methods have their own
limitations, including safety issues or their reliance to electrical
fields or high pressure.
Fusion of lipid membranes is a vital process in biological

systems, facilitating the efficient transport of molecules across
membranes.13−15 In vivo membrane fusion shows a broad

variety, from synaptic to viral and extracellular fusion, and was
found to be a highly regulated process, specific in time and
place, which is achieved by a complex interplay of different
functional proteins.16 For example, in the process of neuronal
exocytosis, docking of transport vesicles to the target plasma
membrane is mediated by the coiled-coil formation of
complementary SNARE protein subunits on the opposing
membranes.17 This forces the opposing membranes into close
proximity, resulting ultimately in lipid mixing followed by pore
formation and concomitant content transfer.
As a bottom-up approach, several synthetic models systems

have been developed to mimic membrane fusion events, but in
general these simple systems do not always recapitulate the
basic characteristics of native membrane fusion.18−22 Further-
more, all these approaches were limited to liposome−liposome
fusion studies and have not shown to induce fusion events in
live cells, thereby limiting their use for future drug delivery
purposes.
Inspired by the SNARE protein complex, our laboratory has

developed a fully artificial membrane fusion system composed
of a complementary pair of lipidated coiled-coil peptides
enabling targeted liposome-liposome fusion.23 This model
system possesses all the key characteristics of targeted
membrane fusion similar to SNARE mediated fusion including
lipid and content mixing in the absence of leakage (Figure 1A−
B).24,25 In our membrane fusion system, coiled-coil forming
peptides “E3” [(EIAALEK)3] and “K3” [(KIAALKE)3] were
conjugated to a cholesterol moiety via a polyethylene glycol
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(PEG) spacer, yielding lipopeptides CPE3 and CPK3. The
cholesterol moiety allows for the immediate insertion of the
lipidated peptides into any phospholipid membrane. We
demonstrated that plain membranes could become fusogenic
by the spontaneous insertion of CPE3 and CPK3 in the bilayer.
A follow-up study showed that CPK3 modified cells and
zebrafish embryos could be specifically labeled with the
complementary fluorescently labeled E3 peptide,23 revealing
that E3/K3 coiled-coil formation is also functional in an in vivo
environment, thereby paving the way for targeted delivery using
peptide modified liposomes.
Here, we report a new drug delivery method based on

targeted membrane fusion between liposomes and live cells. We
demonstrate that a wide range of cell lines can be specifically
modified with lipopeptide CPK4, and upon addition of CPE4

decorated liposomes membrane fusion occurs with concom-
itant efficient cytosolic delivery of a variety of compounds such
as fluorescent dyes propidium iodide (PI), TOPRO3, and the
cytotoxic drug doxorubicin (DOX). The mechanism of content
uptake was studied using endocytosis inhibitors and endosome
trackers in order to prove that the major site of cargo release
into the cells is indeed at the plasma membrane due to

liposome-cell fusion. Additionally, we show cytosolic dye (and
drug) delivery in vivo using zebrafish embryos. Our method
thus allows for quick and efficient delivery of drugs and
bio(macromolecules) without cell damage and is expected to
have many applications in vitro, ex vivo, and in vivo.

■ RESULTS AND DISCUSSION

Coiled-Coil Formation between CPE4 and CPK4.
Previously, we reported docking of liposomes at cell
membranes using peptides CPE3 and CPK3, but membrane
fusion was not observed.23 In the present study we increased
the number of heptad repeats in CPE and CPK to four thereby
enhancing coiled-coil stability,26 expecting that this would favor
liposome-cell fusion. Figure 1C shows that the cholesterol- and
PEG-modified E4 and K4hereafter called lipopeptides CPE4
and CPK4when attached to liposomes, are capable of coiled-
coil formation as evident from circular dichroism (CD)
spectroscopy, in agreement with previous experiments using
CPE3 and CPK3. Next, lipid mixing experiments were
performed to investigate the fusogenicity of the CPE4/CPK4
pair in a liposome−liposome assay. In these experiments a
fluorescence resonance energy transfer (FRET)-pair consisting

Figure 1. Schematic representation of (A) coiled-coil structure between peptides E and K (adapted from PDB 1UOI), (B) targeted liposome fusion
mediated by coiled-coil formation between CPE4 modified liposomes and CPK4 modified liposomes, (C) CD spectra of CPE4 modified liposomes,
and CPK4 modified liposomes and a equimolar mixture thereof. The total lipid concentrations were 0.5 mM with 1 mol % of lipidated peptide in
PBS. (D) Lipid mixing and content mixing between CPE4-liposomes and CPK4-liposomes. Fluorescence traces showing lipid mixing between E and
K decorated liposomes, as measured through an increase in NBD fluorescence. Total lipid concentrations were 0.1 mM with 1 mol % of lipididated
peptide, in PBS; fluorescence graphs indicating content mixing between sulphorhodamine loaded (20 mM), CPE4 decorated liposomes and
nonfluorescent, CPK4 decorated liposomes. Total lipid concentrations were 0.25 mM with 1 mol % lipidated peptide in PBS. (E) Scheme of fusion
between cell and liposomes.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00172
ACS Cent. Sci. 2016, 2, 621−630

622

http://dx.doi.org/10.1021/acscentsci.6b00172


of nitrobenzoxadiazole (NBD) and lissamine rhodamine (LR)
fluorophore labeled lipids was incorporated into the membrane
of CPK-decorated liposomes.21 Upon lipid mixing of the latter
liposomes with CPE4-liposomes the distance between NBD
and LR increased, resulting in increased NBD-fluorescence as
shown in Figure 1D. Content mixing was quantified by
incorporating a sulforhodamine B at a self-quenching
concentration of 20 mM into CPE-decorated liposomes and
mixing these with CPK-liposomes as described.23 The increase
in sulforhodamine B fluorescence over time indicated that full
fusion took place between CPE4 and CPK4-liposomes (Figure
1D). Control experiments verified that the increase in
sulforhodamine B fluorescence was not caused by leakage
during fusion (Supplementary Figure 1).
Coiled-Coil Formation Triggers Liposome-Cell Fusion.

Next we investigated whether CPE4 and CPK4 could also
mediate membrane fusion between liposomes and living cells.
To this end, HeLa cells were preincubated with a micellar
solution of CPK4 for 0.5−2 h before CPE4-decorated liposomes
(lipid composition DOPC/DOPE/CH, 50:25:25 mol %)
containing the nucleic acid stain propidium iodide (PI) or
TOPRO3 in their aqueous interior were added as schematically
shown in Figure 1E. In order to localize the lipid bilayer, these
liposomes also contained 1 mol % of green-fluorescent NBD-
DOPE lipids. As expected, confocal microscopy showed that
cell membranes became labeled with the green NBD-dye on
their outside in line with previous studies.23 Strikingly, the red
dye was observed in the cytosol and nucleus, indicating that
membrane fusion and content release had occurred (Figure 2A
and Supplementary Figure 2A for TOPRO). Control experi-
ments in which one of the two lipopeptides was omitted
showed neither uptake of PI or TOPRO3 nor NBD-labeling of
the cell plasma membrane (Figure 2B,C,E and Supplementary

Figure 2). We note that when CPK-treated cells were incubated
with empty CPE4-decorated liposomes in the presence of free
dye only a weak fluorescent signal was observed inside cells
(Figure 2C and Supplementary Figure 2C). This control
experiment rules out the possibility that residual non-
encapsulated dye in our liposome preparation entered the cell
by transient membrane destabilization during fusion events.
Finally cell incubation with free dyes also did not show any
signal of the dye inside the cells (Figure 2F and Supplementary
Figure 2F). Similar to CPE4 decorated liposomes, we also used
CPK4 decorated liposomes containing PI and incubated these
with CPE4 pretreated HeLa cells. However, the delivery of PI
was less efficient. A reason might be the asymmetric nature of
the fusion system. It was recently shown that peptide E does
not interact with a membrane. In contrast, peptide K does
interact with the membrane in a so-called snorkeling mode, and
this peptide−membrane interaction is in equilibrium with
either peptide K homocoiling or E/K coiled-coil formation.27,28

These studies suggest that peptide K-membrane interactions
result in increased membrane curvature supporting membrane
fusion. A cell membrane is more complex in composition and
therefore less susceptible to undergo fusion as compared to the
fusogenic liposomes (DOPC/DOPE/CH 2:1:1) used in this
study. Our current thought is that peptide K needs to be on the
cell membrane prior to a fusion event in order to activate the
complex cell membrane by inducing membrane curvature.29

However, more studies are required to support this hypothesis.
To exclude the possibility that peptide-mediated liposomal

dye delivery was a peculiarity of HeLa cells, the membrane
fusion experiments were repeated with Chinese hamster ovary
(CHO) and mouse fibroblast (NIH/3T3) cell lines. Again the
appearance of TOPRO3 and PI was observed inside cells
suggesting that the peptide-mediated delivery of the dye is cell

Figure 2. Delivery of PI by peptidated-liposomes is dependent on coiled-coil formation between CPK and CPE. Confocal microscopy images of
Hela cells. Cells were preincubated with CPK (A, B, C) or medium (D, E, F) for 2 h, followed by treatment with CPE-decorated liposomes
containing PI (A, E), liposomes containing PI (B, D), CPE-decorated liposomes plus free PI (C), or free PI (F). Green: NBD, red: PI. Scale bar is 25
μm. Overlay is red and green channel plus bright field image.
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type independent (Supplementary Figures 3 and 4).
Importantly, we found that uveal melanoma cells (Mel270),
which are generally hard to transfect,30,31 could also be
modified with TOPRO3 using this method (Supplementary
Figure 3D).
To address the potential toxicity of CPK4, CPE4, and

liposomes toward CHO, NIH/3T3, and HeLa cells cell viability
assays were carried out. These assays indicated that lip-
opeptides CPE4 and CPK4 and liposomes, with or without
CPE4, at the concentrations used throughout this study are well
tolerated by all cell lines (Supplementary Figure 5A). Higher
concentrations of these lipopeptides, even up to 100 μM, did
not significantly reduce cell viability when exposed for 2 h but
only did so after 24 h of exposure (Supplementary Figure
5B,C).

Altogether, these results show that coiled-coil formation
between CPK4 and CPE4 is critical for fusion and release of the
dyes and that these compounds are not toxic for living cells at
the concentrations used allowing to investigate potential
applications and their uptake mechanism.

Delivery of Doxorubicin. Doxorubicin (DOX) is one of
the mostly used drugs for cancer treatments in the clinic today
but as a free drug has serious cardiotoxicity. DOX is a cell-
permeable drug whose fluorescence is strongly enhanced upon
binding to nucleic acids. Intercalation into DNA ultimately
results in apoptosis.32 To test delivery of liposomal DOX, HeLa
cells were preincubated with CPK4 and subsequently exposed
to CPE4-decorated liposomes containing 5 μM DOX for 15
min. As can be seen in Figure 3a,b this resulted in strong
nuclear (and cytosolic) fluorescence. Control experiments

Figure 3. Delivery of DOX into HeLa cells. (a) CPE/CPK mediated delivery of DOX into HeLa cells. Cells were treated with CPK for 1 h followed
by incubation with 0.25 mM CPE-liposomes containing with DOX for 15 min. Images were taken after washing. (a) Bright field. (b) Fluorescence
channel. The inset shows a magnified overlay image, revealing the presence of DOX in the nucleus. The concentration of DOX loaded into
liposomes is 5 μM. Scale bar represents 25 μm. (c) Cytotoxicity of CPE/CPK delivered DOX and free DOX. HeLa cells were treated with CPK for 1
h and series of concentrations of CPE decorated liposomes containing DOX (blue line), or the same concentrations of free DOX (red line) for 12 h.
After washing and incubation with medium for 24 h, cell viability was measured by a WST-1 assay.

Figure 4. Visualization of endosomes using an endosome tracker. CHO cells were treated with CPK for 2 h, followed by coincubation with pHrodo
red dextran and CPE-decorated liposomes (0.25 mM total lipid concentration and 1 mol % CPE) loaded with TOPRO 3. (A) White channel
showing DOPE-NBD liposomes. (B) Red channel (TOPRO3). (C) Blue channel (pHrodo). (D) Overlay of panels A and B. (E) Overlay of panels
B and C. (F) Overlay of panels A and C. Scale bar is 25 μm.
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showed that DOX delivery is highly dependent on the presence
of CPE4 and CPK4 (Supplementary Figure 6). To investigate
cytotoxicity of liposomal delivered DOX, HeLa cells
preincubated with CPK were exposed with increasing
concentrations of DOX-loaded liposomes for 12 h. Cell
viability was measured 24 h later. Figure 3c shows cell viability
as a function of liposomal and free DOX. As expected, very low
concentrations of free DOX (<1 μM) did not affect the viability
of HeLa cells as passive crossing into cells is not efficient at this
concentration. Importantly, in current treatments in the clinic
the DOX concentration is up to 9 μM in the serum of patients.
In contrast, liposomes loaded with 1 μM Dox did show a
significant effect as the DOX uptake is significantly enhanced.
Liposomally delivered DOX reduced cell viability at DOX
concentrations as low as 0.1 nM with an IC50 of ∼0.01 μM,
while free DOX did not affect cell viability at concentrations up
to 1 μM (IC50 ∼ 5 μM). Control experiments in which either
CPK4 or CPE4 was omitted showed 100-fold or higher IC50
values (Supplementary Figure 7). Thus, our peptide-mediated
delivery of DOX can potentially reduce the dose of DOX
needed for anticancer treatments thereby lowering the
cardiotoxicity of DOX.33 The presented fusion mediated
delivery approach is also promising for the delivery of other
drugs or biomolecules like DNA or siRNA.
Liposomes and Content Only Partially Colocalize with

Endosomes. Endocytosis is the most common pathway for
the uptake of small particles including liposomes by cells.4 To
investigate whether endocytosis played a role in the liposomal
delivery, the endosome tracker pHrodo, a fluorescently labeled
dextran, was used in combination with TOPRO3 loaded
liposomes. TOPRO3 was chosen as encapsulated dye for this
experiment instead of PI because its emission (Ex/Em 642/661
nm) is expected not to interfere with emission of pHrodo (Ex/
Em 560/585 nm) making investigation of colocalization of dyes
easier. pHrodo and CPE-decorated liposomes containing 1 mol
% NBD-DOPE and TOPRO3 were simultaneously added to
CPK-modified HeLa cells. Confocal microscopy showed the
presence of TOPRO3 in the cytosol and to a lesser extent in
the nucleus (Figure 4B), while pHrodo was mainly observed as
individual dots in the cytosol in agreement with its endosomal

uptake (Figure 4C). Overlaying the fluorescent images of
TOPRO3 and pHrodo revealed some overlap between
TOPRO3 and endosomes (Figure 4E, pink dots), but the
majority of TOPRO3 signal remains unmixed. Again, the signal
from NBD-DOPE (Figure 4A, white dots) remained at the
plasma membrane, although some overlap with pHrodo was
observed at the plasma membrane (Figure 4F). This could be
the result of both liposomes and endosome tracker binding at a
common spot at the plasma membrane or could mean that
some liposomes are initially taken up by endocytosis but then
rapidly fuse with the endosomal membrane.
These results suggest that the endosomal uptake pathway

only plays a minor role in CPE4−CPK4 mediated liposomal
uptake and that liposome-cell membrane fusion is the main
route for cargo delivery. This is also illustrated by performing
the same experiment at 4 °C, conditions under which active
uptake by endocytosis is inhibited. Imaging of cells over a
period of 3 h showed the increasing uptake of TOPRO3
(Figure 5A, upper panels). In contrast only a faint signal of
endosome tracker pHrodo was observed after 3 h, indicating
that endocytosis was severely limited at 4 °C (Figure 5A, lower
panels). Quantification of the fluorescence intensity using
software (ImageJ) showed that after 3 h the uptake of
TOPRO3 reached ∼80% of the level obtained after 30 min at
37 °C (Figure 5B). The slower uptake is presumably caused by
the reduced rate of liposome-cell fusion events at 4 °C. This is
supported by the observation that liposome-liposome lipid
mixing induced by CPE4/CPK4 is also significantly slower at 4
°C than at room temperature (Supplementary Figure 8).

Endocytosis and Macropinocytosis Inhibitors Margin-
ally Affect Delivery. As independent support for our
conclusion that fusion at the plasma membrane is the major
pathway for our liposome-based delivery system, several well-
characterized inhibitors of endocytotic pathways were tested
using flow cytometry measurements and confocal microscopy
imaging. Wortmannin blocks PI3-kinase and inhibits macro-
pinocytosis,34−37 chlorpromazine interferes with clathrin-
dependent endocytosis,38−40 genistein inhibits tyrosine-phos-
phorylation of Cav 1 and caveola-dependent endocytosis.41−43

In addition, nocodazole, an inhibitor of microtubule formation,

Figure 5. Investigation into the uptake mechanism. (A) Effect of low temperature incubation of HeLa cells on liposomal delivery of TOPRO3 and
endosomal uptake of pHrodo. Cells were preincubated on ice with 5 μM CPK (2 h), followed by 15 min incubation with 0.25 mM CPE-decorated
liposomes containing TOPRO3. After three washes confocal images were taken immediately (0 min) and after 60, 120, and 180 min. Top row:
TOPRO3 (red), bottom row: pHrodo (blue). (B) Graphical representation of the percentage of TOPRO dye uptake by HeLa cells on ice.
Fluorescence intensities were calculated by ImageJ and plotted as a percentage relative to the fluorescence of TOPRO3 delivery at 37 °C (100%).
Scale bar is 25 μm. (C) Effect of endocytosis and macropinocytosis inhibitors on delivery of PI by liposomes to HeLa cells. Cells were incubated with
medium (Ctrl+), or medium containing 0.25 μM wortmannin (Wor), 40 μM chlorpromazine (Chl), 200 μM genistein (Gen), 40 μM nocodazole
(Noc) for 1 h, 0.01% w/v sodium azide (NaN3), followed by 2 h incubation with 5 μM CPK in the presence of inhibitors, and then treated for 15
min with CPE-liposomes containing PI. Final concentration of lipids (liposomes) was 0.25 mM. Cellular uptake was measured by flow cytometry.
Positive control (100%): fluorescence of PI dye in the absence of inhibitors.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00172
ACS Cent. Sci. 2016, 2, 621−630

625

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00172/suppl_file/oc6b00172_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00172/suppl_file/oc6b00172_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00172/suppl_file/oc6b00172_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.6b00172


was used to investigate whether intracellular trafficking and
internalization mechanisms are involved.36,37,40,44,45 Moreover,
endocytosis of nanoparticles is an energy-dependent mecha-
nism. Sodium azide was therefore used to deplete the energy
needs for endocytosis and restrict metabolic activity.46,47

HeLa cells were first incubated for 1 h with each inhibitor at
concentrations that have been reported by others to show
optimal activity. After removal of the inhibitors, cells were
treated with CPK and subsequently with CPE-decorated
liposomes containing PI dye in the presence of freshly added
inhibitors. FACS analysis showed that genistein and nocodazole
had no adverse effect on the delivery of PI (Figure 5C),
whereas in the presence of wortmannin, chlorpromazine and
sodium azide PI uptake was reduced less than 20%. These
results argue against a major role of endocytosis or pinocytosis
in uptake of liposomal cargo and support that the dominant
pathway for delivery is indeed targeted membrane fusion
between liposomes with the plasma membrane of live cells.
Intracellular Delivery in Vivo. As a first step toward

clinical application, we used zebrafish embryos to evaluate
direct cytoplasmic delivery in vivo. We previously established
coiled-coil mediated docking of liposomes onto the zebrafish
embryonic skin.21 During embryonic stages, the zebrafish skin
is composed of a layer of ridged, mucus-covered enveloping
layer (EVL) cells. Through interspersed gaps in the EVL layer,
cells within the underlying epidermal basal layer (EBL),
including mucus-secreting cells and ionocytes, are exposed to
the external environment.45 To test for in vivo delivery to skin
epithelial cells, we exposed 48-h-old zebrafish embryos to CPK
in embryo medium for 30 min. After washing, embryos were
exposed to NBD-labeled, CPE-decorated liposomes containing
DOX for 30 min. Consistent with previous results,21 we
observed widespread liposome docking after 30 min of
incubation, as evidenced by NBD and DOX colabeling.
Importantly, we identified nuclear DOX labeling within a
subset of skin epithelial cells (Figure 6) consistent with delivery
into EBL-layer, but not EVL layer cells, which appeared to be
inaccessible due to mucus covering or membrane ridging.
Control experiments established that cytoplasmic delivery was
specific to coiled-coil interaction (Supplementary Figure 9). We
further confirmed intracellular delivery using liposomes loaded
with PI, which becomes highly fluorescent only after interaction
with cellular DNA or RNA (Supplementary Figures 10 and 11).
Together, these results indicate the potential application of
coiled-coil induced membrane fusion for direct cellular drug
delivery in vivo.

■ CONCLUSIONS

Numerous methods exist to deliver drugs and (bio)-
macromolecules to living cells. Depending on the nature of
these molecules they can be delivered into cells via electro-
poration, microinjection, calcium phosphate coprecipitation,
nanoparticles, or viral particles. However, many of these
methods are either not suitable for in vitro use or cannot be
safely applied in in vivo applications, or are inefficient due to
endosomal entrapment and degradation. The membrane fusion
system described here involves the targeted fusion of liposomes
with the plasma membrane of live cells. As a result, endosomal
pathways are almost completely circumvented, and therefore
this efficient drug delivery method is suited for labile
(bio)molecules. In addition, the lipopeptides and modified
liposomes have a low toxicity at the used concentrationin
contrast to CPP-based delivery approaches or PEG-induced
liposome fusion.48 We anticipate that this membrane fusion
strategy will spark new in vitro, ex vivo research in the field of
chemical biology and possibly in long term in vivo applications,
enabling new basic and applied research studies for gene
therapy. Moreover any compound that can be encapsulated in
liposomes like hydrophilic low molecular weight drugs49 or
DNA/siRNA50,51 could be considered as well as many
hydrophilic drugs are unable to enter cells effectively and are
known to be degraded in a lysosomal environment thereby
lowering their therapeutic efficacy.52 Here, fusion mediated
delivery could result in less degradation of sensitive molecules
and might therefore find use as a new transfection agent in in
vitro cell studies. Also lipid bilayer-coated nanoparticles53−57

might be delivered more efficiently when coiled-coil mediated
membrane fusion is applied thereby increasing the scope of
molecules and nanoparticles/nanomedicines that can be
delivered into cells. Future in vivo application of this technique
requires cells to be premodified with one of the two peptides
and is currently not cell-type specific due to the cholesterol-
anchor; several applications are still conceivable. These include
topical administration of drugs to treat, e.g., pulmonary disease
or combat respiratory infections like influenza. On the other
hand, delivery of liposomally encapsulated mRNA or DNA
coding for the tumor suppressor p53 will only affect tumor cells
and leave healthy cells unharmed.58 Similarly, liposomal
delivery of miRNA or siRNA to upregulate tumor suppressors
or downregulate oncogenes could selectively kill only tumor
cells.59

Figure 6. In vivo delivery of DOX using CPK and CPE. 2 dpf zebrafish were treated with CPK for 30 min, followed by 30 min incubation with CPE-
decorated liposomes (0.25 mM total lipid concentration and 1 mol % CPE) loaded with DOX. (A, B) Whole-embryo imaging showing widespread
DOX delivery in living zebrafish embryos (control experiments in Supplementary Figure S9). (C−E) Single zebrafish skin epithelial cell (from the
indicated site of the embryo in (A, B) displaying membrane associated DOPE-NBD labeling (NBD) and predominantly nuclear DOX labeling.
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Finally, a certain degree of selectivity can be achieved using a
light-induced membrane fusion system that was recently
developed in our laboratory. This system makes use of
photoinduced deshielding of a PEGylated CPE and thus allows
potentially for spatiotemporal control of liposomal drug
delivery in vivo.60

■ MATERIALS AND METHODS

Fmoc-protected amino acids were purchased from Novabio-
chem, and Biosolve Sieber Amide resin was purchased from
Chem-Impex International and Agilent Technologies. DOPE,
DOPC, DOPE-NBD, and DOPE-LR were purchased from
Avanti Polar Lipids. Cholesterol, propidium iodide
(#BCBM1455V), and sulphorhodamine were obtained from
Sigma-Aldrich. Topro3-Iodide (#1301286) and pHrodo Red
dextran 10,000MW were purchased from Life Technologies.
Eight wells slide Lab-tek was purchased from Thermo
Scientific, USA. DMEM medium was obtained from Gibco,
life technologies. N3-PEG4-COOH

61 and 3-azido-5-choles-
tene62 were synthesized following literature procedures.
Lipopeptide Synthesis and Purification. The peptide

components of CPK4 and CPE4, i.e., E4 (EIAALEK)4 and K4
(KIAALKE)4, were synthesized on an automatic CEM peptide
synthesizer on a 250 μmol scale using Fmoc chemistry and
standard solid-phase peptide synthesis protocols as previously
described.23 After Fmoc deprotection N3-(ethylene glycol)4-
COOH was coupled to the peptide on the resin. After azide
reduction cholesteryl-4-amino-4-oxobutanoic acid was coupled
to the PEG4 linker to yield the CPE4 and CPK4 peptides as
described. The final products were purified by HPLC using a
C4 column, and their identity was confirmed by LC-MS.
Liposome Preparation and Characterization. Lipids

were dissolved in CHCl3 in the molar ratio DOPC, DOPE,
cholesterol, and DOPE-NBD of 49.5:24.75:24.75:1 [total lipid
concentration] = 1 mM. Peptide stock solutions of 50 μM were
prepared in CHCl3/CH3OH (1:1 v/v). Liposomes were
prepared by mixing the appropriate amount of lipids and
CPE4 in a 20 mL glass vial and evaporating the solvents over air
pressure to form lipid films. Traces of solvent were removed
under high vacuum for 3−4 h at 25 °C. Each sample was then
hydrated with 15 mM PI (Sigma Aldrich #BCBM1455V) or
0.25 mM Topro3 (Life Technologies, #1301286, after
removing DMSO by freeze-drying) or FITC-dextran (35 mg/
mL) in PBS buffer and sonicated for 2−3 min in a sonication
bath at 55 °C. Nonencapsulated dyes or FITC-dextran were
removed via Sephadex G25 or G50 size-exclusion PD-10
Columns (GE-Healthcare, USA). Liposomes were character-
ized by dynamic light scattering (DLS) at 25 °C to determine
the average diameter (80−100 nm in general). The final
concentration of lipids and CPE4 in each sample before cell
treatments was 250 μM and 2.5 μM, respectively.
Doxorubicin (DOX) was entrapped as follows. The lipid film

was hydrated with citrate buffer (pH 3.5) and sonicated in a
sonication bath at 50 °C for 30 min. The citrate buffer was
replaced by PBS (pH 7.4) through Sephadex G-25 filtration,
leaving the inside of liposomes acidic. Doxorubicin powder
(Sigma Aldrich #44538) was added into liposomal dispersion at
a drug-to-lipid molar ratio of 1:3 and subsequently rotated at 4
°C overnight. Untrapped free DOX was separated from
liposomes by size exclusion chromatography using a Sephadex
G-25 column. The entrapment efficiency was determined using
UV−vis spectrophotometry (see Supporting Information).

Liposomes obtained were ∼120 nm in diameter with a PDI
of <0.2.
A CPK4 stock solution (50 μM) was prepared in CHCl3/

CH3OH (1:1). For a typical cell treatment the appropriate
amount of CPK stock solution was taken, and the organic
solvent was evaporated under air stream. After that it was
hydrated by DMEM (± FCS, w/o phenol red) and sonicated at
55 °C for 1−2 min.

Cellular Uptake Assay and Confocal Microscopy
Measurements. All incubations were done in complete
medium without phenol red. Cells were grown in an 8-well
slide at a density of 2.5 × 104 cells per well and incubated at 37
°C in 7% CO2 atmosphere. After 21 h, medium was removed
and a CPK4 solution (5 μM) in medium was added and
incubated for 0.5−2 h at 37 °C in 7% CO2. After removal of
CPK4, cells were washed with medium and incubated with
CPE4-decorated liposomes (250 μM) containing NBD, PI,
TOPRO3. After 15 min incubation, cells were washed three
times with medium, and fluorescent images were acquired on
Leica TCS SP8 confocal laser scanning microscope. Leica
application suite advanced fluorescence software (LAS AF,
Leica Microsystems B.V., Rijswijk, The Netherlands) and
ImageJ (developed by the National Institutes of Health) were
used for image analysis and liposome colocalization studies.
Wavelength settings for pHrodo Red dextran were Ex/Em:
560/585 nm (Ex laser: 488 nm), for Topro3 Ex/Em: 641/662
nm (Ex laser: 633 nm), for propidium iodide Ex/Em: 535/617
nm (Ex laser: 543 nm), for NBD-DOPE Ex/Em: 455/530 nm
(Ex laser: 488 nm) and for DOX Ex/Em: 490/590 nm (Ex
laser: 543 nm).
When performing cellular uptake assays on ice, an 8-well

slide was placed on ice for 1 h, before adding CPK4. After 2 h
on ice, CPK4 was removed and after washing CPE4-decorated
liposomes loaded with TOPRO3 and endosome tracker were
added simultaneously. After 15 min incubation on ice, cells
were washed three times with ice-cold medium and imaged
immediately (time point 0 h). After 1, 2, and 3 h the slide was
transferred to the microscope and images were recorded. In
between measurements the cells were kept on ice.

Cell Viability Assay. Cells were seeded in a 96 well-plate at
a concentration of 1 × 104 cells per well and incubated for 24 h
prior to the WST-1 assay. The medium was removed, and cells
were incubated with 100 μL of CPK4 (5 μM) solution in
medium (w/o phenol red) for 2 h. After 2 h CPK4 was
removed by washing three times with medium, and the cells
were incubated with liposomes containing 1 mol % CPE4
decorated liposomes for 15 min. In parallel cells were incubated
with liposomes in the absence of lipopeptides. After these
treatments, fresh medium was added to each well, and the plate
was incubated at 37 °C for 24 h prior to the WST assay. After
24 h, medium was removed and 200 μL of cell proliferation
reagent WST-1 (Serva, #140330 and PMS-Ome Santa Cruz
Biotechnology, #D3013) in DMEM (w/o phenol red) was
added to each well, and the plate was incubated for 3 h at 37
°C. After 3 h the absorbance at 450 nm was measured at room
temperature using a Tecan infinite M1000 and a 96-well plate,
which was shaken for 60 s prior to measurement (2 mm
linearly, 654 rpm). The values for metabolic activity (cell
survival) were normalized with respect to control (no
liposomes), which was set at 100% cell survival.
For the DOX cell viability assay, Hela cells were incubated

with CPK4 for 2 h and then treated with series of diluted CPE
decorated liposomes loaded with DOX (stock lipid concen-
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tration was 1 mM, containing 1 mol % of CPE; DOX
concentration was 0.25 mM), final concentration of DOX in
liposomes were from 100 μM to 0.1 nM (100 μM, 50 μM, 25
μM, 10 μM, 5 μM, 2.5 μM, 1 μM, 0.1 μM, 0.05 μM, 0.01 μM, 1
nM, 0.5 nM, 0.1 nM). In parallel cells were incubated with
liposomes in the absence of lipopeptides. After 12 h, all the
medium was removed from the wells, and cells were incubated
in fresh medium for 24 h prior to the WST assay.
Flow Cytometry Measurements. HeLa cells and NIH/

3T3 cells were seeded in a 24-well plate at a density of 1 × 105

cells per well and incubated at 37 °C. After 21 h medium was
removed and cells were incubated with 500 μL of nocodazole
(40 μM), wortmannin (0.25 μM), chlorpromazine (40 μM),
genistein (200 μM), or sodium azide 0.01% w/v in medium.
After 1 h preincubation, inhibitors were removed, and the cells
were treated with 500 μL of CPK4 5 (μM) for 2 h followed by
addition of 500 μL of CPE4-liposomes containing PI (250 μM)
in the presence of fresh inhibitors. After 15 min liposomes and
inhibitors were removed and washing steps were performed.
The cells were incubated at 37 °C for 1 h. Finally the cells were
detached using PBS/EDTA for 15 min, centrifuged, and
resuspended in fresh medium at a concentration of 200,000
cells/mL medium. The mean fluorescence intensity of the cells
was measured by flow cytometry using a Beckman Coulter
Quanta SC machine.
Zebrafish Embryo Assay. Zebrafish (Danio rerio) were

handled in compliance with the local animal welfare regulations
and maintained according to standard protocols (http://ZFIN.
org). Embryos were treated with 0.16 mM 1-phenyl-2-thiourea
from 24 h post fertilization (hpf) to prevent pigment formation.
At 48 hpf, embryos were exposed in groups of 10 in 12-well
plates to 5 μM CPK at 31 °C for 30 min; untreated embryos
were used as controls. Next, embryos were washed and treated
for 30 min with liposomes containing CPE, NBD-PE and DOX
or PI (15 μM). Liposomes without CPE, or liposomes without
PI or DOX, or with free PI or DOX added to the medium, were
used as controls. After 3× washing in embryo medium,
embryos were anesthetized in 0.02% tricaine methanesulfonate,
mounted in 0.4% agarose, and imaged by confocal microscopy.
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(16) Jahn, R.; Lang, T.; Südhof, T. C. Membrane fusion. Cell 2003,
112, 519−533.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00172
ACS Cent. Sci. 2016, 2, 621−630

628

http://ZFIN.org
http://ZFIN.org
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.6b00172
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.6b00172/suppl_file/oc6b00172_si_001.pdf
mailto:a.kros@chem.leidenuniv.nl
mailto:olsthoor@lic.leidenuniv.nl
http://dx.doi.org/10.1021/acscentsci.6b00172


(17) Jahn, R.; Scheller, R. H. SNAREs - engines for membrane fusion.
Nat. Rev. Mol. Cell Biol. 2006, 7, 631−643.
(18) Sudhof, T. C. Neurotransmitter release: the last millisecond in
the life of a synaptic vesicle. Neuron 2013, 80, 675−690.
(19) Ma, M.; Bong, D. Controlled fusion of synthetic lipid membrane
vesicles. Acc. Chem. Res. 2013, 46, 2988−2997.
(20) Pahler, G.; Panse, C.; Diederichsen, U.; Janshoff, A. Coiled-coil
formation on lipid bilayers-implications for docking and fusion
efficiency. Biophys. J. 2012, 103, 2295−2303.
(21) Kumar, P.; Guha, S.; Diederichsen, U. SNARE protein analog-
mediated membrane fusion. J. Pept. Sci. 2015, 21, 621−629.
(22) Voskuhl, J.; Ravoo, B. J. Molecular recognition of bilayer
vesicles. Chem. Soc. Rev. 2009, 38, 495−505.
(23) Zope, H. R.; Versluis, F.; Ordas, A.; Voskuhl, J.; Spaink, H. P.;
Kros, A. In vitro and in vivo supramolecular modification of
biomembranes using a lipidated coiled-coil motif. Angew. Chem., Int.
Ed. 2013, 52, 14247−14251.
(24) Robson Marsden, H.; Elbers, N. A.; Bomans, P. H. H.;
Sommerdijk, N. A. J. M.; Kros, A. A reduced SNARE model for
membrane fusion. Angew. Chem., Int. Ed. 2009, 48, 2330−2333.
(25) Robson Marsden, H.; Korobko, A. V.; Zheng, T. T.; Voskuhl, J.;
Kros, A. Controlled liposome fusion mediated by SNARE protein
mimics. Biomater. Sci. 2013, 1, 1046−1054.
(26) Zheng, T.; Voskuhl, J.; Versluis, F.; Zope, H. R.; Tomatsu, I.;
Marsden, H. R.; Kros, A. Controlling the rate of coiled coil driven
membrane fusion. Chem. Commun. (Cambridge, U. K.) 2013, 49,
3649−3651.
(27) Rabe, M.; Zope, H. R.; Kros, A. Interplay between lipid
interaction and homo-coiling of membrane-tethered coiled-coil
peptides. Langmuir 2015, 31, 9953−9964.
(28) Rabe, M.; Schwieger, C.; Zope, H. R.; Versluis, F.; Kros, A.
Membrane interactions of fusogenic coiled-coil peptides: implications
for lipopeptide mediated vesicle fusion. Langmuir 2014, 30, 7724−
7735.
(29) McMahon, H. T.; Kozlov, M. M.; Martens, S. Membrane
Curvature in Synaptic Vesicle Fusion and Beyond. Cell 2010, 140,
601−605.
(30) Micka, B.; Trojaneck, B.; Niemitz, S.; Lefterova, P.; Kruopis, S.;
Huhn, D.; Wittig, B.; Schadendorf, D.; Schmidt-Wolf, I. G.
Comparison of non-viral transfection methods in melanoma cell
primary cultures. Cytokine+ 2000, 12, 828−833.
(31) Nowak, J.; Cohen, E. P.; Graf, L. H., Jr. Cytotoxic activity
toward mouse melanoma following immunization of mice with
transfected cells expressing a human melanoma-associated antigen.
Cancer Immunol. Immunother. 1991, 33, 91−96.
(32) Pang, W. J.; Xiong, Y.; Wang, Y.; Tong, Q.; Yang, G. S. Sirt1
attenuates camptothecin-induced apoptosis through caspase-3 pathway
in porcine preadipocytes. Exp. Cell Res. 2013, 319, 670−683.
(33) Singal, P. K.; Iliskovic, N. Doxorubicin-induced cardiomyopathy.
N. Engl. J. Med. 1998, 339, 900−905.
(34) Arcaro, A.; Wymann, M. P. Wortmannin is a potent
phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinosi-
tol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 1993, 296,
297−301.
(35) Araki, N.; Johnson, M. T.; Swanson, J. A. A role for
phosphoinositide 3-kinase in the completion of macropinocytosis
and phagocytosis by macrophages. J. Cell Biol. 1996, 135, 1249−1260.
(36) Payne, C. K.; Jones, S. A.; Chen, C.; Zhuang, X. Internalization
and trafficking of cell surface proteoglycans and proteoglycan-binding
ligands. Traffic (Oxford, U. K.) 2007, 8, 389−401.
(37) Coppola, S.; Estrada, L. C.; Digman, M. A.; Pozzi, D.; Cardarelli,
F.; Gratton, E.; Caracciolo, G. Intracellular trafficking of cationic
liposome-DNA complexes in living cells. Soft Matter 2012, 8, 7919−
7927.
(38) Wang, L. H.; Rothberg, K. G.; Anderson, R. G. Mis-assembly of
clathrin lattices on endosomes reveals a regulatory switch for coated
pit formation. J. Cell Biol. 1993, 123, 1107−1117.
(39) von Gersdorff, K.; Sanders, N. N.; Vandenbroucke, R.; De
Smedt, S. C.; Wagner, E.; Ogris, M. The internalization route resulting

in successful gene expression depends on both cell line and
polyethylenimine polyplex type. Mol. Ther. 2006, 14, 745−753.
(40) Huth, U. S.; Schubert, R.; Peschka-Suss, R. Investigating the
uptake and intracellular fate of pH-sensitive liposomes by flow
cytometry and spectral bio-imaging. J. Controlled Release 2006, 110,
490−504.
(41) Gabrielson, N. P.; Pack, D. W. Efficient polyethylenimine-
mediated gene delivery proceeds via a caveolar pathway in HeLa cells.
J. Controlled Release 2009, 136, 54−61.
(42) Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe,
S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of
tyrosine-specific protein kinases. J. Biol. Chem. 1987, 262, 5592−5595.
(43) Orlandi, P. A.; Fishman, P. H. Filipin-dependent inhibition of
cholera toxin: evidence for toxin internalization and activation through
caveolae-like domains. J. Cell Biol. 1998, 141, 905−915.
(44) Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Size-
dependent internalization of particles via the pathways of clathrin- and
caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159−169.
(45) Goncalves, C.; Mennesson, E.; Fuchs, R.; Gorvel, J. P.; Midoux,
P.; Pichon, C. Macropinocytosis of polyplexes and recycling of plasmid
via the clathrin-dependent pathway impair the transfection efficiency
of human hepatocarcinoma cells. Mol. Ther. 2004, 10, 373−385.
(46) Simoes, S.; Slepushkin, V.; Duzgunes, N.; Pedroso de Lima, M.
C. On the mechanisms of internalization and intracellular delivery
mediated by pH-sensitive liposomes. Biochim. Biophys. Acta, Biomembr.
2001, 1515, 23−37.
(47) Gao, H.; Yang, Z.; Zhang, S.; Cao, S.; Shen, S.; Pang, Z.; Jiang,
X. Ligand modified nanoparticles increases cell uptake, alters
endocytosis and elevates glioma distribution and internalization. Sci.
Rep. 2013, 3, 2534.
(48) Szoka, F.; Magnusson, K. E.; Wojcieszyn, J.; Hou, Y.; Derzko,
Z.; Jacobson, K. Use of lectins and polyethylene glycol for fusion of
glycolipid-containing liposomes with eukaryotic cells. Proc. Natl. Acad.
Sci. U. S. A. 1981, 78, 1685−1689.
(49) Mora, N. L.; Bahreman, A.; Valkenier, H.; Li, H. Y.; Sharp, T.
H.; Sheppard, D. N.; Davis, A. P.; Kros, A. Targeted anion transporter
delivery by coiled-coil driven membrane fusion. Chem. Sci. 2016, 7,
1768−1772.
(50) Oude Blenke, E. E.; van den Dikkenberg, J.; van Kolck, B.; Kros,
A.; Mastrobattista, E. Coiled coil interactions for the targeting of
liposomes for nucleic acid delivery. Nanoscale 2016, 8, 8955−8965.
(51) Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery
materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967−977.
(52) Wittrup, A.; Ai, A.; Liu, X.; Hamar, P.; Trifonova, R.; Charisse,
K.; Manoharan, M.; Kirchhausen, T.; Lieberman, J. Visualizing lipid-
formulated siRNA release from endosomes and target gene knock-
down. Nat. Biotechnol. 2015, 33, 870.
(53) Liu, J. W.; Jiang, X. M.; Ashley, C.; Brinker, C. J. Electrostatically
mediated liposome fusion and lipid exchange with a nanoparticle-
supported bilayer for control of surface charge, drug containment, and
delivery. J. Am. Chem. Soc. 2009, 131, 7567−7569.
(54) Liu, J. W.; Stace-Naughton, A.; Jiang, X. M.; Brinker, C. J.
Porous nanoparticle supported lipid bilayers (protocells) as delivery
vehicles. J. Am. Chem. Soc. 2009, 131, 1354−1355.
(55) Ashley, C. E.; Carnes, E. C.; Epler, K. E.; Padilla, D. P.; Phillips,
G. K.; Castillo, R. E.; Wilkinson, D. C.; Wilkinson, B. S.; Burgard, C.
A.; Kalinich, R. M.; Townson, J. L.; Chackerian, B.; Willman, C. L.;
Peabody, D. S.; Wharton, W.; Brinker, C. J. Delivery of small
interfering RNA by peptide-targeted mesoporous silica nanoparticle-
supported lipid bilayers. ACS Nano 2012, 6, 2174−2188.
(56) Liu, X. S.; Situ, A.; Kang, Y. A.; Villabroza, K. R.; Liao, Y. P.;
Chang, C. H.; Donahue, T.; Nel, A. E.; Meng, H. Irinotecan delivery
by lipid-coated mesoporous silica nanoparticles shows improved
efficacy and safety over liposomes for pancreatic cancer. ACS Nano
2016, 10, 2702−2715.
(57) Cauda, V.; Engelke, H.; Sauer, A.; Arcizet, D.; Brauchle, C.;
Radler, J.; Bein, T. Colchicine-loaded lipid bilayer-coated 50 nm
mesoporous nanoparticles efficiently induce microtubule depolymeri-
zation upon cell uptake. Nano Lett. 2010, 10, 2484−2492.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00172
ACS Cent. Sci. 2016, 2, 621−630

629

http://dx.doi.org/10.1021/acscentsci.6b00172


(58) Wang, K.; Huang, Q.; Qiu, F.; Sui, M. Non-viral delivery
systems for the application in p53 cancer gene therapy. Curr. Med.
Chem. 2015, 22, 4118−4136.
(59) Saito, Y.; Nakaoka, T.; Saito, H. MicroRNA-34a as a therapeutic
agent against human cancer. J. Clin. Med. 2015, 4, 1951−1959.
(60) Kong, L.; Askes, S. H.; Bonnet, S.; Kros, A.; Campbell, F.
Temporal control of membrane fusion through photolabile
PEGylation of liposome membranes. Angew. Chem., Int. Ed. 2016,
55, 1396−1400.
(61) Voskuhl, J.; Wendeln, C.; Versluis, F.; Fritz, E. C.; Roling, O.;
Zope, H.; Schulz, C.; Rinnen, S.; Arlinghaus, H. F.; Ravoo, B. J.; Kros,
A. Immobilization of liposomes and vesicles on patterned surfaces by a
peptide coiled-coil binding motif. Angew. Chem., Int. Ed. 2012, 51,
12616−12620.
(62) Sun, Q.; Cai, S.; Peterson, B. R. Practical synthesis of 3beta-
amino-5-cholestene and related 3beta-halides involving i-steroid and
retro-i-steroid rearrangements. Org. Lett. 2009, 11, 567−570.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.6b00172
ACS Cent. Sci. 2016, 2, 621−630

630

http://dx.doi.org/10.1021/acscentsci.6b00172

