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The ability to accurately predict the DNA targets and interacting cofactors of

transcriptional regulators from genome-wide data can significantly advance

our understanding of gene regulatory networks. NKX2-5 is a homeodomain

transcription factor that sits high in the cardiac gene regulatory network

and is essential for normal heart development. We previously identified

genomic targets for NKX2-5 in mouse HL-1 atrial cardiomyocytes using

DNA-adenine methyltransferase identification (DamID). Here, we apply

machine learning algorithms and propose a knowledge-based feature selection

method for predicting NKX2-5 protein : protein interactions based on motif

grammar in genome-wide DNA-binding data. We assessed model perform-

ance using leave-one-out cross-validation and a completely independent

DamID experiment performed with replicates. In addition to identifying

previously described NKX2-5-interacting proteins, including GATA, HAND

and TBX family members, a number of novel interactors were identified,

with direct protein : protein interactions between NKX2-5 and retinoid X recep-

tor (RXR), paired-related homeobox (PRRX) and Ikaros zinc fingers (IKZF)

validated using the yeast two-hybrid assay. We also found that the interaction

of RXRa with NKX2-5 mutations found in congenital heart disease (Q187H,

R189G and R190H) was altered. These findings highlight an intuitive approach

to accessing protein–protein interaction information of transcription factors in

DNA-binding experiments.
1. Introduction
Complex gene regulatory networks (GRNs) guide development and tissue

homeostasis in all organisms. While gene regulation is complex, transcription

factors (TFs) provide a key focus for effector function in GRNs as their specific

DNA recognition sequence motifs (transcription factor binding sites, TFBSs) are

hard-wired into the genome sequence [1,2]. TFs do not act in isolation, and the

progression of diverse cellular programmes in development depends upon

binding site specificity, cooperativity of multiple TFs and the recruitment of a

diversity of cofactors [3–7].

Recently, machine-learning algorithms have been applied to genome-wide

datasets to make novel predictions related to cardiac GRN function. These studies

have focused on predicting muscle-specific enhancers from validated training sets

[8,9] or identifying known and novel TFs governing heart precursor and organ

development based on sequence-level discriminators (motif grammar) [10,11].

While such studies have demonstrated the power of machine-learning approaches

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.160183&domain=pdf&date_stamp=2016-09-28
mailto:awaardenberg@cmri.org.au
mailto:r.harvey@victorchang.edu.au
https://dx.doi.org/10.6084/m9.figshare.c.3469887
https://dx.doi.org/10.6084/m9.figshare.c.3469887
http://orcid.org/
http://orcid.org/0000-0002-9382-7490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsob.royalsocietypublishing.org
Open

Biol.6:160183

2
for validating known enhancers and predicting novel enhan-

cers based on motif grammar, these methods have not yet

been systematically focused on the discovery and validation

of novel TF protein interactors—therefore relatively few such

transcriptional cofactors have come to light. Furthermore,

while large numbers of TFs have been proposed to act through

indirect DNA binding [12,13], the nature and role of cofactors

that indirectly guide TFs to regulatory elements has not been

clarified or systematically validated.

NKX2-5 is an NK2-class homeodomain TF related to

Drosophila tinman, and its expression during mammalian devel-

opment is regionally restricted to the cardiac fields and forming

heart tube, as well as other organ-specific domains [14]. Consist-

ent with a combinatorial model for TF specification of heart

development, NKX2-5 acts cooperatively with other cardiac

TFs whose expression is similarly regionally restricted, includ-

ing GATA4, ISL1, TBX2/3/5/20, MEF2C and SRF. These

factors are thought to form a cardiac collective or ‘kernel’ of

TFs that show recursive wiring (many cross-regulatory inter-

actions) [1] and which perform the executive functions of the

cardiac GRN. NKX2-5 is essential for normal heart develop-

ment and mouse embryos carrying homozygous NKX2-5

loss-of-function or severe point mutations show a rudimentary

beating myogenic heart tube lacking specialized chambers,

valves, septa and conduction tissues, with subsequent growth

arrest and death at mid-gestation [15]. In humans, NKX2-5 is

also one of the most commonly mutated single genes in congen-

ital heart disease (CHD), with heterozygous mutations

causative for a spectrum of CHD phenotypes, most prominently

atrial septal defects and progressive conduction block [15].

To expand our knowledge of the cardiac GRN, we recently

identified NKX2-5 targets in cultured HL-1 atrial cardiomyo-

cytes using DNA-adenine methlyltransferase identification

(DamID), a sensitive enzymatic method for detecting genome-

wide protein–DNA interactions [16]. DamID complements

the chromatin immunoprecipitation (ChIP) method for detec-

tion of TF-DNA interactions while avoiding some of the

artefacts associated with chromatin cross-linking and use of

poor quality antibodies [16,17]. Approximately 1500 target

peaks were detected and, consistent with a role for NKX2-5

in normal heart development, proximal target genes were

enriched for those involved in cardiac development and

sarcomere organization.

Further analysis of our DamID data [16] and ChIP data [11]

identifying genome-wide cardiac TF target sets suggests that

cardiac kernel TFs collaborate and interact widely with each

other and with many broadly expressed signal-gated DNA-

binding TFs. This includes factors embedded within canonical

signalling pathways such as SMAD and TCF proteins (down-

stream of BMP and WNT signalling, respectively), known to

regulate cardiogenesis, as well as other extracellular signal-

gated TFs of the ETS, TEAD, NFAT, STAT, YY, SP, LMO

and MEIS families [8,18–21]. A model in which regionally

restricted kernel TFs cooperate with broadly expressed but

signal-gated TFs to define an organ-specific context for devel-

opmental programmes is compelling because it allows for

great regulatory flexibility, consistent with the GRN model [1].

In this study, we applied machine-learning algorithms to

generate models for wild type (WT) NKX2-5 targets based on

motif grammar, exploiting replicate NKX2-5 DamID exper-

iments performed 2 years apart [16]. We developed a

knowledge-based lasso method to generate sparse models

with very high concordance between experiments. Using this
approach, we defined 27 TFs as discriminators of NKX2-5

DamID targets that included NKX2-5 and related proteins, as

well as known direct NKX2-5 protein interactors such as

TBX5, GATA1 and HAND1. We also identified novel NKX2-

5 target discriminators and validated retinoid X receptor

(RXRa), paired-related homeobox (PRRX2), Ikaros zinc fingers

(IKZF1) and a number of their paralogues (PRRX1a, PRRX1b,

IKZF3 and IKZF5) as direct NKX2-5 interactors using the

yeast two-hybrid assay. Furthermore, we found that inter-

actions between RXRa and a subset of NKX2-5 mutations

causative for congenital heart disease (Q187H, R189G and

R190H) were altered, linking TF–TF interaction networks to

heart disease. To our knowledge, these are the first experiments

to mine genome-wide TF–DNA interaction data for systematic

discovery and validation of TF protein–protein interactions

(PPIs) for expanding TF interactomes.
2. Results
2.1. Classification of bound regions by motif

composition
We previously identified 1536 and 1571 NKX2-5 target peaks,

respectively, in two DamID experiments performed 2 years

apart [16]. Three and four replicates, respectively, contributed

to peak selection in these experiments, which we refer to as

NKX2-51 and NKX2-52 [22]. The peak overlaps between

NKX2-51 and NKX2-52 were highly significant ( p , 0.001)

and comparison of gene ontology (GO) terms using a log

odds ratio statistic implemented in the CompGO R package

demonstrated these experiments were identical at a GO level [22].

We sought to determine if NKX2-5 targets could be

classified based on the motif grammar embedded within

their peaks, relative to a random peak set generated from

sequences represented on the Affymetrix promoter micro-

array chip used for DamID experiments [16]. For testing

models, we used a leave-one-out cross-validation (LOOCV)

approach to train models for NKX2-51 (compared with the

randomly generated peak set) on 75% of the data, withhold-

ing 25% for testing performance (figure 1a). We used DREME

[23] to generate position weight matrices (PWMs) de novo

from the training sets only, which identified 70 de novo

PWMs in total (figure 1b; electronic supplementary material,

file S1). We next combined these de novo PWMs with PWMs

from Transfac [24] and Jaspar [25], adding the PWM for

TBX5, a known NKX2-5 cofactor [26] (figure 1b; electronic

supplementary material, file S2), bringing the total number

of PWMs to 1202. CLOVER [27] was next used to count

motif instances in NKX2-5 target peaks, followed by normal-

ization to peak length. From de novo motifs discovered, the

NKX2-5 motif (NKE) was highly enriched (ranked first for

NKX2-51 and shown in figure 1b, and third for NKX2-52),

consistent with previous findings [16].

We then generated classification models using three

algorithms—least absolute shrinkage and selection operator

(lasso) [28], support vector machine (SVM) [29] and random

forest [30] (figure 1c)—and compared predictive performance

using the area under curve (AUC) of receiver operating charac-

teristic (ROC) graphs from the withheld test set (figure 1d ).

Performance of the lasso model on the test set resulted in an

AUC of 0.789 (where 0.5 is random) (figure 1d). Removing

de novo motifs from the feature matrix and refitting the
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model reduced the AUC slightly to 0.779—a marginal loss of

1% classification performance. AUCs of the SVM and

random forest models using all motifs were 0.801 and 0.788,

respectively, a marginal AUC improvement (0.012) or loss

(20.001) compared with the lasso model (figure 1d ). Removing

de novo motifs again did not affect performance (figure 1d ).

This indicated that known TFBSs were sufficient to predict

NKX2-5 peaks. NKX2-5 test peaks predicted correctly by the

SVM and random forest models overlapped highly with the

lasso predicted peaks, identifying a common set of 280 positive

peaks (approx. 78%) (figure 1e). Specificity and sensitivity

analysis (equations (5.1) and (5.2); see Material and methods)

revealed that the random forest was the most sensitive, pre-

dicting 88.7% as true positive peaks compared with the SVM

(83.1%) and lasso (72.5%) (equation (5.1)). However, this was

at the cost of specificity. The random forest model predicted

the smallest proportion of true negative peaks (53.6%), fol-

lowed by the SVM (63.2%) and lasso (70.6%) (equation (5.2)),

suggesting a larger proportion of false positive predictions by

the random forest and SVM models, and possibly overfitting

by these models. Although these trade-offs were reflected by
the overall similarity of their AUC values in the ROC curves

(figure 1d), the lasso had the greatest positive predictive

value (PPV, equation (5.3)), correctly predicting the largest

proportion (73.5%) of true positive peaks among all positive

predictions, followed by the SVM (71.7%) and random

forest models (68.2%). Consistent with these results, the lasso

model had the lowest false discovery rate (FDR) (equation

(5.4); see Material and methods) at 0.265, followed by the

SVM (0.283) and random forest (0.318). As our aim was to

identify new PPIs with greatest confidence for further vali-

dation, we proceeded with the lasso algorithm, having the

greatest PPV and the lowest FDR.
2.2. Assessing repeated NKX2-5 DamID binding
experiments

We then examined the similarity between distinct NKX2-5

experiments by applying lasso models generated from NKX2-

51 to test peaks obtained from NKX2-52 and vice versa,

and assessed sensitivity of predictions (equation (5.1)). The
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sensitivity of the NKX2-51 lasso model for correctly predicting

NKX2-52 peaks was 0.741 if de novo motifs were included

and 0.731 without de novo motifs. It is noteworthy here that

the sensitivity of prediction was much greater than the approxi-

mately 55% of peak coordinates identified as overlapping

between NKX2-51 and NKX2-52 (figure 2a) (see below).

To determine the importance of unique as well as common

genomic targets in the overlap depicted in figure 2a for gener-

ating our models, data were split into A, B1, B2 and C sets,

where A represented the peaks unique to NKX2-51, B1 rep-

resents the specific peaks originating from NKX2-51 which

overlap with NKX2-52 peaks, B2 the peaks originating from

NKX2-52 which overlap with NKX2-51 peaks, and C the

peaks unique to NKX2-52. Positive predicted peaks (including

de novo motifs) for each set of peaks followed: A (75.1%), B1

(80.2%), B2 (79.2%) and C (69.5%). An important insight here

is that the non-overlapping A and C sets do not represent a

random signature, consistent with our previously described

GO term analysis of repeated NKX2-5 experiments, which

showed that peaks unique to each experiment were enriched

in similar GO categories [22]. Overlapping peaks (B sets) did,

however, demonstrate improved sensitivity by 5–10%, and

there was a small bias towards unique peaks (A versus C

sets) from the experiment that the model was generated

from. Results were consistent when excluding de novo motifs

and when models were generated from NKX2-52 versus

random peaks and applied to A, B and C sets. However, the

model for NKX2-52 was much larger, with 142 features com-

pared with 71 features for the NKX2-51 model, and the

number of positive peaks was slightly higher: A (71.2%), B1

(84.5%), B2 (83.6%) and C (77.6%).

It seemed unlikely that the increased number of features in

NKX2-52 could be explained by unique binding qualities of

NKX2-5 between the two experiments or fundamental differ-

ences in the target cell states, given the similar number of

peaks detected in NKX2-51 and NKX2-52, as well as the com-

plete overlap in GO terms. The differences may rather relate

to the inclusion or exclusion of borderline motifs in the

models. To explore this further, we built models to compare

each experiment directly (in contrast to comparing each to a

random set) and all combinations of A, B and C (figure 2a)
seeking features that might be unique to each experiment.

Using the NKX2-51 training set versus the NKX2-52 training

set, a classification model generated only four motifs (of

which three were de novo) and the model performed poorly

when applied to the withheld test data (AUC of 0.534)

(figure 2b). Similarly, for A versus B, B versus C and A versus

C, small models were generated (1, 1 and 6 motifs, respectively)

with poor AUC performance (0.516, 0.569 and 0.508, respect-

ively). The motifs present in the A versus C model were also

present in the NKX2-51 versus NKX2-52 model (electronic

supplementary material, figure S1). These results demonstrate

that both NKX2-5 experiments, including their unique peaks,

consistently captured peaks with similar TF binding site

composition. Notably, the A and C peak sets showed similar

features and are not artefacts (see Discussion).
2.3. Prediction of NKX2-5 protein : protein interactions
Our aim to experimentally detect and validate novel PPIs

requires that we predict the smallest number of high-

confidence targets for experimental follow-up. Because the

lasso algorithm selects features by shrinking less relevant

coefficients to zero through application of a l penalty (via

L-1 regularization; the shrinkage parameter), we investigated

the model characteristics further. Removing de novo motifs

(i.e. using only previously described motifs) and refitting a

model for NKX2-51 reduced the model size from 71 to 51 fea-

tures (reduction of model size to approx. 72%) while only

reducing classification performance by approximately 1%

(AUC of 0.779). Considering this marginal loss of perform-

ance and the potential difficulty in associating de novo

sequences to their cognate TFs, we continued to investigate

the model based on previously described motifs. In addition,

noting that the number of motifs included in the NKX2-52

model was much larger than that for NKX2-51 (112 versus

51), investigation of the l curves revealed two differently

shaped curves that resulted in a sparser model for NKX2-51

(smaller number of features before reaching the 1 s.e. point

of model selection) compared with NKX2-52 (electronic

supplementary material, figure S2).
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We therefore developed a ‘knowledge-based’ lasso method

to reduce model size further, assessing the concordance of the

models derived from replicate experiments. We hypothesized

that the smallest predictive model for NKX2-5 would include

NKX2-5 itself—the knowledge. We therefore continued to

compress the lasso model until the point just before the

known high-affinity NKX2-5 motif (‘NKX2-5 (M00240, Trans-

fac)’; NKE) [31] was lost from our model (l of approx. 0.071;

electronic supplementary material, figure S2a). This resulted

in a model with 25 features for NKX2-51 (including a cluster

of four motifs for other NK2-class homeodomain family mem-

bers NKX2.2, 2.4 and 3.2, possibly representing alternative

forms of the NKX2-5 TFBS), halving the model size and

decreasing test AUC performance by only 0.020 (AUC 0.759).

Similar results were achieved for the NKX2-52 experiment

versus random (l of approx. 0.078; electronic supplementary

material, figure S2b), where 18 of 20 features overlapped with
the 25 features from the NKX2-51 knowledge-based model

(figure 3a,b). Notably, our knowledge-based model was no

longer biased towards experimental origin, although overlap

bias remained—that is, peaks common to NKX2-51 and

NKX2-52 (represented as B1/B2 set; figure 2a) were predicted

correctly more often: A (67.3%), B1 (75.1%), B2 (75.2%) and C

(67.7%). This suggests that the knowledge-based approach

was superior in eliminating model origin bias, consistent

with results from fitting models directly against each other.

Many of the motifs included in this knowledge-based

model were known NKX2-5 protein–protein interactors

[16,33], speaking to the validity of the proposed approach.

Motifs for known NKX2-5 PPIs common to both models

included T-Box 5 (TBX5) [26], heart and neural crest derivatives

expressed (HAND; MA0092.1), SP-1/ETS TFs (MA0081.1),

and nuclear factor I (NF-I; MA0161.1 and M00193) [16].

NKX2-51 but not NKX2-52 features included known NKX2-5
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interactors—the GATA binding protein (GATA1; MA0035.2)

and tumour suppressor protein p53 (p53; M00272) [34,35].

Potentially novel NKX2-5 PPIs included myeloid zinc finger

1 (MZF1;MA0056.1), MYOD myogenic differentiation factor

(MyoD;M00184), jun proto-oncogene (JUN/AP-1; M00199),

TF AP-2/AP-4 (AP2/4; M00469, M00175), retinoid X receptor

a (RXRa; MA0512.1), IKAROS family zinc finger 1 (IKZF1/

LYF-1; M00141), zinc finger E-box binding homeobox 1

(ZEB1, also called AREB6; M00415) and paired-related

homeobox 2 (PRRX2; MA0075.1).

Our knowledge-based models allow the possibility that

WT NKX2-5 binding to DNA can be mediated by indirect

as well as direct tethering to chromatin, as demonstrated

for NKX2-5 mutant proteins [16], and thereby are potentially

predictive of novel NKX2-5 PPIs that mediate indirect bind-

ing. We would expect, therefore, that a proportion of

detected motifs would not co-occur with the NKX2-5 motif

(NKE) in peaks. We assessed motifs common to both exper-

iments and their frequency in NKX2-51 peaks (figure 3c).

Note that in figure 3c the proportions along the diagonal

can be less than one, as this indicates prevalence of the

TFBS among all peaks detected. With the exception of

TBX5, which was present in a high proportion of NKX2-5

peaks, this analysis did not reveal a strong co-occurrence of

NKX2-5 with the other TF binding sites detected. Subtracting

NKX2-5 motif frequency from the frequency of other motifs

detected revealed that, for each predicted motif, approxi-

mately 8–29% of peaks containing these motifs did not

co-occur with the high-affinity NKX2-5 motif (figure 3d ).

These results support the hypothesis that NKX2-5 can bind

to a subset of targets indirectly via PPIs.

The high co-occurrence of TBX5 motifs and the majority

of other discriminators may have biological relevance [36],

although may also reflect a relatively low information content

of the TBX5 PWM.

2.4. Testing novel NKX2-5 protein – protein interactions
Identification of motifs in our lasso models that occur fre-

quently in the absence of the high-affinity NKX2-5 TFBS

suggests that TFs binding to these motifs might associate

with NKX2-5 via PPIs to either recruit NKX2-5 specifically

to these sites or interact on enhancers as part of higher

order protein complexes. Searching PPI databases IntAct

[37], HPRD [38], STRING [39] and BioGRID [40] for the

term ‘NKX2-5’ revealed a small network of 31 known inter-

actions (electronic supplementary material, figure S3 and

table S1), from which we identified GATA4, SRF, TBX5 and

HAND1 in our lasso models. Our model outputs suggest

that there are many other possible NKX2-5 PPIs relevant to

the cardiac GRN. Previous work focusing on the broadly

expressed signal-gated ETS family TFs, ELK1 and ELK4,

which are directly interacting cofactors of NKX2-5, showed

that these were highly integrated in the cardiac GRN with

many cross-regulatory interactions [16].

2.5. Testing novel PPIs
To test whether unexpected motifs predicted in NKX2-5 targets

correlate with novel NKX2-5 protein–protein interactors, we

used the Y2H assay [16]. We fused NKX2-5 to the GAL4-

activation domain (GAL4-AD) and its potential protein

interactors to the GAL4 DNA-binding domain (GAL4-DBD).
We initially tested six predicted and potentially novel PPIs

from the knowledge-based model (RXRa, PRRX2, IKZF1,

TFAP4, MyoD and ZEB1) and compared results to a set of

TFs derived from randomly selected PWMs from the 1132

motifs used in this study (msh homeobox MSX1; glucocorti-

coid modulatory element binding protein 1 GMEB1; zinc

finger and BTB domain containing 11 and 12 ZBTB11/12;

Kruppel-like factor 10 KLF10; and nuclear TF Y-g NFYC). We

also included control vectors for expression of the GAL4-

DBD and -AD alone. Using the Y2H assay under selective

conditions, we confirmed that NKX2-5 fused to GAL4-AD

bound specifically to GAL4-DBD fusions containing NKX2-5

itself, RXRa, PRRX2 or IKZF1/LYF, but not TFAP4/AP-4,

ZEB1, MyoD or to any of the negative controls (figure 4a,b; elec-

tronic supplementary material, figure S4a). GAL4-DBD fusion

expression was assessed by western blot using an antibody

specific to the c-MYC tag present in the DBD fusions, which con-

firmed that RXRa, PRRX2, IKZF1 and TFAP4, as well as all

negative controls tested, were expressed at the expected molecu-

lar weight (MW) in yeast (figure 4c; electronic supplementary

material, figure S4b). ZEB1, however, showed little if any full-

length protein and several degradation products, possibly due

to its larger size (approx. 144 kDa). We therefore sub-cloned

five overlapping sub-fragments of ZEB1/AREB6 spanning the

whole protein (electronic supplementary material, figure S4c).

Although expressed at the expected MWs, the N- and

C-terminal ZEB1/AREB6 fragments, which contain the Zinc-

finger clusters, failed to interact with NKX2-5 (electronic

supplementary material, figure S4c,d). When fused to the

GAL4-DBD, all the fragments encompassing the ZEB1 homeo-

domain resulted in background yeast growth, even when

expressed with GAL4-AD alone. Therefore, PPIs between

NKX2-5 and fragments containing the ZEB1 homeodomain

could not be assessed properly in this system. Our results

validated direct PPIs for three of the six TFs newly predicted

from the knowledge-based model to bind to NKX2-5 targets,

expanding the known NKX2-5 PPI network by 10% in this

small validation screen. When considering previously known

NKX2-5 PPIs also present in the model, we estimate that our

predictive performance is in the range of approximately 60%

(when including those untested as negative) to 80% (when not

considering those untested).

2.6. Testing paralogues of novel NKX2-5 PPIs
Paralogous TFs are often reported to bind the same TFBS [41].

We therefore hypothesized that the motifs predicted by our

model could represent binding of paralogous TFs for which

no PWM was currently available, and so we extended our

NKX2-5 PPI screen to paralogues of RXRa, PRRX2 and

IKZF1. We found that NKX2-5 fused to GAL4-AD interacted

with GAL4-DBD fusions containing transcript variants

PRRX1a and PRRX1b, which are overall approximately 60%

identical and paralogous to PRRX2 (figure 4d,e). Further-

more, IKZF3 (also known as Aiolos; figure 4d,e) and IKZF5

(also known as Pegasus; electronic supplementary material,

figure S4e), which are overall 55% and 22% identical, respect-

ively, to IKZF1, could also bind NKX2-5. These interactions

are likely to occur through the first zinc-finger of the C-term-

inal dimerization domain (electronic supplementary material,

figure S4e). However, while NKX2-5 interacted with RXRa, it

did not interact with its paralogue RXRg, which is overall

60% identical to RXRa.
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2.7. Disease relevance of novel NKX2-5 PPIs
Having identified novel PPIs, we next determined whether

known CHD-causing mutations in NKX2-5 demonstrated

impaired or altered binding to these PPIs. Mice lacking RXRa

display a large spectrum of severe cardiac defects, including

abnormal septation, ventricular phenotypes resulting from

lack of expansion of the compact zone of myocardium and dys-

regulated trabecular morphogenesis [42], and these overlap

with defects seen in NKX2-5 heterozygous and hypomorphic

models [43–45]. We therefore tested a panel of five NKX2-5

point mutations in the homeodomain associated with heart

disease: Q187H, N188 K, R189G, R190H and Y191C [46–48].

Three of the five mutants (Q187H, R189G and R190H) demon-

strated a decreased interaction with RXRa when compared

with NKX2-5 WT (figure 5a,b). For Q187H, this could be
attributed to the lower expression observed in yeast as

determined by western blotting (figure 5a,c). However, for

R189G and R190H, expression in yeast was higher compared

with that of WT, indicative of a true impairment of the PPI. Sur-

prisingly, N188K interacted more strongly with RXRa than

NKX2-5 WT, possibly because it showed increased expression

or stability (figure 5a,c). These results suggest that the novel

NKX2-5 PPI with RXRa identified here is critical for normal

heart development and is disrupted in CHD caused by

NKX2-5 homeodomain mutations.
3. Discussion
The ability to accurately predict DNA targets and interacting

cofactors of transcriptional regulators from genome-wide
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data can significantly advance our understanding of

GRNs and processes underlying disease. Here, we sought

to determine if DNA regions detected as bound by NKX2-

5, a TF essential for heart development, could be used to

predict novel NKX2-5 protein interactors. We then syste-

matically tested novel candidate PPIs and their paralogues

for binding to NKX2-5, and, in the case of RXRa, for binding

to NKX2-5 mutants using the yeast two-hybrid assay.
Exploiting NKX2-5 DNA-binding experiments that were

repeated 2 years apart [16], we first investigated reproducibi-

lity by applying machine-learning algorithms to explore

TFBS patterns in each experiment. This led to the develop-

ment of a knowledge-based method for variable selection

(i.e. model shrinkage), based on our assumption that a minimal

model should contain NKX2-5 itself. Our knowledge-based

method significantly improved model concordance between
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the repeat experiments. Models generated for each experiment

correctly predicted bound regions of the other experiment with

up to 80% accuracy compared with randomly selected peaks,

far greater than the approximately 55% overlap of genomic

coordinates (figure 2a). Concordance of our knowledge-

based models from each experiment (figure 3a) reflected an

underlying consistency of motif grammar, consistent with

our previous finding of identical enriched GO terms between

NKX2-51 and NKX2-52 target gene sets [22]. This suggests

that each repeated experiment captures a unique subset of

NKX2-5 binding sites that nonetheless have similar underly-

ing motif composition. It is plausible that cells could have

been exposed to slightly different environments (e.g. culture

serum batch), representing a cell non-autonomous influence,

albeit one that does not alter the binding logic of NKX2-5 or

instigate global changes in GO terms of targeted genes. It has

been proposed that alternative states exist within GRNs that

contribute to robustness [49]. Typically, this concept has been

used to explain variability inherent in signal transduction cir-

cuits [50], gene or protein expression variability [51] and,

conversely, constraints or non-robustness that lead to disease

[52]. Lack of complete overlap from our repeated DNA-

binding experiments, but with an underlying concordance of

GO and motif grammar, indicates that we need to consider

whether variation between different DNA-binding experi-

ments or platforms indeed reflects noise or alternatively

different biologically relevant GRN ‘states’. These findings

shed light on the topical issue of the poor reproducibility of

DNA-binding experiments, typically assessed through simple

overlap metrics [53,54].

Our knowledge-based models identified a number of pre-

viously described NKX2-5 PPIs (GATA, HAND and TBX

factor families) as being important features, supporting our

hypothesis that these data could be used to predict novel

NKX2-5 protein interactors. However, the majority of our pre-

dictions had not been previously described to interact with

NKX2-5. We went on to test these predictions using the Y2H

assay and validated 50% of the tested TFs as true NKX2-5

protein interactors: RXRa, PRRX2 and IKZF1/LYF-1. Of the

PPIs that did not validate (TFAP4/AP-4, ZEB1 and MyoD),

we found that this could be explained by motif redundancy.

For example, the ZEB1/AREB6 motif is the reverse comp-

lement of that for FOXO4 (M00472) (figure 3a,b). FOXH1, a

FOXO4 paralogue, has been previously described to interact

with NKX2-5 [55]. MyoD could not be tested using the Y2H

system, having a large amount of non-specific activity in the

controls (data not shown). However, the MyoD and TFAP4

motifs clustered together and represent the canonical E-Box

‘CANNTG’ recognized by basic-helix–loop–helix (bHLH)

proteins (figure 3a,b). It is possible that other bHLH TFs,

such as HAND proteins, bind to the detected motif and interact

with NKX2-5 through PPIs, as shown previously for HAND2

[56]. For confirmed novel PPIs, we also tested their paralogues,

which we hypothesized could share the same motif. PRRX1a

and PRRX1b, paralogues of PRRX2, as well as IKZF3 and

IKZF5, paralogues of IKZF1, were confirmed as NKX2-5 inter-

actors. However, we did not validate RXRg, a paralogue of

RXRa, suggesting that overall homology or the presence of

PPI domains within paralogues is not necessarily a predictor

of binding. This is consistent with previous findings that

NKX2-5 could interact with NF1-B1 and NF1-B3 but not para-

logous factors NF1-A or NF1-X [16]. The evolutionary

significance of these PPIs in the context of NKX2-5 cardiac
developmental biology and the conservation of their predicted

genomic sites of interaction would benefit from further study.

Of the novel NKX2-5 PPIs predicted and validated, the

homeodomain protein PRRX2 and retinoic acid receptor

RXRa are expressed in the heart and play a role in heart devel-

opment [42,57]. IKZF1 has not been associated with cardiac

development and is better known for its role in haematopoietic

differentiation, tumour suppression and chromatin regulation

[58–60]. However, in the developing embryo, heart and

haemoangiogenic progenitor territories have close physical

relationships and share network regulators, which can act sup-

portively as well as antagonistically to define territory

boundaries [61–65]. Thus, it is conceivable that NKX2-5 and

IKZF1 interact in the establishment and/or maintenance of

these lineages, although further work is required to examine

this. Both RXRa and IKAROS (LYF-1) are novel NKX2-5 PPIs

that contain zinc-finger domains. NKX2-5 has been demon-

strated to interact with other zinc-finger domain proteins,

such as GATA4 [34], ZAC1/PLAGL1 [66] and CAL/FBLIM1

[67]. However, as observed in our Y2H assays, zinc-finger pro-

teins ZBTB11/12 and KLF10 did not interact, so binding to

zinc-finger domain proteins is not a generic feature of NKX2-5.

Perturbation of vitamin A (retinol) levels has long been

known to affect mammalian embryo development, with the

heart being the most sensitive organ [68,69]. Retinoic acid

(RA), a derivative of vitamin A, is an essential signalling mol-

ecule that controls many aspects of embryo development by

binding to RA receptors (RAR) and Retinoid X receptors

(RXR). Changes in RA concentrations in retinal dehydrogenase

(Raldh2)-deficient embryos leads to severe cardiac abnormal-

ities [70], and removal of Nkx2-5 in Raldh22/2 mice rescues

some of these defects [71], suggesting genetic cross-talk

between the RA and NKX2-5 pathways. Mice lacking RXRa

in the germline or conditionally in epicardium [72] display a

spectrum of cardiac defects arising from lack of expansion of

the myocardial compact zone and dysregulated trabecular

morphogenesis [42]. Defects in mice lacking Rxra and Raldh2
overlap with those reported in Nkx2-5 heterozygous and

hypomorphic mice, raising the possibility that physical inter-

action between NKX2-5 and RXRa at early stages of heart

development could be important for orchestrating normal

morphogenesis. Disruption of RXRa was recently associated

with the cardiac malformation tetralogy of Fallot [73], pre-

viously associated with mutations in NKX2-5 [46,74]. We

tested interactions between RXRa and five disease-causing

NKX2-5 homeodomain mutants [46–48], observing a weaker

interaction between RXRa and three of these (Q187H, R189G

and R190H; figure 5). This work shows that NKX2-5 homeo-

domain mutations causative for CHD may critically intersect

with RXRa pathways governing heart morphogenesis. Future

studies assessing the role of these novel NKX2-5 protein

interactions during normal development, evolution and in

the context of disease models will further allude to their

functional significance.
4. Conclusion
Using a knowledge-based machine-learning approach, we

identified and validated a number of novel NKX2-5 protein

interactors, RXRa, PRRX2 and IKZF1/LYF-1, and their para-

logues PRRX1a, PRRX1b (two isoforms of PRRX1), and

IKZF3 and IKZF5. Furthermore, we have established a
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potential CHD mechanism, whereby chamber and septal

defects seen in patients carrying heterozygous NKX2-5 home-

odomain mutations may in part be due to disrupted PPIs

between NKX2-5 and RXRa. As far as we are aware, this is

the first study to systematically validate predicted PPIs of

TFs from DNA sequence alone.

Our study brings to light some key considerations. Com-

paring replicated experiments using a model-based approach

supported our previous findings of conserved gene ontologies

and indicated that motif grammar of NKX2-5 binding was

conserved in repeated experiments. Thus, variation of binding

sites identified between repeated experiments is not simply

noise. In the light of NKX2-5 being a highly studied and criti-

cal TF for heart development, we identified and validated

novel NKX2-5 PPIs from genome-wide DNA-binding data,

demonstrating the utility of machine-learning approaches for

systematic detection of TF binding partners. We propose that

these interactions represent but a small proportion of the com-

plex NKX2-5 PPI landscape that is difficult to probe using

traditional methods. Identifying novel TF-TF PPIs has the

potential to shed light on the complex gene regulatory pro-

cesses underlying normal development and, as we observed

for RXRa, provide new insights into disease processes.
5. Material and methods
Bioinformatics analyses were performed in R v. 3.1.2 (www.

r-project.org) [75] using Bioconductor [76] packages unless

stated otherwise.

5.1. Datasets
BED files corresponding to the mm9 coordinates of N-terminal

NKX2-5 DamID peaks were downloaded from NCBI GEO

Accession, GSE44902 [16]. We name repeated experiments,

NKX2-51 [GSE44902, GSM1093634] and NKX2-52 [GSE44902,

GSM1328466]. A random dataset was generated of the same

set size and length distribution as NKX2-5 peaks using the per-

mutation strategy implemented in bedtools [77] and sampling

constrained to promoter regions represented on the micro-

array. Data were randomly partitioned for each NKX2-5 and

random dataset into 75% for training and 25% for testing.

5.2. Motif detection and counting for generating
feature matrices

DREME [23] was used for de novo motif discovery using

only training sets. All motifs discovered according to

default settings were reported. As DREME uses a one-way

Fisher’s exact test, we performed pairwise comparisons for

NKX2-51, NKX2-52 and random peaks.

For generating motif feature matrices, we first add the

PWMs of the de novo motifs discovered using DREME to a

motif (PWM) library derived from Transfac and Jaspar

public repositories, in addition to motifs from literature as

previously described [16]; n(motifs) ¼ 1132, bringing the

total number of motifs used for analysis to 1202. All motifs

are provided in electronic supplementary material, file S2.

CLOVER [27] was used to score PWM matches and each

peak normalized to motif per kilobase to account for differ-

ences in motif numbers and length. A motif instance was

recorded if it had at least the default minimum CLOVER
score of 6. Formatting of data into feature matrices for

input into R was performed using custom Perl scripts. Fea-

ture matrices, Mnp, used for classification were comprised

of npeaks by pmotifs/kb.

5.3. Machine-learning algorithms and performance
assessment

For generating lasso models, we used the ‘glmnet’ R library

(v. 1.9) [78]. The lasso selects features by shrinking less relevant

coefficients to zero through application of a l penalty (via L-1

regularization; the shrinkage parameter). Ten-fold cross-

validation was used to determine the value of l and unless

stated otherwise we used the l within 1 s.e. of the maximum

AUC. For SVM models, we used the ‘e1071’ R library (v. 1.6)

[79] and the linear kernel function. The penalization parameter,

C, was tuned using 10-fold cross-validation and a grid search

space of 1025 to 1 (identifying a C of 1024 for models with

and 1023 without de novo motifs). For random forests, we

used the ‘randomForest’ R library (v. 4.6) [80] with default par-

ameters. For generating receiver operator characteristic (ROC)

curves and calculating AUC, we used the ROCR package

(v. 1.0) [81]. Sensitivity and specificity analysis considered

the proportion of correctly classified true positive and true

negative peaks as per equations (5.1) and (5.2):

sensitivity ¼ true positive

true positiveþ false negative
ð5:1Þ

specificity ¼ true negative

false positiveþ true negative
ð5:2Þ

The positive predictive value (PPV) was calculated as

follows:

positive predictive value ¼ true positives

true positivesþ false positives

ð5:3Þ

The false discovery rate (FDR) of predictions was

calculated as follows:

false discovery rate ¼ false positives
P

predicted positives
ð5:4Þ

5.4. Yeast two-hybrid assay
Sequences coding for murine TFs MSX1, GMEB1, ZBTB11/12,

KLF10 and NFYC were amplified from HL-1 cell cDNA. CMV

AP-4 was a gift from Robert Tjian (Addgene plasmid # 12101)

[82]; pLuc-CDS was a gift from Kumiko UiTei (Addgene

plasmid # 42100) [83]; pBABE puro human RXRa was a gift

from Ronald Kahn (Addgene plasmid # 11441); PRRX2-pSG5

was a gift from Corey Largman (Addgene plasmid #21009)

[84]. A coding sequence was obtained from Origene for

IKZF1 (MR227509), IKZF3 (MR227380), PRRX1a (RC213276),

PRRX1b (RC210393) and RXRg (MR225349). The vectors

NpGBT9-AiolosF5-6 (M1-1 B9), NpGBT9-Eos-364-400 (M1-1

E9), pGBT9-Eos364-518 (M1-1 H6), pGBT9-Eos358-532 (M1-1

H8), NpGBT9-Pegasus (M1-1 I3), NpGBT9-Pegasus221-420

(M1-2 A1) and NpGBT9-PegasusF4-5 (M1-2 A2) were a gift

from Merlin Crossley [85].

All sequences were cloned into pGADT7 AD or pGBKT7

DBD expression vector backbones (Clontech), which were

modified to contain a Gateway cloning cassette (gift from

http://www.r-project.org
http://www.r-project.org
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Jacqueline Stoeckli). pGADT7-AD and pGBKT7-DBD fusions

were co-transformed into chemically competent S. cerevisiae
strain AH109 (Clontech). Double transformants were selected

for growth on ‘low stringency’ -Leu/-Trp selection plates,

before being selected for interaction on ‘high stringency’

-Ade/-His/-Leu/-Trp selection plates.

The monoclonal antibody 9E10 developed by Michael J.

Bishop was obtained from the Developmental Studies

Hybridoma Bank, created by the NICHD of the NIH and main-

tained at the Department of Biology, University of Iowa, Iowa

City, IA 52242, USA.

5.5. Western blots
For protein extraction and western blotting, yeast colonies

selected on ‘low stringency’ (-Leu/-Trp) plates were

grown in 1.5 ml of liquid ‘low stringency’ medium at 308C
for 48 hours under agitation. Cultures were then transferred

directly to 10 ml of fresh yeast extract protein peptone dex-

trose (YEPD) medium and further grown at 308C for 4–6

hours under agitation until the OD600 reached 0.4–1.0.

Protein extraction was then performed following the post-

alkaline extraction method [86]. In accordance with this

method, cultures were pelleted and resuspended in 100 ml

of distilled water per 2.5 OD600. Then, 100 ml of 0.2 M

NaOH was added per 2.5 OD600 and suspensions were

incubated at room temperature for 5 minutes. After

centrifugation, yeast cells were lysed in 50 ml of SDS sample

buffer (0.06 M Tris-HCl, pH 6.8; 5% glycerol; 2% SDS; 4%

b-mercaptoethanol; 0.0025% bromophenol blue) per 2.5

OD600 and boiled for 2 minutes. 20 mL of lysed samples

were loaded on NuPage 10% bis-tris gels (Invitrogen).
To detect GAL4-activation (AD)-HA fusion proteins, a

rabbit anti-HA antibody was obtained from Cell Signalling

(C29F4). To detect the GAL4-DNA-binding domain (DBD)-

c-Myc protein fusions, the monoclonal antibody 9E10 devel-

oped by Michael J. Bishop was obtained from the

Developmental Studies Hybridoma Bank, created by the

NICHD of the NIH and maintained at The University of

Iowa, Department of Biology, Iowa City, IA 52242. After

chemiluminescent detection, membranes were stained using

a Ponceau S solution to visualize the total protein levels in

each lane and control for equal loading. IMAGEJ (Rasband,

W.S., US National Institutes of Health, Bethesda, Maryland,

USA, http://imagej.nih.gov/ij, 1997–2016) was used to

quantify protein expression detected by western blotting.
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