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ABSTRACT

The study of phage-host relationships is essential to understanding the dynamic of microbial systems. Here, we analyze genome-
wide interactions of Bacillus subtilis and its lytic phage �29 during the early stage of infection. Simultaneous high-resolution
analysis of virus and host transcriptomes by deep RNA sequencing allowed us to identify differentially expressed bacterial genes.
Phage �29 induces significant transcriptional changes in about 0.9% (38/4,242) and 1.8% (76/4,242) of the host protein-coding
genes after 8 and 16 min of infection, respectively. Gene ontology enrichment analysis clustered upregulated genes into several
functional categories, such as nucleic acid metabolism (including DNA replication) and protein metabolism (including transla-
tion). Surprisingly, most of the transcriptional repressed genes were involved in the utilization of specific carbon sources such as
ribose and inositol, and many contained promoter binding-sites for the catabolite control protein A (CcpA). Another interesting
finding is the presence of previously uncharacterized antisense transcripts complementary to the well-known phage �29 mes-
senger RNAs that adds an additional layer to the viral transcriptome complexity.

IMPORTANCE

The specific virus-host interactions that allow phages to redirect cellular machineries and energy resources to support the viral
progeny production are poorly understood. This study provides, for the first time, an insight into the genome-wide transcrip-
tional response of the Gram-positive model Bacillus subtilis to phage �29 infection.

Due to their small dimension and limited size of genomes,
bacteriophages have optimized the exploitation of host re-

sources to increase the production of the viral progeny. A com-
prehensive understanding of these host-virus interactions re-
quires the analysis of associated transcriptional changes in both
organisms. Thus, we used the recently developed RNA sequencing
(RNA-Seq) technology to monitor to a high level of accuracy
and depth the genome-wide effect of the bacteriophage �29 on
Bacillus subtilis transcription. The transcriptome profiles were an-
alyzed at two early infection time points (8 and 16 min postinfec-
tion) so that the identification of the bacterial genes correspond-
ing to these stages could allow the identification of potential phage
targets.

Phage �29 is a well-characterized lytic virus that belongs to the
Podoviridae family. Over the years, it has been the subject of many
extensive studies that have contributed to the understanding of
several molecular mechanisms of biological processes, such as
transcription regulation, viral DNA packaging, viral morphogen-
esis, and DNA replication (1). Phage �29 genome consists of a
linear double-stranded DNA (dsDNA) molecule of 19,285 bp,
which encodes 28 open reading frames (ORFs) transcribed from
four early and one late promoters. The viral genes are expressed in
a temporal sequence to ensure that DNA replication, and the pro-
duction and assembly of viral components occur in an orderly
fashion. Thus, bacterial cells infected with phage �29 at a multi-
plicity of 5 initiates early viral expression immediately after infec-
tion when the host RNA polymerase begins to transcribe genes
involved in DNA replication and transcription regulation. Most of
these early transcripts reach maximum levels at about 15 min (2),
coinciding with the activation of the late promoter, which is re-
sponsible to express genes coding for phage structural, morpho-
genetic, and lytic proteins (3). At the terminal stage of the phage

reproduction cycle, the assembly of the components of the viral
particle, which is composed of a prolate head, a neck formed by a
connector (required for head assembly), and a lower collar from
which the appendages necessary for phage adsorption to the cell
wall are attached, and a tail knob, occurs. Finally, the viral produc-
tion of holin and endolysin proteins promotes the lysis of the host
cell, releasing the virus progeny.

Here, we assess the global effect of the phage on the B. subtilis
transcription, a Gram-positive and endospore-forming bacteria
that normally inhabits the soil or decaying plant material. Since
the current knowledge of phage-host interactions is based largely
on a small number of Escherichia coli phages (4), our study pro-
vides new insight into the viral effects in a different but also well-
known bacterium that is a model organism for studies of Gram-
positive bacteria. To our knowledge, this is the first time that
RNA-Seq methodology was used in B. subtilis-infected cells.

MATERIALS AND METHODS
Sample collection. Cultures of wild-type B. subtilis strain 168 were grown
in Luria-Bertani (LB) medium containing 5 mM MgSO4 at 37°C until
reaching an optical density at 600 nm (OD600) of 0.45. The cells were then
infected with phage �29 at a multiplicity of 5. Two independent biological
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replicates were performed for each condition. Samples for RNA extrac-
tion were taken from infected and noninfected cultures at time points of 0,
8, 16, 24, 32, 40, 48, 56, and 64 min postinfection. The cells were harvested
by centrifugation and immediately frozen at �70°C. In addition, an ali-
quot of the cultures was taken at the indicated times to monitor the optical
density, as well as to determine the number of PFU in infected cultures.

RNA extraction. Total RNA was extracted using the MasterPure RNA
purification kit supplied by Epicentre (MCR85102) according to the man-
ufacturer’s recommendations. Samples were treated with RNase-free
DNase I (Roche) and then concentrated using the GeneJET RNA cleanup
and concentration micro kit (K0841) provided by Thermo Scientific. The
quality and quantity of total RNA were determined by NanoDrop ND-
1000 UV spectroscopy (Thermo Scientific), and the RNA integrity was
checked using a 2100 Bioanalyzer (Agilent Technologies). To determine
the levels of genomic DNA contamination after the treatment, we per-
formed quantitative PCR (qPCR) experiments with primers that amplify
host or viral genome. In all of the samples the genomic DNA percentage
was less than 0.02%.

RNA-Seq libraries preparation and sequencing. Total RNA was en-
riched for mRNA by removing rRNA from the samples using a RiboZero
magnetic kit (Bacteria; MRZMB126) supplied by Illumina. Approxi-
mately 2.5 �g of total RNA and 9 �l of Ribozero rRNA removal solution
were used per reaction. The manufacturer’s instructions were followed,
except for an additional cleanup step with AmpureXP Beads (A63881)
provided by Agencourt at an RNA/bead ratio of 1:1. Strand-specific RNA-
Seq libraries were prepared using the NEBNext Ultra Directional RNA
Library Prep kit for Illumina (E7420L) supplied by New England BioLabs,
following the manufacturer’s instructions with some modifications.
Briefly, ribosome-depleted RNA samples were fragmented and then used
for first-strand cDNA synthesis with random primers and the ProtoScript
II reverse transcriptase but in the absence of actinomycin D. Then, we
performed second-strand cDNA synthesis, end repair, 3=-end adenyla-
tion, and adaptor ligation. The adaptors allowed further PCR amplifica-
tion with NEBnext Multiplex Oligos for Illumina (E7335) provided by
New England BioLabs. These adaptors can also be used for multiplexing in
the sequencing run since they contained short sequences referred to as
indices. The number of PCR cycles was adjusted to 15, and the final am-
plified libraries were quality checked and quantified on a BioAnalyzer
2100. Finally, an equimolecular pool of libraries was titrated by quantita-
tive PCR using the Kapa-SYBR FAST qPCR kit for LightCycler 480
(KK4610) from Kapa Biosystems and a reference standard for quantifica-
tion. Each library was sequenced using TruSeq SBS kit v3-HS, in paired-
end mode with the read length of 2�76 bp for the mRNA-Seq experi-
ments, using the HiSeq2000 instrument (Illumina) according to the
manufacturer’s protocol. Images from the instrument were processed us-
ing the manufacturer’s software to generate FASTQ sequence files.

Bioinformatics analysis of RNA-Seq data. The analyzed data set was
constituted by eight phage �29-infected B. subtilis 168 samples corre-
sponding to four different experimental conditions, with a total of
149,751,662 single-end reads 76 nucleotides in length. A preliminary anal-
ysis of the quality of the reads was performed using FastQC, a Java tool
with graphic interface (http://www.bioinformatics.babraham.ac.uk
/projects/fastqc/). The reference genome, proteins, and annotation files
of B. subtilis 168 and phage �29 have been downloaded from NCBI ftp
site (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Bacillus_subtilis_168
_uid57675/ and ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/Bacillus_phage
_phi29_uid30615/). The reads were aligned using Bowtie2 aligner, which
supports lax alignment parameters (5). Since the reads showed a good
behavior in the alignment process, it was not necessary to trim or filter
them due to poor quality reasons. To obtain a quantification of the dif-
ferential gene expression pattern, we used Cuffdiff, a tool that calculates
gene and transcript expression levels (in RPKM [reads per kilobase of
transcript per million mapped reads]) under more than one condition
and tests them for significant differences (6). Bacterial genes showing
significant transcription changes (P � 0.05) after phage �29 infection

were analyzed and classified using BsubCyc (http://bsubcyc.org/) (7), a
model-organism database for the B. subtilis strain 168 that imports the GO
terms (8) from the UniProtKB-GOA gene association files.

Accession number(s). The sequencing data were deposited in the Eu-
ropean Nucleotide Archive under accession number PRJEB13724 (http:
//www.ebi.ac.uk/ena/data/view/PRJEB13724).

RESULTS AND DISCUSSION
Analysis of virus-induced changes in the host cell. Phage �29 did
not affect the growth rate of the B. subtilis culture during the first
16 min of infection since the turbidity (OD600) of �29-infected
and noninfected cultures rise with almost equal rates (Fig. 1A).

FIG 1 Analysis of host growth, phage virions, and nucleic acid content
throughout the infection cycle of phage �29 in B. subtilis. (A) Phage-mediated
lysis of bacterial cultures. Lysis was monitored by measuring the OD600 values
for samples taken at the indicated times after infection. (B) The �29 virions
were counted as PFU per ml of culture. One hundred-fold-diluted cultures
were grown in LB medium containing magnesium at 37°C and then infected at
an OD600 of 0.45 with �29 at a multiplicity of 5. (C) The amount of nucleic acid
detected at the indicated times postinfection was quantified by using a 2100
Bioanalyzer (Agilent Technologies), and values are expressed as micrograms of
nucleic acid per ml of culture. The graphics are representative of four indepen-
dent experiments.
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Subsequently, the increase number of new viral infective particles
(Fig. 1B) induced the lysis of infected cells, causing a progressive
decline in the optical density. In fact, a small number of infective
particles was already detected after 24 min of infection, reaching
the maximum at approximately 48 min, when the infective cycle
was completed. Previous studies showed that there was a correla-
tion between the production of infective particles and the amount
of �29 DNA accumulated in infected cells as a consequence of
replication. Comparison of the total nucleic acid content in cells
infected or not with phage �29 revealed a peak at 32 min and then
a pronounced decrease (Fig. 1C), probably caused by the encap-
sulation of phage DNA in viral particles.

Taking all of this into account, we decided to examine the
transcriptional changes caused by phage �29 in B. subtilis after 8
and 16 min of infection, since in these early times there is not a
significant lysis of the cells that could interfere with the results.
RNA-Seq technology was used to simultaneously analyze both
host and viral transcriptomes. To distinguish the virus-induced
changes from the B. subtilis growth-dependent changes, we com-
pared the transcriptional levels of infected cells to those of nonin-
fected samples at the same times. After performing an alignment
of all the reads against B. subtilis and phage �29 genomes using the
Bowtie2 aligner (5), we observed that the percentage of transcripts
from the �29 genome at 8 min postinfection was between 1.9 and
3.7% of the total, whereas after 16 min of infection the percen-
tage of viral RNA detected increased to 16.2 to 16.6% (Fig. 2).
Genome-wide expression differences between infected and unin-
fected cells were visualized using box-and-whisker plots, showing
that �29 only induces relatively moderate changes in host gene
expression at early times of infection (Fig. 3). Moreover, genes
involved in cell growth and division were not affected during this
period of infection (Tables 1 and 2), which is consistent with the
profile of the growth curve shown in Fig. 1A. It is possible that
most of the changes caused by �29 take place later, during the
production and assembly of the virus components and the tran-

scription of lytic proteins. Although there is not a global transcrip-
tional reprogramming of the host cell during the early stages of
infection, a number of bacterial protein-coding genes showed sig-
nificantly expression differences (Tables 1 and 2). In particular,
about 2% of the approximately 4,242 protein-coding genes that
comprise B. subtilis genome (9) were differentially expressed (P �
0.05; fold change � 2) during the early stages of infection. Genes
involved in nucleic acid metabolism, carbohydrate metabolism,
and transport stand out among them (Fig. 4).

Upregulated genes after phage �29 infection. Only four
genes were significantly upregulated by 8 min postinfection:
ymaB, nrdE, and nrdF, which are members of the nrd operon, and
ycnC (Table 1). YcnC is a putative transcriptional regulator of the
TetR/AcrR family. The nrdE and nrdF genes encode the only ribo-
nucleotide reductases known in B. subtilis. These proteins are es-
sential for the biosynthesis of deoxyribonucleotides from the cor-
responding ribonucleotides (10). YmaB is a putative enzyme also
involved in deoxyribonucleotide synthesis. The operon was in-
duced by thymidine starvation and its expression is under the
control of cell cycle and was directly or indirectly affected by the
SOS regulator RecA (11). The DNA synthesis is a critical step of
�29 infection, and thus the upregulation of these genes will po-
tentially increase the deoxyribonucleotide levels required for viral
DNA replication. The larger amount of transcripts detected for
trxA, a gene encoding a thioredoxin, could be related to nrdE and
nrdF upregulation, since some studies suggest that TrxA is the
only electron donor required for ribonucleotide reductase reduc-
tion in B. subtilis. However, trxA induction was detected only after
16 min of infection, perhaps because the increased levels of nrdE
and nrdF transcripts at 8 min are not high enough to require an
additional amount of TrxA that could promote its transcription.
Moreover, thioredoxin is an essential protein involved in defense
mechanisms against oxidative stress, although it is also induced by
multiple stresses including heat, salt, or ethanol treatments (12).

Interestingly, the most upregulated gene is helD whose tran-
scripts levels increase almost 10-fold after 16 min of �29 infection.
HelD is a helicase implicated in DNA repair and homologous
recombination (13). In addition, the interaction of this protein

FIG 2 Alignment of RNA reads sets against B. subtilis or phage �29 genome
using the bioinformatics tool Bowtie2. The data for two individual experi-
ments are shown.

FIG 3 Box-and-whisker plots showing the relative fold change (log2) in the
expression of B. subtilis genes after 8 or 16 min of �29 infection compared to
uninfected controls. The analysis considered 4,421 genes of B. subtilis. Each
box represents the differential expression values from the lower to the upper
quartile (corresponding to the 25 to 75% of the data set). The middle horizon-
tal line represents the median. The whiskers extend from the boxes to 1 and
99% of the data set. Dots indicate outliers. Each data point represents the mean
of two independent experiments.
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with the RNA polymerase has a stimulatory effect on transcription
cycling and elongation (14). There are plenty of phages that en-
code DNA helicases in order to drive the unwinding of its DNA
helix. For example, protein 41, a helicase of bacteriophage T4,
greatly stimulates the rate of strand displacement DNA synthesis
at a viral replication fork (15). Other phages take advantage of host
helicases, as in the case of bacteriophage P2, a temperate phage
that infects Escherichia coli. During the lytic cycle, the P2 genome
is replicated by a modified rolling circle mechanism that requires
several host proteins such as DNA polymerase III, primase, and
the replicative helicase DnaB. Since the helicases do not bind DNA
in a sequence-specific manner, they have to be recruited by other
proteins to the origin (16). Thus, P2 encodes a B protein that
interacts with DnaB, allowing an efficient loading of this helicase
on the viral genome and an optimal lagging-strand DNA synthesis
(17). The genome of phage �29 does not encode any helicase, but

it is possible that host helicase HelD might be necessary for effi-
cient �29 DNA replication in vivo, in spite of the fact that the �29
DNA polymerase has an intrinsic helicase-like activity (18).

After 16 min of infection, there is an induction of ssbB, which
encodes a single-stranded DNA (ssDNA) binding protein respon-
sible to protect incoming ssDNA from cellular nucleases, remove
DNA secondary structures, and modulate RecA nucleation onto
ssDNA (19). Phage �29 encodes a ssDNA binding protein called
p5, which is required for viral DNA replication in vivo (20). How-
ever, in vitro assays have shown that other SSB proteins, including
E. coli SSB, bacteriophage T4 gp32, adenovirus DNA-binding pro-
tein, and the human replication factor A, can functionally substi-
tute protein p5 (21). It is possible that the stimulation of viral
DNA replication by p5 is carried out by a nonspecific mechanism,
and thus it is possible that SsbB from B. subtilis could contribute to
some extent to this process.

TABLE 1 GO biological process categories of B. subtilis protein-coding genes overexpressed in �29 infection

Function and gene Annotation

Fold change (P)

8 min 16 min

Nucleic acid metabolism
helD DNA 3=-5= helicase IV 9.9 (�0.01)
ymaB Putative enzyme involved in deoxyribonucleotide synthesis 2.6 (0.04) 9.0 (�0.01)
nrdE Ribonucleoside-diphosphate reductase (major subunit) 3.3 (0.01) 7.8 (�0.01)
nrdF Ribonucleoside-diphosphate reductase (minor subunit) 2.8 (0.03) 6.4 (�0.01)
ssbB Single-strand DNA-binding protein 2.8 (0.05)
ywhA Putative transcriptional regulator (MarR family) 2.7 (0.02)
rph RNase PH 2.6 (0.04)
abrB Transcriptional regulator for transition state genes 2.5 (0.04)
ycnC Putative transcriptional regulator (TetR/AcrR family) 2.7 (0.04) 2.4 (0.04)
rpoC RNA polymerase (�= subunit) 2.1 (0.05)

Protein metabolism
yoaZ Putative factor of the oxidative stress response 4.3 (�0.01)
gatC Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase (subunit C) 3.4 (0.01)
gatA Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase (subunit A) 2.9 (0.01)
gatB Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase (subunit B) 2.7 (0.02)
clpP ATP-dependent Clp protease proteolytic subunit 2.3 (0.05)

Lipid metabolism
estA Secreted alkaliphilic lipase 3.4 (0.01)
yqjD Putative acyl-CoA carboxylase 2.5 (0.04)
fni Isopentenyl diphosphate isomerase 2.4 (0.04)

Oxidation-reduction process
yetG Heme-degrading monooxygenase 3.1 (0.02)
yfhC Putative oxidoreductase (nitroreductase family) 2.8 (0.02)
trxA Thioredoxin 2.7 (0.03)
yugK Putative NADH-dependent butanol dehydrogenase 2.6 (0.03)

Transport
yodF Putative Na	/metabolite permease 2.8 (0.02)
yvdB Putative anion transporter 2.5 (0.04)
yfnC Putative efflux transporter 2.5 (0.03)

Other
dhbF Dimodular nonribosomal peptide synthase 2.8 (0.02)
proI Pyrroline-5-carboxylate reductase 2.7 (0.02)
ywbC Glyoxalase I 2.6 (0.04)
hemD Uroporphyrinogen III cosynthase 2.5 (0.04)
yvgJ Lipoteichoic acid primase 2.5 (0.03)
adeC Adenine deaminase 2.4 (0.03)
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TABLE 2 GO biological process categories of B. subtilis protein-coding genes downregulated in �29 infection

Function and genea Annotation

Fold change (P)

8 min 16 min

Carbohydrate metabolism
rbsK* Ribokinase �5.0 (0.01) �8.5 (�0.01)
manA Mannose-6 phosphate isomerase; cupin family �5.4 (�0.01) �6.6 (�0.01)
amyE* Alpha-amylase �4.0 (0.01) �4.9 (�0.01)
iolB* 5-Deoxy-d-glucuronate isomerase �3.1 (0.04) �4.5 (�0.01)
uxaC* Galacturonate isomerase �4.5 (�0.01)
iolC* 2-Deoxy-5-keto-d-gluconic acid kinase �3.4 (0.02) �4.3 (�0.01)
treA* Trehalose-6-phosphate hydrolase �3.8 (0.01) �4.3 (�0.01)
iolG* Inositol dehydrogenase �4.1 (�0.01)
iolE* 2-Keto-myo-inositol dehydratase �4.0 (�0.01)
iolD* 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase �3.4 (0.01)
sacA* Sucrase-6-phosphate hydrolase �3.4 (0.03)
xylB* Xylulose kinase �3.0 (0.02)
licS (bglS) Endo-�-1,3-1,4 glucanase �2.9 (0.03)
iolA (mmsA)* (Methyl)malonate-semialdehyde dehydrogenase �2.7 (0.03)
licH 6-Phospho-�-glucosidase �2.7 (0.03)
iolJ* 2-Deoxy-5-keto-d-gluconic acid 6-phosphate aldolase �2.7 (0.04)
pel Pectate lyase �2.6 (0.02)
gntK Gluconate kinase �3.8 (0.01)
glpF* Glycerol permease �2.6 (0.04)

Transport
rbsB* Ribose ABC transporter (ribose-binding lipoprotein) �5.1 (�0.01) �11.5 (�0.01)
rbsA* Ribose ABC transporter (ATP-binding protein) �6.7 (�0.01) �10.8 (�0.01)
rbsC* Ribose ABC transporter (permease) �5.7 (�0.01) �10.3 (�0.01)
sunT Sublancin 168 lantibiotic transporter �5.5 (0.02)
treP* PTS system trehalose-specific EIIBC component �4.9 (�0.01) �5.2 (�0.01)
manP* PTS system mannose-specific EIIBCA component �4.6 (�0.01) �4.5 (�0.01)
xynP* Putative H	-xyloside symporter �3.9 (0.01)
iolF* Inositol transport protein �3.9 (�0.01)
dctP* C4-dicarboxylate transport protein �9.8 (�0.01) �3.8 (�0.01)
msmX* Multiple sugar-binding transporter ATP-binding protein �3.4 (0.01) �3.5 (0.01)
nupC Pyrimidine-nucleoside Na	(H	) cotransporter �3.8 (0.01) �3.3 (0.01)
mdxE Maltose/maltodextrin-binding lipoprotein �2.8 (0.04)
maeN Na	/malate symporter �2.4 (0.03)
licC Lichenan permease IIC component �2.7 (0.04) �2.4 (0.04)
malP** PTS system maltose-specific EIICB component �3.2 (0.02)
csbX** Putative permease �2.7 (0.04)
cycB Cyclodextrin-binding lipoprotein �2.7 (0.04)

Nucleic acid metabolism
rbsR* Transcriptional regulator (LacI family) �7.1 (�0.01) �7.9 (�0.01)
manR* Transcription activator �3.0 (0.02) �3.5 (�0.01)
yopS Putative transcriptional regulator; phage SP� �3.0 (0.03)
acoR* Transcriptional regulator �5.3 (�0.01) �2.9 (0.02)
treR* Transcriptional regulator (GntR family) �2.3 (0.05)
ykoM* Putative transcriptional regulator (MarR family) �5.2 (0.01)
msmR** Transcriptional regulator (LacI family) �3.4 (0.02)
deoC Deoxyribose-phosphate aldolase �3.4 (0.02)

Oxidation-reduction process
yneN Thioredoxin-like protein �2.5 (0.04)
yrbE Putative oxidoreductase �5.4 (�0.01) �2.5 (0.04)
cccA* Cytochrome c550 �5.1 (0.02)
yuxG** Uncharacterized oxidoreductase �2.6 (0.04)

Other
ywsB* Conserved hypothetical protein �5.6 (�0.01) �13.4 (�0.01)
ysbA** Antiholin factor �5.7 (�0.01) �6.0 (�0.01)
ysbB** Antiholin factor �4.1 (�0.01) �4.5 (�0.01)
cstA* Carbon starvation-induced membrane protein �2.7 (0.04) �3.4 (0.01)
rocG* Glutamate dehydrogenase �2.9 (0.02)
pdp Pyrimidine-nucleoside phosphorylase �3.3 (0.02) �2.7 (0.03)
odhB** 2-Oxoglutarate dehydrogenase complex (E2 subunit) �2.5 (0.03)

a *, The promoter contains high-affinity cre boxes; **, the promoter contains low-affinity cre boxes.
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RNase PH plays a crucial role in the exonucleolytic degrada-
tion of CCA-containing tRNA precursors in B. subtilis (22), a pro-
cess necessary to a proper tRNA maturation. In addition, this
enzyme also plays a role in the secondary pathway of 23S rRNA
3=-end maturation (23), suggesting that RNase PH could have an
impact in translation. The upregulation of rph might reflect a
phage requirement to increase translational rates.

AbrB is a regulator of the transcription of genes expressed dur-
ing the transition state between vegetative growth and the station-
ary phase. It is also a global modulator of catabolite repression.
However, the level of abrB upregulation detected (Table 1) does
not seem to be sufficient to activate the transcription of genes
subjected to catabolite repression that are under its control, such
as rbsA, gntK, or glpF (24) (Table 2). Interestingly, the expression
of abrB is inhibited by phosphorylated Spo0A, the key regulator
for sporulation activation, which is directly responsible for sup-
pression of phage �29 development (25).

The heterotrimeric complex formed by gatA, gatB, and gatC is
involved in the formation of correctly charged Asn-tRNAAsn or
Gln-tRNAGln through the transamidation of misacylated Asp-
tRNAAsn or Glu-tRNAGln. In many bacteria, asparagine can be
directly attached to the tRNA using an asparaginyl-tRNA synthe-
tase. However, B. subtilis can also use a two-step indirect pathway
to form Asn-tRNAAsn. This process uses a nondiscriminating as-
partyl-tRNA synthetase to ligate Asp to tRNAAsn, and then the
GatCAB complex transamidates Asp to Asn on the tRNA, forming
Asn-tRNAAsn (26). In addition, the GatCAB complex is able to
transamidate Glu-tRNAGln to Gln-tRNAGln (27). This upregula-
tion could reveal a �29 need to increase the amount of these ami-
noacyl-tRNAs to synthesize its own proteins. To check this possi-
bility, we compared the amino acid content of the proteins from
phage �29 and B. subtilis strain 168 (Fig. 5). The analysis showed
that glutamine content is quite similar between phage and bacteria
but that, in contrast, �29 proteins have an asparagine percentage

higher than their host, and thus it might require a larger amount of
Asn-tRNA to use in the translation process.

ClpP is a protease involved in the degradation of misfolded
proteins that is essential for stress tolerance in B. subtilis (28). It
has been previously reported that the amount of unfolded poly-
peptides within the cell increases during the infection of phages
such as PRD1 (29). On the other hand, several bacterial energy-
dependent proteases have been shown to degrade regulatory pro-
teins of bacteriophages. For example, E. coli ClpP degrades protein
O of the 
 phage, which has a main role in the replication of viral
DNA (30). Similarly, it is possible that ClpP degrades some �29
proteins required for viral development.

Three genes involved in lipid metabolism (estA, fni, and yqjD)
are also upregulated after 16 min of �29 infection. B. subtilis se-
cretes estA, a lipase that catalyzes the hydrolysis of triglyceride. Fni
is an enzyme implicated in the biosynthesis of isoprenoids, which
serve as structural components of membranes and mediators of
cellular redox chemistry (31). YqjD is a putative component of
acetyl coenzyme A (acetyl-CoA) carboxylase complex involved in
the synthesis of malonyl-CoA from acetyl-CoA, which is a central
intermediate of the fatty acid biosynthesis pathway.

The dhbF gene encodes a dimodular nonribosomal peptide
synthase involved in the synthesis of bacillibactin, a siderophore
secreted by many Bacillus species (32). It is possible that the in-
fected cells have higher iron requirements that could explain the
high transcripts levels detected for dhbF and also for yetG (Table
1). YetG (also called HmoA) is a heme-degrading monooxygenase
that is able to degrade the heme group, releasing the iron (33).

YvgJ is a lipoteichoic acid synthase-like protein. Lipoteichoic
acids (LTAs) are cell envelope components widely distributed in
Gram-positive bacteria. LTAs prevent phage sk11G adsorption to
Lactococcus lactis subsp. cremoris SK110 by masking the actual
receptor site (34).

YwbC (also called GlxA) is a glyoxalase I necessary for methyl-
glyoxal detoxification. Methylglyoxal, a highly reactive dicarbonyl
compound, is a toxic by-product of glycolysis. It is synthesized by
methylglyoxal synthase under conditions of excessive carbon flux
or phosphate limitation, which lead to an imbalance in the metab-
olism between the carbon rate acquisition and the glycolysis (35).

FIG 4 Interaction networks of the B. subtilis proteins encoded by genes that
are upregulated (A) or downregulated (B) after 8 and 16 min of �29 infection
obtained from STRING database (v9.1) using default settings (confidence �
0.4). The proteins are represented by nodes, which are colored according to the
GO biological process classification (nucleic acid metabolism in green and
carbohydrate metabolism and carbohydrate transport in red and beige, respec-
tively). Genes belonging to other GO categories are colored gray. Disconnected
nodes are not shown. Lines represent the predicted functional associations
between the proteins.

FIG 5 Average amino acid compositions of proteins encoded by the phage
�29 genome or by the B. subtilis genome. An in-house script written in Python
language was used to compute the amino acid composition of the proteins of
both organisms from the FASTA files obtained from the National Center for
Biotechnology Information ftp site. The graphics were created using the R
programming language and software environment.
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The toxicity of methylglyoxal is due to its ability to interact with
the nucleophilic centers of macromolecules. Thus, it has been
shown that this compound can modify guanine bases in the ge-
nome, leading to DNA damage and increased mutational rates
(36). In addition, methylglyoxal can also react with arginine,
lysine, and cysteine residues in proteins, causing its inactivation
and ultimately cell death. Its effect on viral development was stud-
ied using bacteriophage T4, which lost its infective capacity on E.
coli after methylglyoxal treatment (37). Despite the fact that meth-
ylglyoxal has not been quantified in �29 infected cells, it is possible
that phage �29 increases its cellular concentration; the upregula-
tion of ywbC could be an attempt to counteract this damage that
can potentially affect both bacteria and phage.

Downregulated genes after phage �29 infection. Transcrip-
tional repression seems to occur earlier than inductions in phage
�29 infected cells, suggesting that the downregulation of specific
bacterial genes is necessary to promote a rapid change in host
metabolism for an optimal viral development. At 8 and 16 min
after �29 infection, the most downregulated pathways were re-
lated to the utilization of specific carbon sources of bacteria, in-
cluding ribose, inositol, sucrose, lichenan, starch, trehalose, or
galacturonate (Table 2). In fact, 39 of the 55 genes that are down-
regulated after viral infection are members of operons repressed
by the catabolite control protein A (CcpA) (Table 2), a DNA-
binding protein of the LacI/GalR family of transcriptional regula-
tors (38, 39). Moreover, most of these CcpA-regulated genes
(82%) contain high-affinity binding sequences for CcpA called cre
(catabolite responsive elements). Since approximately 95 genes of
B. subtilis are transcriptionally controlled by high-affinity cre
boxes, there is a significant enrichment in these sequences in the
promoters of genes downregulated after phage �29 infection (P �
0.0001 [two-sided Fisher exact test]).

Like many other bacteria, B. subtilis is able to use a variety of
carbohydrates as sources of carbon and energy. The expression
of the genes required for its utilization depends on the presence of
the specific substrate (induction) in the environment and the ab-
sence of preferred carbon sources, such as glucose, that can be well
metabolized (catabolite repression). CcpA is responsible for the
carbon catabolite control in B. subtilis and other Gram-positive
bacteria. This protein is constitutively synthesized (40), and it
does not change its expression either after 8 or 16 min of �29
infection. The nutritional and physiological states of the bacterial
host are important factors to determine the consequences of a
phage infection. For example, the development of bacteriophage
T4 (measured as the total number of PFU per infected cell) is
strongly influenced by the carbon source present in the medium
where its host E. coli grows (41). It has been also reported that 

phage reduces the transcription of bacterial pckA, a gluconeogenic
gene involved in the utilization of alternative carbon sources such
as succinate (42). It is possible that the effect of phage �29 infec-
tion in the repression of genes involved in the utilization of spe-
cific carbon sources could maintain B. subtilis in a physiological
state necessary for optimal viral development.

Particularly, there is a dramatic reduction in the levels of RNA
from genes of the ribose operon (Table 2). D-Ribose is one of the
metabolites that bacteria can actively transport into the cell to use
as carbon and energy source. The high-affinity transport for this
monosaccharide in B. subtilis is encoded by the ribose transport
operon that consists in genes encoding RbsA (an ATP-binding
transport protein), RbsB (a ribose-binding protein), RbsC (a per-

mease), RbsD (a membrane transport protein), RbsK (a riboki-
nase that phosphorylates the sugar in the presence of ATP into
D-ribose 5-phosphate as the first reaction in the metabolism of
exogenous ribose), and RbsR (a transcription regulator that re-
presses the operon expression) (43). The transcription of this
operon is negatively controlled by the catabolite repressor protein
CcpA (44). An additional ORF of unknown function called ywsB
was detected in this operon downstream from rbsB (45). All genes
except rbsD were downregulated at both 8 and 16 min postinfec-
tion.

Phage �29 infection also affects the expression of genes in-
volved in the catabolism of myo-inositol, a sugar alcohol abundant
in soil that can be metabolized by several microorganisms. The
structure of the iol operon for myo-inositol catabolism in B. sub-
tilis consists of 10 genes (iolA to iolJ). Once myo-inositol is incor-
porated into the cell, the inositol dehydrogenase encoded by iolG
catalyzes its oxidation to 2-keto-myo-inositol, which is the first
reaction of the catabolic pathway that results in the conversion of
myo-inositol to an equimolar mixture of dihydroxyacetone phos-
phate, acetyl-CoA, and CO2 (46, 47). Glucose repression of the
operon is exerted through catabolite repression mediated by CcpA
and also by IolR. Genes of iol operon were repressed after �29
infection with the exception of iolH (a putative sugar-phosphate
epimerase/isomerase) and iolI (a 2-keto-myo-inositol isomerase).

B. subtilis produces and secretes �-amylase (AmyE) to degrade
extracellular starch, an abundant carbon source in nature. The
enzyme hydrolyzes internal �-1,4-glycosidic linkages in starch
and related molecules to yield products such as glucose or maltose
(48). The gene sacA encodes an endocellular sucrose-6-phosphate
hydrolase referred to as sucrase involved in sucrose degradation
into �-D-glucose and �-D-fructose (49). UxaC is a protein re-
quired for the utilization of galacturonate as a carbon source (50).
Polymethylgalacturonate (pectin) is a component of plant cell
walls frequently found in the soil that can be converted to
galacturonate, contributing to B. subtilis growing in its natural
environment.

The three genes of the trehalose operon (treA, treP, and treR)
were also downregulated following �29 infection (Table 2). Tre-
halose is transported into the cell by a phosphotransferase system
mediated by TreP, resulting in the phosphorylated trehalose-
6-phosphate form (51), which is then hydrolyzed by trehalose-6-
phosphate hydrolase (TreA), yielding glucose and glucose-6-
phosphate (52). TreR is the specific repressor of the operon.

XylB is involved in the degradation of xylose although B. sub-
tilis strain 168 is unable to effectively utilize xylose as sole carbon
source. LicC is involved in the uptake of lichenan, a �-1,3-1,4-
glucan, which is further degraded by LicH, a probable 6-phospho-
�-glucosidase (53). In addition, licS encodes a �-1,3-1,4-endog-
lucanase necessary for lichenan utilization.

Two genes of the mannose operon are downregulated after
�29 infection: manA, a gene encoding a mannose-6-phosphate
isomerase, and manP, which encodes a phosphotransferase sys-
tem mannose-specific IIBCA transporter. The transcriptional ac-
tivator ManR, whose gene also showed decreased levels of tran-
scription, regulates this operon (54). Intriguingly, two subunits of
the mannose transporter called IICMan and IIDMan are necessary
for infection of E. coli cells by 
 bacteriophage since they facilitate
the penetration of viral DNA across the inner membrane (55).

Another repressed gene is pdp, which encodes a pyrimidine
nucleoside phosphorylase that catalyzes the reversible phospho-
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rolysis of the pyrimidine nucleosides uridine, thymidine, and 2=-
deoxyuridine to the corresponding pyrimidine base and ribose-1-
phosphate (56). In the same operon as pdp are included deoC and
nupC. DeoC is a deoxyribose-phosphate aldolase involved in de-
oxyribonucleotide catabolic process. Its repression could be a
phage �29 attempt to diminish the cellular degradation of deoxy-
ribonucleotides, which are necessary for replicating the viral ge-
nome.

Most of the downregulated genes that are involved in transport
are sugar transporters except for nupC, which encodes a protein
involved in transport of uridine (56). This reduction in the tran-
scription levels could be related to the deleterious effect that the
presence of uracil residues may have in �29 genome integrity.
Although phage �29 DNA does not contain uracil residues, mis-
incorporation during the replication process or spontaneous cy-
tosine deamination may occur. If uracil residues appear in ssDNA
regions of replicative intermediates, the action of host uracil
DNA-glycosylase (UDG) will introduce a nick into the phos-
phodiester backbone producing the loss of the terminal region. To
avoid this process, phage �29 encodes a UDG inhibitor called p56
(57, 58).

Although the c-type cytochromes play an important role in
electron transport systems, the cytochrome c550 encoded by the
cccA gene is not essential for growth of B. subtilis (59). Instead,
cytochrome c550 is related to the initiation of sporulation since a
strain with this gene deleted showed delayed sporulation (60).
Curiously, the lytic cycle of phage �29 is suppressed when cells are
infected during the early stages of sporulation and the viral ge-
nome becomes trapped into the spore (61).

The genes ysbA and ysbB encode putative antiholins predicted
to finely direct the system by inhibiting holins and therefore reg-
ulating the accurate timing of cell lysis. At the end of its lytic cycle,
dsDNA bacteriophages induce cell lysis through a holin-endolysin
system to release new viral particles (62). Holins are small pro-
teins, which form pores in the cytoplasmic membrane allowing
endolysins to degrade cell wall peptidoglycan. The timing of lysis
is precisely controlled to maximize the reproductive potential of
the bacteriophage population (63). Some bacteria also include
holin-antiholin-like genes in their genomes that resemble their
phage counterparts. The induction of cell death in a part of the
population in response to certain environmental stresses may en-
sure the survival of the remaining cells, and this may be considered
a behavior similar to that in multicellular organisms. The down-
regulation of ysbA and ysbB might impede the cell to counteract
cell lysis promoted by phage �29.

It should be noted that some of the genes included in Table 2
such as dctP, acoR, and yrbE showed a decrease in downregulation
at 16 min compared to that observed at 8 min postinfection. Prob-
ably, phage �29 is directly responsible for causing this effect, be-
cause in our analysis infected cultures were compared to unin-
fected ones at the same times, but we cannot rule out the
possibility that some of the bacterial transcriptional changes were
not associated with infection. RNA-Seq technology monitors gene
expression in both virus and host to a high level of accuracy and
depth; however, the large number of data points generated by this
technology could also introduce some false results.

Host differentially expressed genes response in certain envi-
ronmental conditions. We analyzed whether bacterial genes that
are differentially expressed after �29 infection also respond to
certain environmental and nutritional conditions studied by Ni-

colas et al. (64). The comparison reveals that there is no significant
overlap between upregulated genes during viral infection and
those induced or repressed under several stress conditions such as
heat, ethanol, salt, mitomycin, or oxidative stresses. The same oc-
curs when we compared genes that respond to the presence of
certain nutrients in the medium such as the specific carbon source
that are used for B. subtilis growth (fructose, glycerol, and gluco-
nate). Thus, it seems that the transcriptional changes detected for
B. subtilis genes, which are shown in Tables 1 and 2, correspond to
a virus-specific effect. However, �29 induced genes showed a sig-
nificant overlap (P � 0.01 [two-sided Fisher exact test]) compared
to those repressed by cold stress when cells suffer a temperature
downshift from 37 to 18°C. Since the B. subtilis cold shock re-
sponse leads to a growth lag as a consequence of the inhibition of
RNA, DNA, and protein synthesis (65), it could be expected that
bacterial genes induced by �29, which requires the host machin-
ery to promote its multiplication, were repressed under such con-
ditions. On the other hand, there is an interesting correlation (P �
0.005 [two-sided Fisher exact test]) between downregulated genes
after �29 infection and genes induced when glycerol or gluconate
are the carbon sources used by the bacteria, suggesting a phage
repression of the metabolism of a broad range of alternative car-
bon sources.

Transcriptional profile of the phage �29 genome. Phage �29
DNA transcription is divided into early and late operons depend-
ing on the time when they are expressed during the infective cycle
(Fig. 6A) (1, 66). The late operon is localized at the central region
of the genome and is transcribed from the late promoter A3.
Genes clustered into this operon (genes 7 to 16) encode phage
structural, morphogenetic, and lytic proteins. Two early expressed
operons located at both ends of the genome are divergently tran-
scribed with respect to the late operon. The one on the left, which
includes genes coding for essential DNA replication proteins and
transcription regulators, is under the control of the tandemly or-
ganized promoters A2b and A2c. The right-side early operon is
transcribed from the C2 promoter, and it encodes proteins re-
quired for the internalization of the phage DNA during the ge-
nome injection step and for the DNA replication process. This
operon also contains the promoter C1, which is responsible of the
transcription of ORFs 16.6 and 16.5. An additional promoter
called A1 is located at the left early region and drives the expres-
sion of the pRNA, an RNA required for packaging of viral DNA.
Phage �29 DNA transcription requires the vegetative B. subtilis
RNA polymerase containing the �A subunit to recognize the early
promoters and, with the aid of the �29 transcriptional regulator
p4, the late A3 promoter that does not contain a typical �35
box (3).

The transcript levels detected for each position of the phage
�29 genome at 8 and 16 min postinfection are shown in Fig. 6B
and C, respectively, and the corresponding expression levels for
each viral gene are shown at Table 3. The results indicate that the
most abundant transcripts after 8 min of �29 infection are derived
from early operons. However, only a minor fraction of the tran-
scripts initiated at the A2b and A2c promoters terminate at the left
end of the genome. This is probably due to the presence of a
Rho-independent transcriptional terminator called TA1, which is
located within gene 4 (67). As a consequence, a larger amount of
RNA from gene 6 (encoding a dsDNA-binding protein required
for transcription regulation and DNA replication), gene 5.5 (a
hypothetical gene), and gene 5 (encoding a ssDNA-binding pro-
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tein necessary for viral DNA replication in vivo) was produced.
This is consistent with previous data showing that proteins p6 and
p5 were synthesized in far larger quantities in infected cells than
were proteins p4 (a transcriptional regulator), p3 (the terminal
protein needed for DNA replication), p2 (the DNA polymerase),
and p1 (a DNA replication protein) (68, 69). Other genes also
included in this early operon encode protein p56 (a uracil-DNA
glycosylase inhibitor) and the hypothetical proteins p0.6 and p0.4.
At 8 min postinfection, we also observed transcripts from the right
early operon. In this case, the transcription levels are quite similar
for all genes in the operon (Fig. 6B), which encodes p17 (a DNA
replication protein), p16.7 (a protein involved in the distribution
of in vivo phage DNA replication), and the hypothetical proteins
p16.9, p16.8, p16.6, and p16.5. After 16 min of phage �29 infec-
tion, there was a drastic decrease in the amount of RNA detected
for these genes, whereas a moderate reduction in the levels of
transcripts of genes 6, 5.5, and 5 and the rest of genes of the left
early operon were observed (Table 3). This is because the activa-
tion of the late A3 promoter, which occurs at approximately 15
min after infection, requires the binding of the �29 early protein
p4 to specific DNA sequences in the intergenic region comprising
promoters A2c, A2b, and A3. This binding also represses both
early A2c and A2b promoters, leading to a decreased transcription
levels of genes located at the early left operon (1). Moreover, tran-
scripts expressed from the A1 promoter and the late A3 promoter

were also identified at 16 min postinfection (Fig. 6C; Table 3). The
higher transcriptional levels of the �29 late genes detected at 16
min of infection compared to that at 8 min postinfection (Table 3)
could cause the increment in the number of bacterial genes that
showed a significant expression change at the later time (Tables 1
and 2). This transcriptional timing coincides with previous studies
showing that the A3 promoter became active about 10 to 15 min
after infection, whereas transcription from the early A2b and A2c
promoters was already evident at 5 min postinfection (2). As pre-
viously described, there were smaller amounts of transcripts from
the early C2 promoter than from the A2b and A2c promoters.
Curiously, the expression profile of the phage �29 genome at 16
min postinfection reveals a marked end of transcription between
genes 8.5 and 9, suggesting that a transcriptional terminator that
has not been previously identified is located at this region. As a
result, a high level of transcripts of genes 7, 8, and 8.5 were pro-
duced compared to the rest of the genes of the late operon.

Interestingly, our studies also revealed the presence of anti-
sense transcripts complementary to the well-known �29 messen-
ger RNAs. The antisense transcription was evident after 8 min of
�29 infection for the DNA strand opposite of the coding strand
that serves as the template for expression of genes 5, 5.5, and 6 and
those included in the right early operon (Fig. 6B); however, 8 min
later both strands of the viral genome were transcribed, adding an
additional layer to the transcriptome complexity. The promoters

FIG 6 Genetic map and transcriptional profile of the phage �29 genome. (A) Genetic and transcriptional map of the �29 genome. Vertical bars indicate the
locations of promoters A1, A2c, A2b, A3, B1, B2, C1, and C2. Arrows show the direction of transcription, and the transcriptional terminators TA1 and TD1 are
indicated by red hairpin structures. Genes are indicated by numbers, and boxes are colored depending on the time when the samples were transcribed (salmon
color refers to early transcripts, and light green to late transcripts). A black box indicates the region spanning the early A2b and A2c promoters and the late A3
promoter. (B) Transcriptional profile of the �29 genome after 8 min of infection. Mapping of the reads from the strand-specific RNA-Seq analysis shows the
expression of the early operons and the low levels of antisense transcription for the same regions. The depth is the number of reads detected for a particular
genomic region. (C) Transcriptional profile of the �29 genome after 16 min of infection. All of the genome was transcribed at this time, although most of the
transcribed regions include early genes 6, 5.5, and 5, as well as late genes 7, 8, and 8.5. The amount of antisense transcripts (dark green) increased compared to
panel B.
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responsible for antisense transcription have not yet been identi-
fied since they may be produced by spurious expression events
from promoterlike sequences that take advantage of the degener-
ate nature of bacterial transcription factor binding sites. Only two
promoters, named B2 and B1, were previously known to give rise
to antisense transcripts complementary to certain late genes. Since
these transcripts did not contain ORFs of significant length with a
reasonable ribosomal binding site, it has been proposed that they
may have a role in transcriptional regulatory mechanisms. Never-
theless, promoters B2 and B1 were weakly expressed compared to
other phage �29 promoters with a maximum transcriptional rate
at 30 min postinfection (2). Thus, is possible that other uncharac-
terized promoters were producing the antisense late transcripts
shown in Fig. 6C. We observed distinct expression patterns for
sense and antisense transcripts, which may suggest that they are
independently regulated. Although further analysis will be needed
to determine the physiological roles of the antisense transcripts
and the underlying mechanisms, they might be potentially in-
volved in global gene regulation of the �29 genome. Antisense
control of gene expression has been demonstrated in a wide vari-
ety of organisms, including some bacteriophages such as P22, P4,
and T4. Thus, in the case of phage T4, the expression of gene 32 is
regulated by an antisense transcript transcribed from the same
DNA as the coding region but in the opposite orientation (70).
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