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Abstract

Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. 

In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle 

mass. Secondary aging refers to additional deleterious structural and functional age-related 

changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in 

mitochondrial function and muscle mass, concomitant with the development of skeletal muscle 

insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the 

decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing 

insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy 

aging” by inducing modifications in skeletal muscle.

Primary versus Secondary Aging: Setting the Stage

Most individuals wishing to be “forever young”, dream of a magic elixir to retard age-

related changes in humans. While many have searched, the proverbial “fountain of youth” 

has not been found, and primary aging is unavoidable. Primary aging is the inevitable 

deterioration of cellular structure and biological function, independent of disease or harmful 

lifestyle or environmental factors (Holloszy, 2000). Efforts to slow or reverse primary aging 

have met little success (Booth et al., 2011). This may partly be related to the pre-clinical and 

clinical observations that various stages exist along the continuum of primary aging. For 

example, the adaptability or “plasticity” of skeletal muscle of individuals in the age range 

between 65–75 years is very different than that of individuals over 75 years. In this regard, 
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we refer to the malleability of skeletal muscle in terms of insulin sensitivity, ‘metabolic 

flexibility’ and substrate preference in relation to nutrient or exercise challenges, 

mitochondrial function, and growth/hypertrophy response changes with aging. Overall, the 

plasticity of aging skeletal muscle is relatively well-preserved up to old age, but wanes 

significantly in very advanced age, due at least in part to a diminished up-regulation of 

diverse signaling and gene regulatory pathways necessary for metabolic and functional 

adaptations.

Efforts to increase life span and more importantly, quality of life, have been achieved by 

limiting secondary aging, or more specifically, the deleterious structural and functional 

changes that are caused by diseases and environmental factors (Holloszy, 2000). Thus, 

lifestyle modifications that promote health, well-being, and functional capacity minimize 

disease development, and consequently secondary aging. For example, even in the most 

physically active people, relative maximal oxygen consumption declines in the third decade 

of life due to primary aging, but aerobically active or sedentary lifestyles can slow or 

accelerate this respectively, by influencing secondary aging (Booth et al., 2011).

Regular exercise training affords protection against the aging-related changes responsible for 

development of insulin resistance (Rogers et al., 1990b). Strikingly physical inactivity and 

sedentary behavior have a deleterious effect on human health that is comparable to smoking 

(Bouchard et al., 2015). Because physical inactivity is an important cause of many chronic 

diseases, it accelerates the secondary aging process and can lead to premature death (Booth 

et al., 2012). Thus, physical activity and prescribed exercise are potent countermeasures 

against secondary aging and together, play major role in the prevention of the most deadly 

chronic diseases modern humans face, including cardiovascular diseases, metabolic diseases, 

cancer, pulmonary diseases, immune dysfunction, musculoskeletal disorders, and 

neurological disorders (Booth et al., 2002).

Not all Activity is the Same: Distinguishing between Physical Activity and 

Exercise

To set the stage for the purpose of this perspective, defining and distinguishing the 

differences between physical activity and exercise is important. Physical activity refers to 

any level of activity above seated rest that results from skeletal muscle activation and leads 

to movement and an increase in energy expenditure, whereas exercise refers to planned 

structured repetitive activity aimed to improve fitness (Caspersen et al., 1985). Physical 

activity is daily free living activity separate from weekly exercise, whereas exercise training 

is defined by a prescribed and adherent dose (i.e. mode, intensity, volume/duration, 

frequency) of effort or work.

The extremes of the exercise training continuum can be distinguished as endurance or 

resistance exercise. Endurance exercise of several minutes up to several hours at various 

intensities incorporating repetitive, low-resistance load increases aerobic fitness, partly 

reflected by a change in skeletal muscle oxidative capacity and improved function of the 

cardiovascular system. Conversely, resistance exercise to increase muscular mass, strength, 

and power consists of short-duration activity at high intensities/resistance or exercises of a 

Cartee et al. Page 2

Cell Metab. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



single or relatively few repetitions. In order to achieve measurable functional changes in 

work performance, exercise training sessions should be performed three to five times weekly 

for several weeks. The intensity, duration, and mode of physical activity, and nutritional 

status, markedly affect the metabolic and molecular response to a given exercise challenge 

(Egan and Zierath, 2013) and in turn determine the nature of changes in skeletal muscle 

oxidative capacity, mass, and strength. When prescribed on a relative scale (e.g., 70% of 

maximum), adults of all ages are capable of exercising at the same intensity after a period of 

familiarization and ramping. However, in some older adults the adaptations to a particular 

mode of exercise training are blunted compared to young. This may reflect differences in 

physiologic reserve between young and old (e.g., similar resting heart rate, but far greater 

heart rate reserve in young).

Fighting Metabolic Disease and Muscle Atrophy: Warding off Secondary 

Aging

During the last half century, there has been an explosion in the diagnosis of a cluster of 

metabolic disorders including impaired glucose tolerance (IGT), obesity and type 2 diabetes. 

Strikingly, a high percentage of individuals with IGT develop type 2 diabetes within a 

decade. The majority of people who have IGT or type 2 diabetes are overweight or obese. 

Both physical inactivity and aging elevate the risk of type 2 diabetes in ‘normal’ weight and 

obese individuals. Moreover, increased sedentary time is associated with a greater risk for 

type 2 diabetes and the metabolic syndrome (van der Berg et al., 2016). Conversely, any type 

of physical activity is associated with reduced risk of type 2 diabetes in adults aged 70 years 

and over, while in adults in the 50 to 69 age range, the addition of moderate to vigorous 

intensity exercise appears necessary to reduce the risk of developing type 2 diabetes 

(Demakakos et al., 2010).

Loss of skeletal muscle mass is one of the most wide-spread, deleterious and insidious 

processes in aging humans. While the magnitude varies substantially across individuals, 

some degree of muscle atrophy impacts all individuals with aging. In 1988 at a meeting in 

Albuquerque, NM, I.H. Rosenberg first coined the term ‘sarcopenia’ to describe this age-

related loss (penia) of flesh (sarx) (Rosenberg, 1997). Since then, classifications of 

sarcopenia have been proposed based on population variance in estimates of whole body 

lean mass (Janssen et al., 2004a; Janssen et al., 2002; Janssen et al., 2004b) or limb muscle 

mass (Baumgartner et al., 1998). Some of these indices have led to estimates of the 

attributable health care burden (Beaudart et al., 2014b; Janssen et al., 2004b). Despite the 

original, strict definition of sarcopenia, more recent classifications have incorporated various 

indices of muscle performance (e.g., strength) or mobility function (e.g., gait speed), 

apparently in an effort to build clinical relevance and diagnostic criteria. However, the 

introduction of functional correlates has only confused the diagnosis (Beaudart et al., 2015; 

Beaudart et al., 2014a); thus we have elected to describe the phenomenon as simply ‘aging 

muscle atrophy’.

Aging-related defects in mitochondrial energetics have been proposed to be causally 

involved in aging muscle atrophy (Gouspillou et al., 2014a). These changes are attributed to 
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both inactivity and age-related alterations in mitochondrial synthesis and degradation (Carter 

et al., 2015), indicating a complex pathophysiology involving both structural changes to the 

muscle fibers, as well as the enzymatic machinery that controls glucose and lipid 

metabolism. The mitochondrial defect most likely to impact aging muscle is an increased 

susceptibility to permeability transition, a likely cause of the increased recruitment of 

mitochondrial-mediated pathways of apoptosis (Hepple, 2016).

Metabolic dysfunction and skeletal atrophy of aging are insidious, as they develop over time 

and they slowly, but surely, compromise the quality of life. Moreover, these conditions place 

a major burden on society. The International Diabetes Federation (IDF) estimates there are 

415 million adults living with diabetes, mainly in low and middle income countries, and 

projects this will rise to 642 million people by 2040 (IDF, 2015). With no cure in sight, 

efforts are clearly needed to drive these numbers down. Aging-related loss of skeletal muscle 

mass is also exacerbated indirectly by obesity, with a vicious cycle between an increased fat 

mass and the concomitant decrease in skeletal muscle mass, giving rise to “sarcopenic 
obesity” (Heber et al., 1996). Individuals with sarcopenic obesity have increased risk of 

adverse health events over and above those who are obese or sarcopenic alone (Cleasby et 

al., 2016). Thus, skeletal muscle insulin resistance resides at the confluence of age-related 

metabolic dysfunction, fat accumulation and muscle atrophy.

Loss of skeletal muscle mass and strength with aging is also influenced by sex and hormonal 

status. For example, the age-related decline in muscle force is greater for peri-menopausal 

and post-menopausal women and this decline is prevented by hormone replacement therapy 

(Phillips et al., 1993). While women may experience earlier strength losses than men, the 

age-related decreases in strength are similar between sexes when controlling for muscle 

mass (Goodpaster et al., 2006). Moreover this strength decline is more rapid than the 

concomitant loss of muscle mass, suggesting a decline in muscle quality (Goodpaster et al., 

2006). From a public health perspective, loss of muscle mass not only reduces mobility and 

functional capacity, but also accelerates obesity and progression toward type 2 diabetes. As 

the proportion of older inactive adults rises and the incidence of obesity escalates, this 

constellation of conditions will collide to have a dramatic impact on the lives of an 

increasing number of the world’s citizens.

Today, there is growing appreciation that type 2 diabetes can be avoided or at least delayed, 

and aging-related loss of skeletal muscle mass can be attenuated by lifestyle intervention 

strategies. Regular exercise counteracts these aging-related diseases. Endurance exercise 

incorporating repetitive, low-resistance load performed 3–5 times weekly for several weeks 

improves insulin sensitivity and reduces body fat. Resistance exercise incorporating short-

duration activity at high or maximal exercise intensities and high resistance or exercises of a 

single or relatively few repetitions performed 3–5 times weekly for several weeks slows the 

decline in skeletal muscle mass and strength. Thus, efforts to maintain insulin sensitivity and 

normal body weight, as well as maintaining functional skeletal muscle mass should be at the 

forefront of any intervention strategy to achieve “healthy aging”. This review will focus on 

the effects of exercise to promote “healthy aging” through the maintenance of insulin 

sensitivity and functional skeletal muscle mass (Figure 1). We will highlight the current 

understanding of the key components of pathways controlling glucose homeostasis, 
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mitochondrial content/function, as well as mechanism governing the control of skeletal 

muscle mass. Unless otherwise stated, the clinical studies cited have evaluated the effects of 

aging and exercise in non-trained (sedentary) individuals.

Insulin Sensitivity and Aging

Because normal glucose homeostasis is essential for health, it is troubling that recent 

analysis of adults in the U.S. revealed the combined prevalence of diabetes (mostly type 2 

diabetes), abnormal fasting glycemia and IGT increased from 20.9% (at 20–39 years) to 

46.9% (at 40–59 years) to 67.4% (at 60–74 years) and 75.6% (at ≥75 years) (Cowie et al., 

2009). Insulin resistance is linked to many of the most prevalent and devastating age-related 

pathologies, including cardiovascular disease, some cancers and cognitive dysfunction 

(Facchini et al., 2001; Haffner, 1999; Kumari et al., 2000). Whole body insulin sensitivity is 

determined by the integrated actions of multiple tissues, but skeletal muscle primarily 

accounts for insulin-mediated blood glucose clearance (DeFronzo et al., 1981).

Age-related changes in body composition contribute to insulin resistance observed in older 

individuals. The accumulation of abdominal and ectopic fat is associated with the 

deterioration in glucoregulation with advancing age (Huffman and Barzilai, 2009; Kohrt et 

al., 1993). Age-associated muscle atrophy and changes in muscle quality further contribute 

to metabolic dysfunction. Modestly reduced whole body glucose disposal has been reported 

for healthy, older (∼65–70 years-old) versus younger (∼30 years-old) men, even when 

values are expressed relative to lean body mass (Fink et al., 1986; Meneilly et al., 1996; 

Rowe et al., 1983). Age-related insulin resistance has been suggested to be independent of 

primary aging. For example, similar insulin sensitivity was reported for younger (35 years-

old) compared to older (66 years-old) individuals who were matched for exercise training 

status and body composition (Amati et al., 2009). Although there is not a consensus 

regarding the notion that primary aging induces modest insulin resistance, it is clear that 

primary aging per se, independent of age-related changes in body composition and physical 

activity, does not account for the extremely high prevalence of abnormal glucose 

homeostasis with advancing age in the United States and many developed countries. This 

disturbing situation is largely attributable to an avoidable condition that is not unique to 

aging, and arises from an imbalance between energy expenditure and energy intake (Figure 

2).

Insulin Signaling and Glucose Uptake

Understanding skeletal muscle insulin resistance requires consideration of the insulin 

signaling pathway regulating glucose transport, beginning with insulin binding to its 

receptor, resulting in receptor autophosphorylation and greater tyrosine-phosphorylation of 

insulin receptor substrate (IRS) proteins (Boucher et al., 2014; Leto and Saltiel, 2012). 

Tyrosine-phosphorylated IRS binds phosphatidylinositol 3-kinase (PI3K) facilitating Akt2 

phosphorylation, which phosphorylates the Rab GTPase TBC1D4 (also called Akt Substrate 

of 160 kDa or AS160) on multiple Akt Ser/Thr phosphomotifs, including Thr642 and Ser588 

that control the rate of GLUT4 translocation to the plasma membrane, resulting an increase 

in glucose uptake.
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GLUT4 protein abundance in human muscle has been reported to decline with aging, in 

some, but not all studies. Vastus lateralis GLUT4 density in fast-twitch fibers was lower for 

older (64 years-old) versus younger (29 years-old) women and men, without age-related 

differences in slow-twitch fibers (Gaster et al., 2000). Another study including women and 

men from 18 to 80 years-old found a modest negative correlation between age and vastus 
lateralis GLUT4 abundance, but not gastrocnemius GLUT4 (Houmard et al., 1995). In 

contrast, other research found no age-related differences for GLUT4 protein abundance in 

the vastus lateralis of young (22–23 years-old) versus old (∼60 years-old) humans (Cox et 

al., 1999; Dela et al., 1994). GLUT4 abundance in various muscles with diverse fiber type 

profiles did not differ for rats at 6–12 versus 24–31 months-old (Cartee and Bohn, 1995; 

Gulve et al., 1993; Sharma et al., 2010). Thus, reduced GLUT4 abundance seems unlikely to 

fully account for age-related insulin resistance.

Defective insulin signaling may contribute to skeletal muscle insulin resistance. Older (69 

years-old) versus younger (27 years-old) healthy and normal weight humans were 

characterized by insulin resistance concomitant with reduced insulin-stimulated Akt2 

activity in skeletal muscle (Petersen et al., 2015). Older women and men (69 years-old) 

versus young (24 years-old) controls were modestly insulin resistant, and age was negatively 

correlated to TBC1D4 phosphorylation on Ser588 and Thr642 in insulin-stimulated muscle, 

but not correlated with Akt Ser473 phosphorylation (Consitt et al., 2013). These findings are 

consistent with the notion impairments in the insulin signaling cascade are associated with 

insulin resistance in aged skeletal muscle.

In rats, there is evidence suggesting muscle-type and/or fiber-type selective effects of aging 

on insulin sensitivity. Insulin-stimulated glucose uptake by the predominantly slow-twitch 

soleus was lower for 24 months-old versus 8 months-old rats, but there was no age-related 

insulin resistance in the predominantly fast-twitch quadriceps muscle from the same rats 

(Escriva et al., 2007). In isolated soleus, there was age-related insulin resistance (25 versus 9 

months-old), but not in the predominantly fast-twitch epitrochlearis (Sharma et al., 2010). In 

the soleus, but not the epitrochlearis, there was an age-related decrease in Thr308 

phosphorylation of Akt2. In neither muscle was there an age-related difference for 

phosphorylation of TBC1D4 Thr642. The causes for the apparent fiber type and/or muscle 

differences in insulin signaling and insulin sensitivity in rats remain to be determined, and 

similar comparisons are lacking for human aging.

Exercise Counteracts Age-related Changes in Insulin Sensitivity

One exercise session can induce subsequently greater whole body insulin-stimulated glucose 

disposal in young humans or rats secondary to greater insulin-stimulated glucose uptake by 

muscle (Cartee, 2015; Cartee et al., 1989; Nagasawa et al., 1991; Perseghin et al., 1996; 

Wojtaszewski et al., 2000; Wojtaszewski et al., 1997). Improved insulin sensitivity is 

observed ∼1–7 hours post-exercise and can persist up to 1–2 days post-exercise in both 

species. The improved muscle insulin sensitivity is localized primarily, if not exclusively, in 

the previously active muscle. Research using one-legged kicking endurance exercise and 

comparing the exercised leg to the unexercised leg demonstrate that exercise has a local 

effect on the active muscle (Wojtaszewski et al., 2000). Furthermore, insulin-stimulated leg 
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glucose uptake on the day after cycling exercise was accompanied by no exercise effect on 

the inactive forearm muscle (Annuzzi et al., 1991). Prior exercise can produce markedly 

elevated insulin-stimulated uptake of glucose by isolated muscles from rats (Cartee and 

Holloszy, 1990; Hansen et al., 1998; Wallberg-Henriksson et al., 1988), indicating a 

persistent effect that is inherent to skeletal muscle. However, the inherent muscle effects may 

be accompanied by altered muscle blood flow in vivo that contributes to elevated glucose 

uptake.

In older (67 years-old) women, one hour of brisk walking produced elevated insulin 

sensitivity on the following day (Wang et al., 2013). Whole body insulin sensitivity was also 

increased the day after swim-exercise by 27 months-old rats (Pauli et al., 2010). At 3 hours 

post-exercise by 24–30 months-old rats, insulin-stimulated glucose uptake by isolated 

epitrochlearis muscle was increased (Cartee et al., 1993; Sharma et al., 2015; Xiao et al., 

2013). Thus, even with aging, skeletal muscle retains the capacity for metabolic adaptation 

to exercise.

The mechanism by which acute exercise enhances insulin sensitivity has mainly been 

elucidated in studies of young humans or rats. Several hours after acute exercise by young 

rats, insulin-stimulated glucose uptake is elevated because of greater GLUT4 translocation 

(Hansen et al., 1998). In young rats and humans, this improvement is not attributable to 

elevated insulin signaling at proximal steps ranging from insulin receptor binding to Akt 

activity (Castorena et al., 2014; Hansen et al., 1998; Wojtaszewski et al., 2000; 

Wojtaszewski et al., 1999). Several lines of evidence suggest that greater TBC1D4 

phosphorylation accompanies the improved insulin-simulated glucose uptake noted 3–27 

hours after acute exercise (Arias et al., 2007; Cartee, 2015; Castorena et al., 2014; Funai et 

al., 2010; Funai et al., 2009; Pehmoller et al., 2012; Schweitzer et al., 2012; Treebak et al., 

2009). Therefore, elevated TBC1D4 phosphorylation is an attractive candidate for the 

enhanced insulin-stimulated glucose uptake in skeletal muscle of young humans or rats after 

acute exercise, but a causal link remains to be established.

The effects of acute exercise on GLUT4 abundance or insulin signaling in muscles from 

older humans is unknown, but studies performed in animal models reveal molecular insight. 

For example, insulin-stimulated glucose uptake by the epitrochlearis of 24 months-old rats 

was increased 3 hours post-exercise with unaltered GLUT4 protein abundance (Xiao et al., 

2013). In contrast, the increased insulin-stimulated glucose uptake in the epitrochlearis of 30 

months-old rats at 3 hours post-exercise was accompanied by a small increase in GLUT4 

abundance (Sharma et al., 2015). In the insulin-stimulated epitrochlearis from both 24 and 

30 months-old rats at 3 hours post-exercise, insulin-stimulated Akt phosphorylation was 

increased on both Thr308 and Ser473, but only in 24 months-old rats was insulin-stimulated 

TBC1D4 Thr642 phosphorylation increased post-exercise (Sharma et al., 2015; Xiao et al., 

2013). Studies of young rats have consistently found greater TBC1D4 phosphorylation with 

little or no change in insulin-stimulated Akt activation post-exercise, whereas in old rats, 

insulin-stimulated Akt activation was consistently altered, but TBC1D4 phosphorylation was 

not always increased. It is notable that the exercise protocols for young rats (2–4 × 30 

minute swim-exercise bouts with 5 minute rest intervals) differed from the protocols for old 
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rats (8–9 × 10–20 minute swim-exercise bouts with 10 minute rest intervals) and therefore 

the different exercise protocols between studies cannot be excluded.

Although acute exercise has impressive effects on insulin sensitivity, the regular and 

repeated performance of exercise for multiple days, weeks or months has additional effects. 

Insulin-stimulated glucose disposal was determined in a group of initially untrained young 

men under 3 conditions: without exercise, 48 hours after 1 exercise bout, and 48 hours after 

the final session of a 6 week training period (Perseghin et al., 1996). One exercise bout 

increased subsequent insulin-mediated glucose disposal above resting values, and there 

appeared to be a further increase after 6 weeks of training, although the difference between 

acute and chronic exercise was not statistically tested. Similar to the results for young 

humans, various modes of chronic exercise (cycling, running, walking, resistance exercise) 

can lead to subsequently elevated insulin sensitivity in older humans (60–87 years–old) 

(Consitt et al., 2013; Evans et al., 2005; Prior et al., 2015). These studies did not include 

comparison of the acute versus chronic exercise effects on insulin sensitivity in older people.

A hallmark adaptation of chronic exercise by young humans and rats is increased muscle 

GLUT4 abundance (Holloszy et al., 1998; Richter and Hargreaves, 2013). Chronic exercise 

training can also elevate GLUT4 abundance in muscles of older (∼60–65 years-old) humans 

(Bienso et al., 2015; Cox et al., 1999; Hughes et al., 1993; Prior et al., 2015). Middle-aged 

(16 months-old) rats (Kern et al., 1992) and older (24 months-old) mice (Willis et al., 1998) 

had increased muscle GLUT4 abundance after chronic exercise. However, other studies did 

not detect a training-induced increase in muscle GLUT4 of 25–28 months-old rats (Gulve et 

al., 1993; Han et al., 1998; Kern et al., 1992). Insulin-stimulated glucose uptake in old rats 

was elevated by training despite unaltered GLUT4 abundance (Han et al., 1998), suggesting 

a role for other mechanisms.

There is evidence supporting several other possible mechanisms by exercise training 

enhances glucose metabolism in older people. Endurance training by 69 years-old women 

and men produced increased glucose disposal concomitant with elevated TBC1D4 Ser588 

and Thr642 phosphorylation in insulin-stimulated muscle (Consitt et al., 2013). Chronic 

strength training also elevated glucose disposal in older women and men together with 

greater TBC1D4 phosphorylation on Thr642, but not Ser588. Other adaptations in muscle 

after endurance training by older people (∼60–80 years-old) include increased hexokinase II 

and glycogen synthase protein abundance (Bienso et al., 2015), greater glycogen 

concentration (Hughes et al., 1993) and elevated capillarization (Prior et al., 2015). Chronic 

resistance exercise can increase muscle mass, but the magnitude of these changes is 

relatively modest with the exercise protocols commonly used by older people (Marcus et al., 

2013). Accordingly, changes in muscle metabolic quality, potentially together with 

adaptations in other tissues (e.g., adipose and vascular tissues) are likely more important for 

training-induced improvement in insulin sensitivity. Clearly, older people retain the capacity 

for exercise-induced modifications in the metabolic qualities of their muscle, although the 

robustness of the response may well decline with advancing age, much like many other 

exercise-induced adaptations.
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Mitochondrial Involvement and Impact in Aging Skeletal Muscle

Mitochondria play a pivotal role in skeletal muscle homeostasis and bioenergetics. 

Accordingly, age-related changes in mitochondria will have a crucial impact on skeletal 

muscle mass and function. Skeletal muscle mitochondria are highly adaptable and can be 

increased or decreased in content according to the metabolic demands of the tissue. As such, 

the level of habitual physical activity is a crucial determinant of skeletal muscle 

mitochondrial content irrespective of age. Furthermore, mitochondrial morphology is 

remarkably dynamic, and changes in response to various conditions within the cell. Finally, 

mitochondria are continually turned over to maintain their fidelity, and thus mitochondrial 

content and morphology also need to be considered in context with mitochondrial function. 

In the following sections, current knowledge concerning mitochondrial content, morphology, 

and function, and their plasticity across the continuum of aging is reviewed. Note that the 

issues discussed herein cannot represent all of the seminal works in the area and several 

recent reviews provide a more in-depth treatment of this topic (Carter et al., 2015; Dai et al., 

2014).

Mitochondrial Content and Morphology

One of the most inconsistent findings in the literature concerns the impact of ageing on 

skeletal muscle mitochondrial content, with some studies suggesting no change (Gouspillou 

et al., 2014b; Konopka et al., 2014) and others a decrease (Chabi et al., 2008; Conley et al., 

2000; Hebert et al., 2015). This controversy is due in part to the many different measures 

used to represent mitochondrial content, including enzyme activities, mitochondrial protein 

levels, mitochondrial DNA levels (mtDNA), and mitochondrial volume density. In mouse 

skeletal muscle, individual proteins within a mitochondrion appear to have distinct turnover 

rates (Karunadharma et al., 2015), suggesting that there is strong potential for altered protein 

stoichiometries in aging mitochondria, a factor that likely contributes to the disparities noted 

above between different markers of mitochondrial content. Notably, even within a given 

study comparing the same indices of mitochondrial content, individual muscles can exhibit 

different changes with aging in rats (Lyons et al., 2006), such that some muscles may show 

declines, while others may show increases (Picard et al., 2011a).

Mitochondrial content is dynamically regulated according to the metabolic needs of the 

tissue, and therefore changes in physical activity patterns with aging can also contribute to 

the inconsistencies between studies. Thus, isolating the effects of primary aging on 

mitochondrial content from the effects of the decline in physical activity is a challenge, since 

these are intertwined events (e.g., a decline in mitochondrial content due to primary aging 

can contribute to reduced physical activity levels). Moreover, the changes in mitochondrial 

content may vary at different points along the aging continuum and depend upon fiber type 

(Mathieu-Costello et al., 2005), and they may to some extent be sex-specific based upon 

recent evidence suggesting women are more susceptible to a decline in mitochondrial 

content with aging (Callahan et al., 2014). Although some studies have addressed various 

indices of skeletal muscle mitochondrial content across a broad age range in humans (Short 

et al., 2005), limited data is available in individuals with very advanced age (>75 y). A more 

thorough review of this issue can be found elsewhere (Hepple, 2014).
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The diversity of mitochondrial structure that exists in skeletal muscle (Kuznetsov et al., 

2006; Ogata and Yamasaki, 1997), its dynamic plasticity in response to different myocellular 

conditions (Pham et al., 2012; Romanello et al., 2010; Toyama et al., 2016), and the 

mechanisms responsible for the regulation of this structure (Chan, 2012; Mishra et al., 2014; 

Toyama et al., 2016) are being increasingly understood. In the context of aging muscle 

atrophy, a variety of muscle atrophy conditions (e.g., immobilization, fasting, denervation) 

result in mitochondrial fission, which in turn results in activation of muscle proteolytic 

pathways (Cannavino et al., 2015; Romanello et al., 2010). Whereas one might logically 

hypothesize, therefore, that mitochondria should be more fissioned in aging muscle due to 

their atrophy, the evidence addressing this to date is inconclusive. Some evidence suggests 

mitochondria are more fragmented in aging skeletal muscle (Iqbal et al., 2013), whereas 

other evidence suggests mitochondria are hyper-fused in aging skeletal muscle (Beregi et al., 

1988; Leduc-Gaudet et al., 2015). Part of this disparity likely relates to the heterogeneity of 

fiber affect in aging muscle, particularly in very advanced age when severely atrophied, 

denervated fibers are intermingled with relatively normal-looking fibers (Rowan et al., 

2012). For example, since denervation is one of the stimuli that induce mitochondrial fission 

in muscle (Iqbal et al., 2013; Romanello et al., 2010), studies examining muscles in 

advanced age are more likely to sample regions from denervated fibers and are thus more 

likely to observe mitochondria with highly fissioned morphology. This notion is consistent 

with the fact that the studies finding more fused mitochondria with aging examined younger 

animals (Beregi et al., 1988; Leduc-Gaudet et al., 2015) than the study reporting more 

fissioned mitochondria (Iqbal et al., 2013). Whereas the appearance of fissioned 

mitochondria in advanced age is reasonable given the impact of denervation, the tendency 

towards hyper-fused mitochondria in aging muscle at younger ages is consistent with 

observations of so-called giant mitochondria in aging heart (Coleman et al., 1987), a finding 

which has been ascribed to impaired autophagy (Navratil et al., 2008). This latter idea is 

consistent with recent evidence for impaired mitochondrial quality control mechanisms 

(Joseph et al., 2013) and a reduction in the mitochondrial-targeted ubiquitin ligase, Parkin, 

in aging human muscle (Drummond et al., 2014; Gouspillou et al., 2014b).

Mitochondrial Function

Mitochondria serve a wide variety of roles in skeletal muscle including synthesis of ATP, 

reactive oxygen species (ROS) signaling, and regulation of intrinsic pathways of apoptosis. 

As was the case for mitochondrial content, a wide variety of approaches have been taken in 

evaluating changes in mitochondrial function with ageing. These include in vivo measures of 

phosphocreatine synthesis (Gouspillou et al., 2014a; Kent-Braun and Ng, 2000), in vitro 
measures of biochemical activities of various enzymes in muscle homogenates (Houmard et 

al., 1998) and various aspects of function in mechanically isolated mitochondria (Chabi et 

al., 2008; Gouspillou et al., 2010; Picard et al., 2010), and finally ex vivo measures of 

various aspects of function in saponin-permeabilized myofibers (Gouspillou et al., 2014b; 

Hutter et al., 2007; Tonkonogi et al., 2003). Measurements in isolated organelles or saponin-

permeabilized myofibers provide for a more in-depth assessment of mitochondrial functions, 

including respiration/bioenergetics, ROS signaling, and sensitivity to permeability transition, 

than the other approaches (Picard et al., 2011b).
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While mitochondrial respiratory capacity may decline with aging in physically inactive 

humans (Conley et al., 2000) or rodents (Chabi et al., 2008), it is maintained in physically 

active humans (65–75 years-old) at least up to old age (75 y) (Gouspillou et al., 2014b; 

Lanza et al., 2005). However this issue has not yet been examined in very advanced age (>75 

y), where the impact of muscle aging is more clinically meaningful. Conversely, numerous 

studies find reduced coupling (e.g., reduced ratio of respiration under non-phosphorylating 

[state 2 or state 4 respiration] versus maximally phosphorylating conditions [state 3 

conditions]) (Amara et al., 2007; Gouspillou et al., 2014b; Marcinek et al., 2005; Picard et 

al., 2010). Whether this represents an adaptive response to reduce ROS (Amara et al., 2007; 

Speakman et al., 2004) or dysfunction that results in a less efficient harnessing of the 

potential energy created by proton pumping of the electron transport system, remains 

inconclusive.

Mitochondrial ROS are increasingly being understood in terms of their importance to 

cellular signaling and in promoting beneficial cellular adaptations (Lapointe and Hekimi, 

2008; Schaar et al., 2015). Conversely, conceptually it seems logical to suggest that elevated 

mitochondrial ROS would at some point become deleterious, and certainly there has been 

suggestion that oxidative stress promotes muscle atrophy with aging (Jang et al., 2010). 

However, despite many years of interrogating this issue, the role of mitochondrial ROS in 

aging muscle remains a point of contention. Changes in mitochondrial ROS generation in 

aging skeletal muscle are remarkably variable between studies, although the majority report 

an increase with aging in both humans and animal models (Capel et al., 2004; Capel et al., 

2005; Mansouri et al., 2006). In contrast to this view however, a high reliance on isolated 

organelles, a procedure that potentiates muscle mitochondrial ROS (Picard et al., 2011c) and 

which exaggerates the impact of aging (Picard et al., 2010), has skewed perception of the 

changes in mitochondrial ROS in aging skeletal muscle. Indeed, across four muscles of 

contrasting fiber type and atrophy susceptibility the increase in mitochondrial ROS in aging 

skeletal muscle, even in advanced age, is quite small when using methods that preserve 

mitochondrial structure (Picard et al., 2011a). Furthermore, in physically active humans 

mitochondrial ROS is not increased despite significant muscle atrophy (Gouspillou et al., 

2014b), suggesting the role of mitochondrial ROS in driving muscle atrophy with aging has 

likely been over-estimated. Consistent with this view, mice that lack superoxide dismutase 2 

(the primary mitochondrial isoform) do not exhibit a muscle atrophy phenotype (Lustgarten 

et al., 2011), even if the SOD2 knockout is restricted to skeletal muscle (Kuwahara et al., 

2010), but do exhibit evidence of contractile dysfunction. Thus, an increase in mitochondrial 

ROS in aging skeletal muscle could contribute to impaired contractility, but it is unlikely to 

be the proximate cause of muscle atrophy. The fact that no increase in mitochondrial ROS is 

seen in physically active elderly individuals (Gouspillou et al., 2014b), whereas muscle 

immobilization induces an increase in mitochondrial ROS in otherwise healthy subjects 

(Gram et al., 2015), suggests that physical activity is likely an effective way of limiting an 

increase in mitochondrial ROS in aging skeletal muscle.

Besides ATP production and ROS signaling, mitochondria are also key regulators of the 

intrinsic pathway of apoptosis. Specifically, under stressful conditions such as high Ca2+ 

load, mitochondria can undergo a process called permeability transition wherein a pore 

across the inner mitochondrial membrane is formed (the so-called mitochondrial 
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permeability transition pore; mPTP) that permits the passage of proteins up to 1500 Da in 

size (Bernardi et al., 2015). Notably, there are several mitochondrial-localized proteins that, 

once released through mPTP opening, can induce apoptosis, including endonuclease G 

(EndoG), apoptosis inducing factor (AIF), and others (Marzetti et al., 2010). In this respect, 

and in marked contrast to the highly variable changes in respiration and ROS in aging 

skeletal muscle reviewed above, an increased susceptibility to mPTP opening is consistently 

reported in aging rodents (Chabi et al., 2008; Picard et al., 2011a), but it appears it cannot be 

prevented through maintaining a physically active lifestyle in humans (Gouspillou et al., 

2014b). The functional impact of an increased sensitivity of mitochondria to mPTP opening 

in aging skeletal muscle remains unclear, but it is noteworthy that a sensitization to mPTP 

opening occurs only in aging muscles that undergo atrophy (Hepple, 2014).

Mitochondrial Plasticity in Aging Skeletal Muscle

In view of the potent role that physical activity can play in limiting mitochondrial changes in 

aging skeletal muscle, and the well-established role that exercise training plays in inducing 

mitochondrial biogenesis, the ability to increase or maintain organelle biosynthesis with 

aging is important to consider. An early seminal study from Holloszy’s group provides 

evidence that the activity of several mitochondrial enzymes is maintained in response to 

nearly life-long swim training in aging rats (Young et al., 1983). However, at more advanced 

and thus clinically relevant ages, exercise responsiveness declines as reviewed below.

Key to understanding the declining mitochondrial plasticity in advanced age is the signal 

transducing machinery that regulates mitochondrial biogenesis. Although many over-lapping 

pathways are now implicated in mitochondrial biogenesis, a key player is peroxisome 

proliferator activated receptor gamma 1 (PGC-1), particularly the alpha isoform (PGC-1α). 

Upstream of PGC-1α, adenosine monophosphate kinase (AMPK) (Irrcher et al., 2008) and 

sirtuin 1 (Sirt1) (Menzies et al., 2013), have emerged as key elements determining the 

induction of PGC-1α in response to muscle contractile activity. In this respect, whereas 

exercise training and chronic muscle contractile activity with electrical stimulation are both 

potent inducers of mitochondrial biogenesis and muscle aerobic performance in aging 

muscle (Betik et al., 2008; Cartee and Farrar, 1987; Skorjanc et al., 2001), in advanced age 

the response becomes blunted (Betik et al., 2009; Chekanov et al., 2000; Ljubicic and Hood, 

2009a). We have noted a robust increase in muscle mitochondrial enzyme activities in old rat 

muscle following 8 weeks of endurance-focused treadmill exercise training (Betik et al., 

2008), however, continuing the exercise training for a further 4 months until very old age 

resulted in no elevation of mitochondrial enzymes or aerobic contractile performance in the 

muscles from the exercise trained versus sedentary animals (Betik et al., 2009). The 

implications of this latter result are that following the initial benefit, the muscles of very old 

animals undergoing exercise training exhibited an accelerated decline in muscle aerobic 

capacity relative to the sedentary animals (since the trained animals gained an advantage that 

was lost in very advanced age). The causes of this remarkably diminished plasticity of 

skeletal muscle mitochondria in advanced age likely relate to a failure to upregulate PGC-1α 
(Betik et al., 2009) and other signaling pathways necessary for inducing an adaptive 

response (Ljubicic and Hood, 2009a, b). Examining whether this blunted response can be 
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ascribed to gene silencing subsequent to changes in DNA methylation and acetylation status 

(or other epigenetic changes) would seem a logical next step.

Aging Muscle Atrophy

For the past three decades, there has been a flurry of research into the etiology of aging 

muscle atrophy, its functional sequelae, and treatment efforts. The research has grown 

concurrent with (1) a steep rise in the number of adults over 65 years-old and an exponential 

increase in the number of octagenarians, and (2) epidemiological findings pointing toward 

loss of muscle mass as a major contributor to functional decline, disability, and dependence 

(Janssen et al., 2004a; Janssen et al., 2002). However, the mechanistic underpinnings remain 

poorly understood and at best aging muscle atrophy can be described as a multifactorial 

degenerative process impacted by cellular aging biology (primary aging) and environmental/

behavioral factors along with disease (secondary aging). Among the potential mechanisms, 

oxidative stress has received significant attention (Fulle et al., 2004; Marzetti et al., 2013), 

and there may be an emerging role for local muscle inflammation susceptibility with aging 

that also manifests in human primary myoblasts and myotubes in vitro (Merritt et al., 2013).

At its root, aging muscle atrophy results from atrophy of type II myofibers (Merritt et al., 

2013) and loss of both type I and type II myofibers (Figure 3). These were seminal findings 

in the early studies of aging human limb muscles (Lexell et al., 1986; Lexell et al., 1983). 

Decreased myofiber number is presumed to result from alpha motor neuron death or 

peripheral denervation at the neuromuscular junction. Whether central or peripheral 

denervation in origin (or both), one indicator of this neurodegenerative process is an increase 

in myofiber type grouping often noted in aging human muscle (Lexell, 1995; Lexell et al., 

1986), as some denervated myofibers survive via reinnervation by a sprouting axon of a 

different motor unit type (e.g. type I neuron innervating denervated type II myofibers). 

Whether evaluated at the myofiber level histologically, or by gross measures such as dual-

energy x-ray absorptiometry to assess regional limb lean mass (e.g., upper limbs, lower 

limbs, thighs), age group differences are typically noted when young adults (e.g., third to 

fourth decade) are compared to older adults in the sixth or seventh decade and beyond. The 

rate of whole muscle atrophy appears to be similar in women and men; although, the amount 

attributable to type II myofiber atrophy vs. myofiber loss may differ by gender, as type II 

atrophy among older women appears to exceed that of age-matched men, particularly among 

the type IIx myofiber population (Kim et al., 2005; Kosek et al., 2006).

In addition to muscle atrophy, a hallmark of aging is an obligatory decline in neuromuscular 

performance. Loss of strength appears to be greater in lower than upper limbs (Landers et 

al., 2001), and a decline in muscle power far exceeds that of strength (Petrella et al., 2005; 

Young and Skelton, 1994) and appears to occur more precipitously (Reid and Fielding, 

2011). Specific strength (force per unit muscle) clearly decreases with advancing age 

(Goodpaster et al., 2006; Petrella et al., 2005), indicating that in addition to muscle atrophy, 

the decline in strength is influenced by factors that reduce muscle quality, such as muscle 

lipid content (Goodpaster et al., 2001). Furthermore, the remarkable loss of muscle power 

even after adjusting for muscle mass (Petrella et al., 2005), suggests age-related changes in 
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excitation-contraction coupling and/or other subcellular mechanisms responsible for rapid 

force generation.

Impact of Exercise Countermeasures for Muscle Atrophy

Favorable neuromuscular adaptations have been observed in older adults undergoing 

resistance training, including muscle and myofiber hypertrophy and remarkable gains in 

strength and power (Figure 3). Progressive resistance exercise training is the most widely 

accepted strategy to promote muscle regrowth in atrophied older adults, with more proven 

efficacy than pharmacologic or nutritional alternatives. However, the hypertrophic adaptation 

to progressive resistance exercise training varies widely among individuals (Bamman et al., 

2007) and is generally blunted in older adults (e.g., 60–75 years-old) compared to young 

(Bickel et al., 2011). The oldest old (e.g., octagenarians) experience very limited 

hypertrophy and little to no improvement in single myofiber function (Raue et al., 2009; 

Slivka et al., 2008). This blunted response is not due to a difference in the ability to perform 

resistance training at the intensity effective for muscle hypertrophy, as we have prescribed 

standardized doses and reported nearly identical exercise training intensities among 

participants ranging from non-responders to extreme responders (Bamman et al., 2007).

To more fully appreciate the benefits and limitations of attempts to restore lost muscle mass 

in older adults, it is noteworthy that adult myofibers are multinucleated, terminally 

differentiated cells. Therefore, the only option is to induce hypertrophy of existing 

myofibers via mechanisms leading to cellular hypertrophy (Adams and Bamman, 2012), 

which will limit overall muscle hypertrophy in an aging muscle that may have lost 30–50% 

of its original myofibers (Lexell et al., 1988). The two primary mechanisms for myofiber 

hypertrophy in humans involve (1) accretion of protein in the various cellular protein 

compartments (e.g., myofibrillar pool) via mechanosensitive signaling pathways that drive 

translation, and (2) the activation and recruitment of resident muscle stem (satellite) cells 

that differentiate to fusion competent myoblasts – each one donating its nucleus to a growing 

myofiber via a fusion process. Both processes are important, as the effectiveness of each 

appears prognostic for the magnitude of myofiber hypertrophy achieved (Mayhew et al., 

2011; Petrella et al., 2008). In fact, in addition to aging differences in resistance exercise-

induced translational efficiency (i.e. translation initiation signaling) (Fry et al., 2011), recent 

evidence suggests translational capacity (i.e. de novo ribosome biogenesis) may be a key 

determinant of human myofiber hypertrophy potential (Figueiredo et al., 2015), as noted in 

older adults both in a progressive resistance exercise training model and in myotubes in vitro 
(Stec et al., 2016). A blunted induction of ribosome biogenesis among old vs. younger adults 

in response to each resistance exercise bout (Stec et al., 2015) may be one mechanism 

responsible for the lesser progressive resistance exercise training hypertrophy commonly 

seen with advancing age. Thus, ribosome biogenesis may be central to both mechanisms – 

that is, a myofiber undergoing substantial cytoplasmic volume expansion (i.e. hypertrophy) 

via net protein accretion may be in need of myonuclear addition to provide more rDNA 

template to facilitate ribosome biogenesis. Aging myofibers deficient in either mechanism 

may suffer limited regrowth potential; whereas aging myofibers with a viable stem cell pool 

and mechanosensitive translational signaling would be expected to benefit greatly from 

progressive resistance exercise training.
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Future Directions

Physical inactivity has profound deleterious effects on health (Booth et al., 2011). 

Conversely, the decline in the age-related decrease in maximal oxygen consumption is 

markedly reduced (up to 50%) in individuals who engage in long-term vigorous endurance 

exercise training as compared to sedentary people (Rogers et al., 1990a). Fortunately, even 

quite late in life, an increase in physical activity is richly rewarded with health benefits. The 

Diabetes Prevention Program (DPP) demonstrated that for people 25–85 years-old with a 

high risk for developing type 2 diabetes, the oldest group (60–85 years-old) exceeded the 

younger group for achieving both the 7% weight loss and 150 minute/week physical activity 

goals, and the oldest group was most successful for preventing diabetes (Diabetes Prevention 

Program Research et al., 2006; Wing et al., 2004). Because the DPP combined diet 

modifications with increased physical activity, these results were not solely attributable to 

exercise. However, for women and men 60–85 years-old, increasing physical activity alone 

can improve insulin sensitivity and glucose metabolism (Evans et al., 2005; Kirwan et al., 

1993; Short et al., 2003), as well as mitigate age-related muscle loss (Hunter et al., 2004). 

There are currently no interventions with a higher therapeutic index than either physical 

exercise and/or diet manipulation to reduce the risk of virtually all chronic diseases 

simultaneously, with little or no adverse side effects. Consequently future research should be 

directed towards deciphering optimal exercise and nutrition programs to achieve healthy 

aging.

Future efforts should be focused on mechanisms by which different modes of exercise 

enhance whole body metabolism and mitigate declines in strength across the aging 

population. To achieve compliance, it may be more realistic to incorporate short bouts of 

exercise to be undertaken throughout the day that are aligned with activities of daily living. 

For example, in insulin resistant men and women age 18–55 years old (48±6 years), 

undertaking an “exercise snacking” routine of six 1 min exercise bouts, consisting of 

walking at 90% maximal heart rate with 1 min recovery (slow walking) between each, 30 

min before breakfast, lunch, and dinner, markedly improved glycemic control compared 

with a single 30 min bout of moderate continuous exercise undertaken before the evening 

meal (Francois et al., 2014). Similar improvements in glucose homeostasis were achieved 

when the exercise bouts were alternated between aerobic-based exercise and resistance-

based exercise using resistance bands (as many reps as possible within 60 s) (Francois et al., 

2014). These findings suggest that the timing and intensity of exercise may be important for 

optimizing glucose control. Further exercise training studies of different endurance and 

strength modalities that are conducted over weeks or months are warranted, particularly in 

the elderly, to evaluate the effects on insulin sensitivity, long-term blood glucose control, and 

muscle strength. This type of program is relatively easy to monitor and can be performed in 

the home setting and in conjunction with activities of daily living, making compliance easier 

to achieve.

Despite the compelling evidence that exercise is medicine, several questions remain. From a 

mechanistic perspective, greater insight into the specific cellular and molecular events 

during and after exercise that account for the enhanced insulin sensitivity and preservation of 

muscle mass with aging is required. Such efforts may advance the discovery of unique 
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molecular biometrics to identify individuals with early onset of skeletal muscle insulin 

resistance, mitochondrial dysfunction, or aging-induced muscle atrophy. Stratification of 

individuals based on their response to different endurance- or resistance-based exercise 

training programs in terms of enhanced insulin sensitivity and mitochondrial function, as 

well as the hypertrophic adaptation of skeletal muscle, may also identify people at risk for 

metabolic disease and secondary aging. In such cases, specialized exercise prescription may 

be beneficial to ward off secondary aging.

Integrated approaches to identify molecular signatures of skeletal muscle and the adaptive 

response to diverse modes of exercise training programs (both endurance-based and 

resistance-based) across the spectrum of aging may be valuable to stratify different 

response-patterns for personalized treatment. For example, biomarkers derived from a 

composite of an individual’s genomic, transcriptomic/proteomic, and metabolomic profile, 

compared against physiological measures of insulin sensitivity and functional muscle mass/

strength, at rest or after exercise training, may identify people at risk for accelerated muscle 

wasting, diminished work/exercise capacity or rapid progression into type 2 diabetes. The 

future will advance research into how these parameters can be altered to promote healthy 

aging. Several efforts are now underway to identify and validate molecular signatures of 

skeletal muscle that are associated with aging-related disorders including overt type 2 

diabetes and the adaptive response to exercise training in humans using multiple omics-

bases approaches (Neufer et al., 2015; Zierath and Wallberg-Henriksson, 2015). Initiatives to 

uncover individual variability that will influence risk assessment, diagnostic categories, and 

therapeutic strategies are ongoing, heralding in a new era of precision medicine (Collins and 

Varmus, 2015). However, much distance needs to be covered before this personalized 

approach can be translated into targeted clinical care. Future efforts to integrate 

physiological and molecular data from clinical cohorts, cell-based systems, and animal 

models, as well as measures of behavioral, physiological and environmental factors will be 

required before the spectrum of primary and secondary age-related changes on human 

physiology are fully realized.

From a translational perspective, clinical insight into key aspects of specific exercise 

protocols designed to improve insulin sensitivity, mitochondrial function, muscle mass and 

overall physical capacity are needed. Moreover, it is important to consider how such 

protocols can be implemented to achieve optimal benefits while accommodating the physical 

limitations of very old and frail individuals to achieve “healthy aging”. Accordingly, the 

interactions between lifestyle interventions (nutrition and physical activity) in treating, and 

managing insulin resistance, obesity and aging muscle atrophy are important to determine. 

By implementing strategies to maintain insulin sensitivity and mitigate aging muscle atrophy 

before the onset of frailty to maintain glucose homeostasis and physical function, many of 

the deleterious effects of unhealthy ageing can be markedly attenuated. Such efforts have the 

potential to dramatically reduce the associated health care costs of unhealthy aging. Given 

the evidence that modifiable lifestyle factors have the potential to limit secondary aging, the 

proverbial “fountain of youth” may be just down the street at your nearest neighborhood 

gym.
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Figure 1. Exercise Is a Potent Countermeasure against Secondary Aging
Endurance exercise enhances muscle insulin sensitivity in older individuals and prevents 

declines in mitochondrial respiratory capacity with aging. Resistance exercise induces 

remarkable gains in strength and power in older adults.
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Figure 2. Age-Related Changes in Body Composition and Insulin Sensitivity in Older Individuals 
Are Influenced by Physical Activity and Exercise Training
Advancing age is typically characterized by altered body composition (increased abdominal 

and ectopic fat accumulation and attenuated mass and metabolic quality of skeletal muscle) 

together with reduced physical activity, leading to insulin resistance in skeletal muscle. 

These age-related changes can be exacerbated by lifestyle behaviors that produce a major 

imbalance between energy expenditure and energy intake, leading to further dysregulation of 

glucose metabolism and increasing the likelihood of type 2 diabetes.
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Figure 3. Conceptual Model of Aging Muscle Atrophy and the Impact of Progressive Resistance 
Exercise Training
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