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Abstract

Cannabisol (1), a unique dimer of Δ9-tetrahydrocannabinol (Δ9-THC) with a methylene bridge, 

was isolated from Cannabis sativa. This is the first example of a C-bridged dimeric cannabinoid. 

The structure of 1 was unambiguously deduced by HRESIMS, GCMS, and NMR spectroscopy. A 

plausible biogenesis of 1 is described.
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Cannabis, the only genus in the plant family Cannabaceae, consists of only one highly 

variable species: Cannabis sativa L. Other previously reported species, for example C. indica 
Lam. and C. ruderalis Janisch, are now recognized as varieties of C. sativa L. C. sativa L. is 

not only one of the oldest medicinal plants but also the most widely used illicit drug in the 

world. More than 535 constituents have been isolated and/or identified from C. sativa L.,1 

with Δ9-THC being recognized as the main biologically active component.2 The chemotypes 

of C. sativa L. can be divided into drug type (marijuana), intermediate type (the source for 

hashish), and fiber type (hemp), with the Δ9-THC content ranging from 1 to 20%, 0.3 to 

1.0%, and <0.3%, respectively.3,4 The availability of high potency marijuana on the illicit 

market with unprecedented Δ9-THC concentrations (>20% by dry weight)5 prompted our 

phytochemical investigation of this high potency variety. Herein we describe the isolation 

and structure elucidation of a dimeric cannabinoid, named cannabisol (1) from a high 

potency variety of C. sativa L., seized in the USA, as well as its possible biogenetic origin. 
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Thirty six potency monitoring plant samples with high CBG content (1.4–3.8%) were 

combined (630 g) and sequentially extracted with hexanes, ethyl acetate, and methanol at 

room temperature. The extracts were evaporated under reduced pressure to afford hexanes 

(100.7 g), ethyl acetate (5.4 g), and methanol (16.0 g) extracts. The hexanes extract (100.7 g) 

was subjected to vacuum liquid chromatography (VLC) on flash silica gel eluted with 

hexanes, EtOAc, and MeOH gradients. Fractions eluted with hexanes were combined 

according to their TLC profiles to afford two fractions: F1 (33 g) and F2 (44 g). The extract 

obtained after fractionation of F1 over flash silica gel (hexanes) and pooling of fractions 

with Rf-values higher than that of Δ9-THC according to TLC (hexanes/EtOAc, 9:1), was 

purified by flash silica gel column chromatography (hexanes/CHCl3, 1:1), yielding 1 (10 

mg).

Cannabisol (1),6 was obtained as a brown solid and displayed a protonated molecular ion [M

+H]+ at m/z 641.4528 (calcd 641.4570 for C43H60O4 + H) in the positive mode HRESIMS, 

corresponding to a molecular formula of C43H60O4. The 13C NMR spectrum, however, 

displayed only 22 resonances, suggesting the possibility of a dimeric structure (Table 1). A 

relatively low intensity sp3 methylene resonance at δC 24.2 (C-2a) was observed in the 

DEPT-135 and 13C NMR spectra, and showed HMQC correlation with a proton singlet at δH 

3.95 (2H, H-2a) in the 1H NMR spectrum. Rest of the NMR spectroscopic data were close to 

those of Δ9-THC7 except for the resonance of one of the aromatic methine in Δ9-THC that 

was replaced with a quaternary carbon in 1. Due to symmetric nature of the molecule, the 

NMR data of only one unit are discussed.

The DEPT NMR spectrum resolved the 22 carbon resonances as four methyl, seven 

methylene, four methine, and seven quaternary carbons. The 13C and 1H NMR spectra of 1 
displayed resonances for three tertiary methyls [δC 19.4/δH 1.05 (s), C-12; δC 27.6/δH 1.39 

(s), C-13; δC 23.5/δH 1.60 (s), C-11)], one primary methyl [δC 14.2/δH 0.88 (t, J = 6.6 Hz), 

C-5′], one aromatic methine [δC 111.6/δH 6.35 (s), C-4], and one olefinic methine [δC 

124.3/δH 6.11 (s), C-10]. Furthermore, the resonances for one hydroxyl group [δH 5.61 (s)], 

two aliphatic methines [δC 46.1/δH 1.66 (m), C-6a; δC 34.0/δH 3.11 (d, J = 10.8 Hz), 

C-10a], and seven aliphatic methylenes [δC 22.7/δH 1.34 (m), C-4′; δC 32.0/δH 1.34 (m), 

C-3′; δC 30.5/δH 1.60 (m), C-2′; δC 34.2/δH 2.64 (m), C-1′; δC 25.2/δH 1.89 (m), C-7; δC 

31.3/δH 2.12 (m), C-8; δC 24.2/δH 3.95 (s), C-2a] were observed. The 13C NMR spectrum, 

in association with the DEPT-135 spectrum, displayed six aromatic and/or olefinic 
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quaternary carbons (δC 111.1, 112.4, 134.1, 141.0, 154.0, 155.2) and one oxyquaternary 

aliphatic carbon (δC 77.4). Analysis of the 1H–1H COSY, HMQC, and HMBC spectra led to 

partial structures A–F (Fig. 1).

The following HMBC correlations (Fig. 2) located partial structure A at C-3 [δH/C 2.64 

(H-1′)/112.4, 141.0, 111.6 (C-2, 3, 4); δH/C 1.60 (H-2′)/141.0 (C-3)], B and C at C-6 [δH/C 

1.66 (H-6a)/77.4, 19.4, 27.6 (C-6, 12, 13); δH/C 1.39, 1.05 (H-12, 13)/77.4, 46.1 (C-6, 6a)], 

B at C-10b [δH/C 6.11 (H-10)/111.1 (C-10b)], and D at C-9 [δH/C 1.60 (H-11)/31.3, 134.1, 

124.3 (C-8, 9, 10]. Further correlations revealed the position of the C-9/C-10 double bond 

[δH/C 1.60 (H-11)/134.5, 124.3 (C-9, 10); δH/C 6.11 (H-10)/31.3, 124.3, 23.5 (C-8, 9, 11)], 

hydroxyl at C-1 [δH/C 5.61(OH)/155.2, 112.4, 111.1 (C-1, 2, 10b)], and an aromatic 

methine at C-4 [δH/C 6.35 (H-4)/112.4, 154.0, 111.1, 34.2 (C-2, 4a, 10b, 1′)]. The vicinal 

methine resonances at δH 3.11 (d, J = 10.8 Hz, H-10a) and 1.66 (m, H-6a) displayed a 

coupling constant of J10a–6a = 10.8 Hz, indicating a trans-configuration, and reflecting Δ9-

THC units with a quaternary carbon at C-2 (δC 112.4).

The absence of correlations in the 1H–1H COSY spectrum for CH2-2a indicated an isolated 

moiety (partial structure E in Fig. 1), while the HMBC correlations (Fig. 2) of 2H–2a (δH 

3.95) with C-1/C-1″ (δC 155.2), C-2/C-2″ (δC 112.4), and C-3/C-3″ (δC 141.0) revealed 

the position of C-2a bridging two Δ9-THC units at C-2/2″. The associations of δH 3.95 

(2H-2a) in the ROESY spectrum (Fig. 3) with δH 5.61 (OH/OH″) and δH 2.64 (2H-1′/

2H-1‴) further confirmed the sandwiched position of methylene C-2a. GC–MS analysis8 of 

1 displayed two chromatographic peaks with m/z 314 and 328 molecular ions [M]+, 

indicating Δ9-THC and 2-methyl-Δ9-THC, respectively.

A plausible biogenetic pathway for the formation of 1 includes initial decarboxylation of 

acid functionality of Δ9-THCA followed by nucleophilic attack of resulting anion on the 

electrophilic carbonyl carbon of the coenzyme A ester of Δ9-THCA to form 1a, which 

enzymatically reduced to the methylene bridge between the two Δ9-THC units (Fig. 4).
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Figure 1. 
Partial structures of 1.
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Figure 2. 
HMBC (→) and COSY (–) correlations of 1.
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Figure 3. 
Computer generated lowest energy three-dimensional diagram and selected ROESY 

correlations of 1.
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Figure 4. 
Proposed biogenetic pathway for 1.
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Table 1

1H and 13C NMR spectroscopic data for cannabisol (1) (400 MHz, δ in ppm, J in Hz, CDCl3)

Carbon δC δH (mult, J)

1/1″ 155.2 –

2/2″ 112.4 –

3/3″ 141.0 –

4/4″ 111.6 6.35 (s)

4a/4a″ 154.0 –

6/6″   77.4 –

6a/6a″   46.1 1.66 (m)

7/7″   25.2 1.89 (m)

8/8″   31.3 2.12 (m)

9/9″ 134.1 –

10/10″ 124.3 6.11 (s)

10a/10a″   34.0 3.11 (d, 10.8)

10b/10b″ 111.1 –

11/11″   23.5 1.60 (s)

12/12″   19.4 1.05 (s)

13/13″   27.6 1.39 (s)

1′/1″   34.2 2.64 (m)

2′/2″   30.5 1.66 (m)

3′/3″   32.0 1.34 (m)

4′/4″   22.7 1.34 (m)

5′/5″   14.2 0.88 (t, 6.6)

2a   24.2 3.95 (s)

OH – 5.61 (s)
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