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Abstract
Despite substantial premarket efforts, a significant portion of approved drugs has been

withdrawn from the market for safety reasons. The deleterious impact of nonsynonymous

substitutions predicted by the SIFT algorithm on structure and function of drug-related pro-

teins was evaluated for 2504 personal genomes. Both withdrawn (n = 154) and precaution-

ary (Beers criteria (n = 90), and US FDA pharmacogenomic biomarkers (n = 96)) drugs

showed significantly lower genomic deleteriousness scores (P < 0.001) compared to others

(n = 752). Furthermore, the rates of drug withdrawals and precautions correlated signifi-

cantly with the deleteriousness scores of the drugs (P < 0.01); this trend was confirmed for

all drugs included in the withdrawal and precaution lists by the United Nations, European

Medicines Agency, DrugBank, Beers criteria, and US FDA. Our findings suggest that the

person-to-person genome sequence variability is a strong independent predictor of drug

withdrawals and precautions. We propose novel measures of drug safety based on per-

sonal genome sequence analysis.

Introduction

The person-to-person variability in drug response is a major challenge for current clinical prac-
tice, drug development, and drug regulation.[1] A drug with proven clinical efficacy in some
patients often fails to work in others and may even cause serious side effects, including death.
[1–3] The incidence of severe adverse drug reactions (ADRs) has been estimated at 6.2–6.7% in
hospitalized patients, and more than 2 million ADR cases occur annually in the United States
(US), including 100,000 deaths.[3,4] As a result, many drugs causing unexpected severe ADRs
are eventually withdrawn from the market.

The impact and cost burden of pharmaceutical market withdrawals are enormous. Of the
548 drugs that were newly approved by the US Food and Drug Administration (FDA) between
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1975 and 1999, 56 (10.2%) received a boxed warning or were eventually withdrawn from the
market.[5,6] Twenty (3.8%) of the 528 drugs approved between 1990 and 2009 in Canada were
withdrawn for safety reasons, and the percentage of drug removals from the market did not
change significantly during that period indicating that there was also no change in the effective-
ness of the drug review system.[7] Despite substantial premarket evaluation efforts, including
long and costly clinical trials, postmarket drug withdrawals are generally not preventable by
the currently available means.[8,9]

The variability of drug responses among different individuals, which makes long-term
predictability of drug performance difficult,may be explained by the genotypic diversity in the
population. Advancements in pharmacogenomics now provides the information about the
effects of genetic variations on individual drug responses,[10] which is currently listed on the
labels of approximately 150 drugs that have been approved by the US FDA.[11] This accumula-
tion of genetic data relevant to drug response is a significant step towards realization of person-
alized medicine. Population-based genome-wide observational research, such as Genome-
Wide Association Studies (GWAS), is currently one of the most powerful tools for investigating
the relationship between genotypic variability and drug responses. However, the current popu-
lation-based approach in an affected-versus-nonaffected case-control setting is inherently lim-
ited because the genotypes, drugs, and their associations are too numerous to be reliably tested
in a foreseeable future. Thus, a large number of commonly used drugs are not examined by
GWAS.

Genome sequencing technology has revealed hundreds of genetic variants that are predic-
tive of loss of function (LoF) in protein-coding genes.[12] The genes related to drug pharmaco-
kinetics and pharmacodynamics (PK/PD) have many LoF variants, and their prevalence shows
significant person-to-person variability.[13] The strikingly large number of deleterious genetic
variants even in apparently healthy subjects and their uneven distribution across individual
genomes may explain the unusual responses to certain drugs in small subpopulations.[14]
Clinical trials are generally conducted in groups that are homogeneous in age, gender, and/or
ethnicity, and the results are then extrapolated to the general population.[15] However, the
extrapolation may not be applicable to certain genetically differentiated subpopulations, which
may not have been significantly represented during phase-III clinical trials. The significant
inclusion of the susceptible subpopulations following premarket approval of a drug by regula-
tory authorities may then result in unexpectedADRs that may ultimately lead to its withdrawal
from the pharmaceutical market. Therefore, we hypothesized that the person-to-person vari-
ability in the distribution of deleterious variants of PK/PD genes in different ethnic groups will
reveal subpopulations predisposed to severe ADRs, which may subsequently result in drug
removal from the market.

Our findings suggest that the person-to-person genetic variability is a strong independent
predictor of drug withdrawals for safety reasons. Therefore, we propose a method to identify
individuals (or subpopulations) with increased vulnerability to side effects from use of specific
drugs and suggest novel measures to ensure drug safety based on personal genome sequence
analysis, which can improve drug development, use, and regulations.

Materials and Methods

Drugs, Genes, and Genomes

The DrugBank database is a bioinformatics resource that provides detailed drug information,
including chemical structure, pharmacologicalmechanism, drug targets, metabolic enzymes,
carriers, and transporters.[16] Among the 7793 drugs in the DrugBank, 5099 drugs had at least
one identified PK/PD genes (accessed September 4, 2015 at http://www.drugbank.ca/), of
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which 1041 drugs having five or more PK/PD genes were included in the following analysis
(Fig 1) by excluding 4058 drugs having less than five PK/PD genes. In our study, we analyzed
the 1041 drugs with five or more PK/PD genes and 2807 PK/PD genes known to be involved in
drug responses via 12,887 drug-gene interactions (Fig 1 and S1 File). We downloaded 2504
publicly available personal genomes from the 1000 Genomes Project, which provided unbiased
data on the genetic variability within 26 ethnic subgroups from Europe, East Asia, South Asia,
Africa, and the Americas [17] (accessed September 4, 2015 at http://www.1000genomes.org/).

Selection of Precautionary and Market-withdrawn Drugs

In order to create a comprehensive list of withdrawn drugs, we performed an in-depth review
of the following publically available resources: 1) the 8th, 10th, 12th, and 14th Issues of the

Fig 1. Inclusion criteria and distribution of withdrawn, precautionary, and other drugs. In total, 1041

drugs from the DrugBank with at least five identified genes involved in drug pharmacokinetics (PK) and

pharmacodynamics (PD) were included in the study. A comprehensive list of withdrawn drugs (n = 154) was

obtained by reviewing three resources: 1) the 8th, 10th, 12th, and 14th Issues of the ‘Consolidated List of

Products Whose Consumption and/or Sale Have Been Banned, Withdrawn, Severely Restricted, or Not

Approved by Governments: Pharmaceuticals’ published by the United Nations [18–21]; 2) applications for

withdrawal from European Medicines Agency (EMA)[22]; and 3) the DrugBank annotations for withdrawals.

Precautionary drugs (n = 165) were identified based on the Beers criteria [23] and US FDA table of

pharmacogenomics biomarkers [11]. The remaining 752 drugs were classified as other drugs.

doi:10.1371/journal.pone.0162135.g001
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‘Consolidated List of ProductsWhose Consumption and/or Sale Have Been Banned,With-
drawn, Severely Restricted, or Not Approved by Governments: Pharmaceuticals’ published by
the United Nations (UN Consolidated Lists) since 2003,[18–21] which are the most compre-
hensive lists of withdrawn and severely restricted drugs produced by at least one of 94 govern-
ments, 2) drug applications withdrawn by the Committee for Medicinal Products for Human
Use (CHMP) at the European Medicines Agency (EMA),[22] and 3) DrugBank annotations
for pharmaceutical market withdrawals.[16] (S2 File)

In our study, a drug was defined as “withdrawn” if it had been removed, banned, or disap-
proved by at least one country for any reason.We manually selected 350 drugs that were with-
drawn by at least one country according to the UN Consolidated Lists [18–21] and 174 drugs
that were withdrawn from January 2006 to September 2015 according to the EMA.[22] Fur-
thermore, the DrugBank annotated 181 drugs as withdrawn. For our analysis, we also selected
“precautionary” drugs by applying the Beers criteria (n = 137)[23] and US FDA pharmacoge-
nomic biomarker information in drug labels (n = 148).[11] The Beers criteria for Potentially
Inappropriate Medication Use in Older Adults, which was initially published in 1991 [24] and
most recently revised by the American Geriatric Society in 2012,[25] is widely used in clinical
care to prevent ADRs in the elderly population. Fig 1 shows that among the 1041 drugs with at
least five PK/PD genes, 289 were classified as withdrawn or precautionary (n = 165). “Other”
drugs were not included in the list of precautionary drugs and also not withdrawn by any of
the available resources (n = 752). Among the 154 withdrawn drugs, 16 and 18 were also redun-
dantly classified as precautionary according to the Beers criteria (n = 90) and US FDA pharma-
cogenomic biomarker information (n = 96), respectively (Fig 1).

Deleteriousness Scores for Genes, Variants, Drugs, and Populations

The genes encoding for drug targets, related metabolic enzymes, and drug transporters affect
an individual’s response to a drug. Furthermore, previous studies have demonstrated that the
impact of nonsynonymous substitutions on protein structure and function can be reliably pre-
dicted by applying straightforward empirical rules using specific algorithms such as SIFT,[26]
PolyPhen-2,[27] MutationAssessor,[28] CADD,[29] and Condel.[30]

For our analysis, we used the SIFT algorithm [26] to compute the variant deleteriousness
score (V) for evaluating the impact of all nonsynonymous coding variants found in the 2,807
PK/PD genes of the 2,504 personal genomes selected from the 1000 Genomes Project. The
lower the SIFT score (range, 0~1) of a variant, the more deleterious the impact of the variant
on the function of the gene. The gene deleteriousness score (G) of a gene was defined as the
geometricmean of the V scores for all nonsynonymous coding variants of the gene to evalu-
ate the overall impact of multiple deleterious variants on the gene (Fig 2). Similarly, the drug
deleteriousness score (D) was defined as the geometricmean of the G scores for all drug-
related PK/PD genes (Fig 2). All PK/PD genes of a drug were equally weighted without con-
sidering pharmacokinetic parameters. The geometricmean or the nth root of the product of
the numbers, where n is the number count, was used to identify the central tendency in the
change of the analyzed parameters. The V, G, and D deleteriousness scores ranged from 0 to
1; low V and G scores indicated severely altered structure and/or function of the correspond-
ing gene, while low D value indicated increased predisposition to unintended drug
responses.

Fig 2 (low panels) shows the distributions of the D scores for each drug (i.e., Dk, Dj, etc.)
among the 2504 personal genomes. The population deleteriousness score (P) represented by
the area under the curve (AUC) for the distribution of the D score for a drug k in a population
can be computed by averaging personalizedD scores of the entire population (Fig 2):
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Statistical Analysis

ANOVA and post-hoc Tukey analysis were used to compare the AUCs among the four drug
categories: withdrawn, precautionary by Beers criteria, precautionary by FDA pharmacogeno-
mics labeling, and other drugs (Fig 3). Relative frequencies of drugwithdrawals (Fig 4) and pre-
cautions (Fig 5) were computed across AUC score bins for further analysis. The Cochrane-
Armitage Trend test was performed across AUC score bins to estimate the effect of the AUC
scores on the frequencies of drug withdrawal and precaution (Table 1). All P values were two
sided, and considered statistically significance at < 0.05. All statistical analyses were conducted
using the R statistical package (ver. 3.01).[31]

Results

Drug Withdrawals and Precautions

Altogether, we analyzed 1041 drugs from the DrugBank that had at least five listed PK/PD
genes (Fig 1). Overall, 154 (14.8%) of the 1041 analyzed drugs were eventually withdrawn from
the market by at least one country. Among the 137 drugs in the Beers list and 148 drugs with
FDA pharmacogenomic labels, 90 (65.7%) and 96 (64.9%), respectively, met our inclusion

Fig 2. Deleteriousness scores for genes, variants, drugs, and populations. The variant score, (V) is the SIFT score

of the variant, the gene deleteriousness score, (G) is the geometric mean of the V scores of the gene, and the drug

deleteriousness score (D) is the geometric mean of the G scores for all drug-related PK/PD genes. The drug-gene

relationships were obtained from the DrugBank database. The population deleteriousness score (P) or the area under the

curve (AUC) for the distribution of the D score for a drug k in a population was computed by averaging personalized D

scores of the entire population.

doi:10.1371/journal.pone.0162135.g002
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criteria of having at least five known PK/PD genes. Interestingly, 30 (18.2%) of these precau-
tionary drugs were also withdrawn from the market by at least one country (Fig 1, Venn
diagram).

The P Score and Drug Withdrawals/Precautions

Fig 3 demonstrates that drugs, which have been withdrawn (AUC = 0.558 ±0.170), listed as
precautionary according to Beers criteria (AUC = 0.549 ±0.153), and pharmacogenomically
labeled by the US FDA (AUC = 0.542 ±0.145) exhibited significantly lower AUCs compared to
other drugs (AUC = 0.635 ±0.187) as indicated by ANOVA with post-hoc Tukey analysis
(P< 0.001). As shown in S1 Fig and S1 Table, it was consistently confirmed at all thresholds of
the number of PK/PD genes from 1 to 10 for study drug inclusion that the AUC values of with-
drawn and precautionary drugs were significantly lower than that of other drugs (P< 0.001 by
ANOVA).

Fig 4 consists of histograms that display the frequencies of drug withdrawal relative to the
population deleteriousness score (P) or AUC of the drug according to the UN Consolidated
Lists,[18–21] EMA,[22] and DrugBank.[16] (S2 Fig) Because each country has different poli-
cies regarding the approval of pharmaceutical products, we analyzed these resources separately
as well as in combination. The results indicated that lower AUC values correlate significantly
with higher relative frequencies of drug withdrawals from the market in every configuration

Fig 3. Comparison of population deleteriousness scores between withdrawn, precautionary, and

other drugs. Drugs withdrawn from the market (AUC = 0.558 ±0.170), precautionary drugs according to the

Beers criteria (AUC = 0.549 ±0.153), and drugs labeled by the US FDA with phamacogenomic information

(AUC = 0.542 ±0.145) exhibited significantly lower AUC values than other drugs (AUC = 0.635 ±0.187;

P < 0.001, one-way ANOVA followed by post-hoc Tukey-tests). In contrast, the difference between the three

withdrawn/precautionary drug groups did not reach statistical significance (P > 0.05). AUC, area under the

drug deleteriousness score curve; FDA PGx, FDA-approved drugs with pharmacogenomic information on

drug labels.

doi:10.1371/journal.pone.0162135.g003
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(P< 0.05, Cochrane-Armitage Trend test; Table 1 and S1 Fig). The same trend was consis-
tently observed for precautionary drugs within the Beers criteria (P = 0.009; Fig 4(E))[23] as
well as for drugs pharmacogenomically labeled by the US FDA pharmacogenomics (P< 0.001,
Cochrane-ArmitageTrend test; Fig 4(F) and Table 1).[11]

Genomic Variability and Drug Safety

“If it were not for the great variability among individuals, medicinemight as well be a science
and not be an art,” said Sir William Osler.[32] The present study demonstrated unexpectedly
high person-to-person variability of deleterious variants among drug-related genes. A drug
might as well be ‘genetically ideal’ if the drug-related genes have no deleterious variants across
the entire human population, which is rather rare. Based on the analysis of drug-related gene

Fig 4. Frequency distribution of drug withdrawals and precautions according to population

deleteriousness scores. The relative frequency of drug withdrawals was obtained for each of the 10 AUC

score bins of equal sizes. (A) All three resources; (B–D) paired resources. Drugs with lower AUC values were

more frequently withdrawn from the market (see Table 1). Relative frequencies of drug precautions according

to the Beers criteria (E) and US FDA pharmacogenomics labels (F) were significantly higher in lower AUC

score bins compared to higher AUC score bins (P < 0.01, Cochran-Armitage Trend test; see Table 1). AUC,

area under the drug deleteriousness score curve; EMA, European Medicines Agency; UN, United Nations.

doi:10.1371/journal.pone.0162135.g004
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variability in the population, we propose here two genomic parameters to assess drug safety,
AUC and Vt, which may facilitate drug development, use, and regulation, and eventually pre-
vent drug withdrawal.

Fig 5 shows the distribution curve of the D scores among 2504 individuals for three drugs
(disopyramide, procainamide, and quinidine) that belong to class Ia antiarrythmics (C01BA)
according to the Anatomical Therapeutic Chemical (ATC) classification system. The AUC for
disopyramide (β+γ+δ) is larger than that of procainamide (γ+δ) and quinidine (δ) but smaller
than that of a ‘genetically ideal’ drug (α+β+γ+δ), which is equal to 1.0 and has zero person-to-
person variability in the drug specific PK/PD genes. Thus, α (or 1-AUC of disopyramide) rep-
resents the distance of disopyramide from a ‘genetically ideal’ drug in terms of genome
sequence variation. Interestingly, 1-AUC of disopyramide is smaller than that of procainamide
(1-[γ+δ]) and quinidine (1-δ; Fig 5) indicating that among the 2504 individuals in the 1000
Genomes Project, the genes related to PK/PD of disopyramide have less deleterious variants
than those of procainamide and quinidine.

Fig 5. Proposed measures of drug safety to prevent precautions and drug withdrawals from the market. (A) Drug

deleteriousness scores for three drugs with the same ATC code (C01BA for antiarrythmics class Ia) [disopyramide (green),

procainamide (blue), and quinidine (red)] were computed for 2504 genomes from the 1000 Genomes Project and sorted in the

ascending order. (B) The AUC and 1-AUC values represent population deleteriousness and genomic variability of drug-related

genes, respectively. (C) When the risk threshold is set at 0.3, 35 (1.4%), 302 (12.1%), and 1733 (69.2%) individuals of the 2504 can

be classified as genetically vulnerable to side effects of disopyramide, procainamide, and, quinidine respectively (V0.3).

Abbreviations: AUC, area under the drug deleteriousness score curve; ATC, Anatomical Therapeutic Chemical Classification

System.

doi:10.1371/journal.pone.0162135.g005
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Fig 5 also demonstrates that among the 2504 individuals, 35 (1.4%), 302 (12.1%), and 1733
(69.2%) persons have increased risks for ADRs caused by disopyramide, procainamide, and
quinidine, respectively, if we assume that 0.3 (or 0.7) is the risk threshold for the D score (V0.3

(or V0.7)). Vt is defined as the proportion of people who have D scores lower than the risk
threshold (t) and, therefore, are genetically vulnerable to ADRs from the use of a certain drug.
The distributions of V0.3 and V0.7 for the three drugs are shown in Fig 5.

Discussion

The decision process of drug withdrawals is highly complex and is influenced by political, com-
mercial, ethical, and other factors. In this study, we have demonstrated that the person-to-per-
son genome variability is a strong independent prognostic factor for drug withdrawals from
the pharmaceutical market, which has long been considered unpredictable. Therefore, we pro-
pose the use of these novel measures of drug safety assessment based on personal genome
sequence analysis to improve drug development, use, and regulation. The proposedmethod
may be considered for future application in the clinical setting to identify individuals with
increased genetic vulnerability to adverse side effects from a specific drug.When clinically vali-
dated for specific drugs and ADRs, healthcare providers can use this method as a tool to sup-
port clinical decisions and prevent unintended drug reactions. For pharmaceutical companies,
the proposed genomic measures can be used for efficient screening of candidate pharmaceuti-
cals, development of safer drugs, genome-based pharmacovigilance, and regulation of drug
safety.

Critics have argued that clinical trials involving up to 2000~3000 participants cannot reli-
ably detect rare ADRs with an incidence of less than 1 per 10,000.[33] Although increasing the
number of trial participants is an option, albeit costly, it may still be inadequate to address the
complexity of personal genome sequence variations.[34] The current affected-versus-unaf-
fected case-control approach used in pharmacogenomics research [35] cannot provide com-
prehensive analysis of multiple complex associations between numerous genotypes and drugs.
In contrast, the proposed ab initio method is scalable to increasing numbers of genotypes and
drugs and relies only on integrated public resources: personal genome sequence databases

Table 1. Cochran-Armitage test for trend for drug withdrawals and precautions.

AUC score bins ~0.1 ~0.2 ~0.3 ~0.4 ~0.5 ~0.6 ~0.7 ~0.8 ~0.9 ~1.0 Sum. P a

No. of Withdrawn Drugs

Total 1 4 7 13 30 34 39 16 6 4 154 <0.001

UN or EMA 1 3 7 11 26 31 34 15 4 2 134 0.001

UN or DrugBank 1 3 5 5 25 26 28 12 5 3 113 <0.001

EMA or DrugBank. 1 4 3 11 16 14 26 8 5 3 91 0.001

UN 1 2 5 3 21 23 23 11 3 1 93 0.053

EMA 0 1 2 8 6 8 12 4 1 1 43 0.001

DrugBank 1 3 1 3 10 6 14 4 4 2 48 0.007

No. of Precautionary Drugs

Beers criteria 0 1 6 7 16 25 25 6 3 1 90 <0.001

FDA pharmacogenomics 0 0 6 11 17 32 19 7 3 1 96 <0.001

No. of Total Study Drugs 5 14 34 68 144 217 234 167 88 70 1041

aP-values by Cochran-Armitage test for trend. Abbreviations: AUC, Area under the drug-wise deleteriousness-score curve; UN, the United Nations; EMA,

the European Medicines Agency; FDA, the United States Food and Drug Administration

doi:10.1371/journal.pone.0162135.t001
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covering different ethnic groups, drug PK/PD information, and the records of withdrawn and/
or precautionary drugs.

Recently, US FDA recommended incorporating the ethnic category of participants in clini-
cal trials.[36] Incorporating ethnicity-related data regarding genome sequence variability,
which can affect drug safety, may be necessary for future clinical trial design. For example, to
reliably detect ADRs before marketing, drugs with low AUC values (i.e., large genomic distance
from a ‘genetically ideal’ drug) should be tested in larger populations than drugs with high
AUC values. Considering the distribution of genetically vulnerable subpopulations or ethnic
groups for individual drugs based on genome sequence variability may lead to a more rational
clinical trial design and ultimately improve drug safety.

For the purpose of comprehensive evaluation, the present study was replicated with other
variant function-predictionalgorithms. ANNOVAR [37] provides with seven variant function
prediction scores (i.e., SIFT [26], PolyPhen HIVD [27], PolyPhen HVAR [27], LRT [38], Muta-
tionTaster [28], MutationAssessor [39], FATHMM [40]) and three variant conservation scores
(i.e., GERP++[41], phyloP [42], Siphy [43]). Of these 10 methods,MutationAssessor,
FATHMM, and Siphy were excluded for further analysis due to their severely right-skewed var-
iant score distributions, resulting no drug remaining in the lower score bins for the drugs with
the lowest deleteriousness scores. LRT was also excluded because its binary weighting scheme
of variant scores based on dN/dS ratio. As shown in S2 Table, all six prediction scores consis-
tantely confirmed that the AUC values of withdrawn and precautionary drugs were statistically
significantly lower than those of other drugs (P value<0.001 by ANOVA, post-hoc Tukey
test). More importantly, drug withdrawal rates significantly increased as the AUC scores
decreased for all six scores (P value< 0.05, Cochrane-Armitage tests for trend, S2 Table).

The computation of D scores conducted in our study is subject to some limitations due to
the imperfect knowledge about the PK/PD of drugs [16] and the precise effects of nonsynon-
ymous coding variants on protein structure and function.[26–30]The scope and accuracy of
the D scores are also limited by insufficiencyof public resources such as those that provide per-
sonal genome sequence data from various ethnic groups and standardized reports of with-
drawn and precautionary drugs. Further development of these critical resources could,
therefore, greatly improve and refine drug safety strategies. The proposedmethod has some
limitations. First, the current knowledge on PK/PD drug-gene relationships is not perfect.We
discovered that many drugs eligible for inclusion in our study lacked PK/PD information. Sec-
ond, the current method assigns the same scores to different drugs having the same PK/PD
genes without considering different pharmacokinetic parameters such as Km/Vmax. We found
that less than 10% of all DrugBank drugs have at least one properly matched pharmaokinetic
parameters after systematic survey of the current databases including PubChem [44],
BRENDA [45], SABIO-RK [46] and MetaCyc [47]. Moreover, it may not be true for the drugs
with the same PK/PD genes to have the same genetic effect in vivo becausemultiple factors
other than genetic variants such as PK (i.e., route of administation, dose, and form), PD (i.e.,
targets and their physiological roles), and patient (i.e., disease, behavior, and environment) fac-
tors will affect toxicity and efficacy. Thus, given the substantial effects and utmost importance
of genomic variability on drug responses, the availability of more accurate and comprehensive
PK/PD data could greatly enhance drug development, use, and regulation. Third, since non-
coding regions of the human genome contain up to 88% of the weakly phenotype-associated
variants as identified by the GWAS [48] and ENCODE (ENCyclopedia Of DNA Elements)[49]
the integration of both coding and noncoding gene information could further improve the
present scoring system.

To the best of our knowledge, this is the first study that has addressed the long-standing
problem of unpredictability in pharmaceutical market withdrawals by incorporating state-of-
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the-art personal genome sequencing technology. The strong correlation between the popula-
tion deleteriousness score (or AUC) and pharmaceuticalmarket withdrawal rate was consistent
among different databases and lists of drug withdrawals and precautions, including UN Con-
solidated Lists, DrugBank, European Medicines Agency, Beers guidelines, and US FDA. One
interesting byproduct of our study is that the proposedmethodmay rescue necessary drugs
that have already been withdrawn from the market for safety reasons [8]. Clinical reinstate-
ment of a previously withdrawn drug, however, should be deferred until the genetic cause of
ADRs in a vulnerable subpopulation has been clearly identified and corresponding diagnostic
tests have been developed.

Supporting Information

S1 Fig. Comparison of population deleteriousness scores betweenwithdrawn, precaution-
ary, and other drugs across different numbers of drug-relatedgenes. Population deleterious-
ness scores (AUC) were significantly lower for the three withdrawn and precautionary drug
groups than others at all thresholds (i.e., the numbers of PK/PD genes from 1 to 10) (P< 0.05
by post-hoc Tukey tests after one-way ANOVA (P< 0.001)) for study drug inclusion. In con-
trast, population deleteriousness scores did not show statistically significant difference among
the three withdrawn and precautionary drug groups at all thresholds (P> 0.05). ��P < 0.001
and � P< 0.05 by post-hoc Tukey test (see Table 1). Numbers in parentheses represent the
numbers of included drugs at each threshold. AUC, area under the drug deleteriousness score
curve; FDA PGx, FDA-approved drugs with pharmacogenomic information on drug labels;
PD, Pharmacodynamics; PK, Pharmacokinetics.
(DOCX)

S2 Fig. Drug and frequencydistribution of drug withdrawals from the UN, DrugBank and
EMA according to population deleteriousness scores.The relative frequency of drug with-
drawals was obtained for each of the 10 AUC score bins of equal sizes from the three individual
databases and all combination; (A) Total withdrawn from three different resources, (B) UN,
(C) DrugBank and (D) EMA. The three icons in A (lower panel) show drug deleteriousness
score curves typical for the corresponding AUC score bins. The shaded area representing
1-AUC shows the distance of the drug from a ‘genetically ideal’ pharmaceutical in terms of
genome sequence variation, i.e., no variation of relevant genes between individuals. AUC, area
under the drug deleteriousness score curve; EMA, European Medicines Agency;UN, United
Nations.
(TIFF)

S1 File. 1041 including drugs with five or more pharmacokinetics/pharmacodynamic
genes.Among 5099 drugs had at least one identified PK/PD genes from the DrugBankVersion
4.1, excluding 4058 drugs having less than five PK/PD genes, 1041 drugs having five or more
PK/PD genes were included. For these inclusion drugs, we matched the drug regulation infor-
mation for further analysis.
(XLSX)

S2 File. Total withdrawnand precautionarydrugs.Withdrawn or precautionary drug infor-
mation was collected comprehensively from the multiple publicly available resources. For with-
drawn drugs, we reviewed reports from United Nations, European Medicines Agency, and
DrugBank annotation. For precautionary drugs, we collected information from the Beers crite-
ria and US FDA pharmacogenomic biomarker information in drug labels.
(XLSX)
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S1 Table. Comparison of population deleteriousness scores betweenwithdrawn, precau-
tionary, and other drugs at all thresholds of different number of PK/PD genes for drug
inclusion. � P< 0.05 and �� P< 0.001 by post-hoc Tukey test after one-way ANOVA in com-
parison to other drugs. † P< 0.001 by one-way ANOVA at all thresholds of different numbers
of drugs for study drug inclusion. ‡ P> 0.05 by post-hoc Tukey test after one-way ANOVA for
all pairwise comparisons between the the three drug groups that are withdrawn and precau-
tionary. Population score values are mean (SD) (see S1 Fig.) AUC, area under the drug deleteri-
ousness score curve; FDA PGx, FDA-approved drugs with pharmacogenomic information on
drug labels; PD, Pharmacodynamics; PK, Pharmacokinetics; P score, Population deleterious-
ness score.
(DOCX)

S2 Table. Descriptive statistics and statistical test results for six function prediction scores.
For each score, all including drugs were collected independently. We included drugs with at
least five identified pharmacokinetics (PK) and pharmacodynamics (PD) gene relationships
(which have specific score annotated variants) in the analysis. � P< 0.05 and �� P< 0.001.
AUC, area under the drug deleteriousness score curve; EMA, European Medicines Agency;
FDA PGx, FDA-approved drugs with pharmacogenomic information on drug labels; UN,
United Nations.
(DOCX)
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