Skip to main content
. 2016 Sep 30;11(9):e0163875. doi: 10.1371/journal.pone.0163875

Table 2. Classification performance using different types of feature.

Feature types ACC (%) SEN (%) SPE (%) AUC
ALFF 65.31 85.71 38.10 0.69
ReHo 67.35 71.43 61.90 0.67
RFCS 63.27 82.14 38.10 0.68
GM 71.43 85.71 52.38 0.83
ALFF+ReHo 69.39 82.14 52.38 0.70
ALFF+RFCS 64.58 85.71 33.33 0.54
ALFF+GM 70.83 89.29 42.86 0.74
ReHo+GM 72.92 85.71 52.38 0.75
ReHo+RFCS 71.43 82.14 57.14 0.75
RFCS+GM 75.00 92.86 47.62 0.78
ALFF+ReHo+RFCS 72.92 85.71 52.38 0.75
ALFF+ReHo+GM 75.51 89.29 57.14 0.78
ALFF+RFCS+GM 79.59 89.29 66.67 0.84
ReHo+RFCS+GM 73.47 85.71 57.14 0.71
Concatenation 67.35 78.57 52.38 0.74
M3 method 73.47 66.67 78.57 0.82
Proposed 83.67 92.86 71.43 0.83

SEN = sensitivity, SPE = specificity, ACC = accuracy, AUC = area under receive operating characteristic curve. “+” indicates combination of the given types of features; “Concatenation” means all four types of feature were concatenated into a long feature vector.