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Abstract The liver is essential for survival due to its critical role in the regulation of metabolic homeostasis.
Metabolism of xenobiotics, such as environmental chemicals and drugs by the liver protects us from toxic
effects of these xenobiotics, whereas metabolism of cholesterol, bile acids (BAs), lipids, and glucose provide
key building blocks and nutrients to promote the growth or maintain the survival of the organism. As a well-
established master regulator of liver development and function, hepatocyte nuclear factor 4 alpha (HNF4α)
plays a critical role in regulating a large number of key genes essential for the metabolism of xenobiotics,
metabolic wastes, and nutrients. The expression and activity of HNF4α is regulated by diverse hormonal and
signaling pathways such as growth hormone, glucocorticoids, thyroid hormone, insulin, transforming growth
factor-β, estrogen, and cytokines. HNF4α appears to play a central role in orchestrating the transduction of
extracellular hormonal signaling and intracellular stress/nutritional signaling onto transcriptional changes in the
liver. There have been a few reviews on the regulation of drug metabolism, lipid metabolism, cell proliferation,
and inflammation by HNF4α. However, the knowledge on how the expression and transcriptional activity of
HNF4α is modulated remains scattered. Herein I provide comprehensive review on the regulation of
expression and transcriptional activity of HNF4α, and how HNF4α crosstalks with diverse extracellular and
intracellular signaling pathways to regulate genes essential in liver pathophysiology.
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1. Introduction

1.1. Overview of key biological functions of hepatocyte nuclear
factor 4α (HNF4α)

HNF4α is a well-established master regulator of liver development
and function. HNF4α is essential for hepatocyte differentiation and
morphogenesis in fetal liver1,2 and maintenance of liver function in
adults3–5. Results from studies of adult mice with liver-specific
knockout of Hnf4α demonstrate that HNF4α is essential in
regulating hepatic expression of key genes in drug metabolism,
bile acid synthesis and conjugation, lipid homeostasis, gluconeo-
genesis, ureagenesis, cell adhesion, as well as cell proliferation and
apoptosis3,6–11. Hepatic expression and/or transcriptional activity
of HNF4α is decreased markedly in non-alcoholic steatohepatitis,
alcoholic liver disease, tumor necrosis factor-α (TNFα)-induced
hepatotoxicity, severe cirrhotic livers, and hepatoma progres-
sion12–16. In contrast, ectopic expression of HNF4α in combination
with the pioneering factor Foxa2 (HNF3β) in fibroblasts can
induce the transdifferentiation of fibroblasts into hepatocyte-like
cells17. Overexpression of HNF4α1 markedly inhibits liver carci-
nogenesis and liver fibrosis18,19. Mice implanted with human
hepatoma cells that overexpress HNF4α1 have much longer
survival, and intratumoral overexpression of HNF4α1 blocks
tumor growth20. Thus, down-regulation of HNF4α is a major
contributing factor to diverse liver diseases, such as steatohepatitis,
liver fibrosis, and liver cancer, whereas restoration of HNF4α can
inhibit liver cancer and improve liver function simultaneously.
Currently, there is great interest in targeting HNF4α for stem-cell
therapy and treatment of liver diseases such as liver cirrhosis and
liver cancer. Nevertheless, HNF4α is an orphan nuclear receptor
that lacks well-established activating ligands, although fatty acid
thioesters have been reported as ligands of HNF4α21. Conversely,
the expression and transcriptional activity of HNF4α is modulated
by diverse extra- and intracellular signaling pathways, and various
transcriptional factors can physically interact with HNF4α to
regulate hepatic gene expression. There have been a few reviews
on the role of HNF4α in regulation of drug metabolism, lipid
metabolism, cell proliferation, and inflammation5,22–24. However,
the knowledge on how the expression and transcriptional activity
of HNF4α is modulated remains scattered. Herein I summarize the
modulation of hepatic expression and transcriptional activity of
HNF4α by diverse extra- and intracellular signaling pathways, as
well as how HNF4α crosstalks with various transcriptional factors
to dictate hepatic expression of genes important in drug metabo-
lism, lipid homeostasis, and cell proliferation.
1.2. HNF4α isoforms

There are two types, 9 isoforms of HNF4α transcripts resulting
from alternative splicing and/or usage of 2 promoters, with 6
“adult” isoforms (4α1–α6) from the P1 promoter, but 3 “fetal”
isoforms (4α7–α9) from the P2 promoter. P2 promoter–driven
fetal HNF4α isoforms are expressed throughout liver development,
but disappear after birth, whereas P1 promoter–driven adult
HNF4α isoforms are abundant postnatally. Deregulation of
HNF4α is a marker of epithelial tumor progression25. There is a
remarkable switch in mRNA and protein expression from P1 to P2
promoter–driven HNF4α in transgenic livers and hepatocellular
carcinoma (HCC) of EGF-overexpressing transgenic mice and
human HCC26. Interestingly, HNF4α inhibits the P2 promoter
activated by HNF6 and HNF1α27; thus, dynamic changes in
HNF4α isoform expression may be self-regulated by HNF4α1.
Importantly, the “adult” HNF4α1 and “fetal” HNF4α7 have
different transactivation properties, namely, HNF4α7 more effi-
ciently activates promoters of early hepatocyte genes (such as
α-fetoprotein), whereas HNF4α1 has a more significant impact on
genes of main hepatic differentiation markers28. Targeted deletion
of the Hnf4α1 isoform in mouse liver results in liver steatosis and
marked down-regulation of constitutive androstane receptor (Car),
a key xenobiotic receptor29. Overexpression of HNF4α2 decreases,
whereas overexpression of HNF4α8 increases the invasiveness of
colon cancer cells17. Currently, the mechanism of dynamic switch
of HNF4α1/4α2 and HNF4α7/4α8 expression during liver devel-
opment and carcinogenesis remains unknown.

1.3. Regulation of gene expression by HNF4α

The P1 HNF4α proteins, such as HNF4α1 and HNF4α2, have two
activation domains, namely activation function-1 (AF-1) and AF-2
which synergize for full HNF4α transactivation activity. The N-
terminal AF-1 (A/B) domain and C-terminal AF-2 domain convey
the transactivation activity of HNF4α, whereas the C-terminal
F-domain of HNF4α exhibits repressor activity (Fig. 1A)30. The
P2 HNF4α isoforms, such as HNF4α8 lack the N-terminal AF-1
domain and thus generally have much weaker transactivation
activity for HNF4α-target genes. Different from other nuclear
receptors, HNF4α binds to DNA as a homodimer, and the
interaction between its ligand binding domain (LBD) and DNA-
binding domain (DBD) (Fig. 1A) is essential for the high DNA-
binding affinity of the homodimer31. In a study in human colon
cancer cells, HNF4α2 was found to have many more DNA-
binding sites than HNF4α8, although they have the identical DBD
with a conserved double zinc finger motif32. HNF4α generally
binds to direct repeat 1 (DR1) or DR2 site in the promoter and
recruits co-activators to transactivate its target genes33,34. In
addition to direct regulation of mRNA gene expression, HNF4α
can transactivate microRNA-29; Hnf4α-deficiency in mouse liver
down-regulates miR-29, resulting in induction of miR-29–target
gene DNA methyltransferase 3 and epigenetic reprogramming35.
HNF4α can repress gene expression via recruiting the co-repressor
silencing mediator of retinoic acid and thyroid hormone receptor
(SMRT) and histone deacetylase to the promoter, leading to
epigenetic silencing of target genes28. Loss of HNF4α in young-
adult mouse liver markedly altered epigenome, manifested by
global increases in key histone modifications such as histone H3
lysine-4 trimethylation (H3K4me3), H3K27me3, and H3K9me2,
which is associated with induction of the corresponding epigenetic
enzymes in Hnf4α-deficient liver36. Thus, regulation of epigenome
appears to be a key mechanism of regulation of the transcriptome
and liver development by HNF4α.
2. Factors modulating HNF4α activity

2.1. Modulation of the transcriptional activity of HNF4α by fatty
acids

Different from many other nuclear receptors that require ligands
and retinoid X receptor α (RXRα) as an obligatory heterodimer-
ization partner for transactivation, HNF4α is constitutively active
and bind to DNA as a homodimer37. The LBD of HNF4α is
responsible for the selectivity of binding partner (homodimer



Figure 1 Diagrams that illustrate the protein domain structure (A), posttranslational modifications (B), and interactions (C) of HNF4α with other
signaling pathways. (A) Domain structure of HNF4α protein, with the 474-amino-acid-long human HNF4α2 shown as the canonical HNF4α
isoform. (B) Posttranslational modifications of HNF4α. HNF4α is methylated at arginine 100 (R100M) by PRMT1, and acetylated at lysines 106,
108, 118, or 119 by CBP. HNF4α is phosphorylated at lysine-23 (Y23P) and Y286 (Y286P) by c-SRC, serine 87 (S87P) by PKC, serine 142 and
143 (S142P and S143P) by PKA, serine 167 (S167P) by P38, and serine 313 (S313P) by AMPK. The positions of post-translational modifications
of HNF4α have been renumbered in the text and Fig. 1 based on the updated NCBI protein database for HNF4α2 (NP_000448.3), which is also
used as the canonical protein isoform for human HNF4α in PhosphoSitePluss, a public database for posttranslational modifications of proteins43.
(C) Transcriptional factors that modulate the transcriptional activity of HNF4α through physical interactions. Red shape: negative interaction;
purple shape: both negative and positive interactions; green shape: positive interaction.
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versus heterodimer)37. The X-ray crystal structure of an HNF4α
protein fragment that contains the HNF4α LBD but lacks the
transactivation F-domain shows that the ligand binding pockets of
both the closed and open forms contain fatty acids38. However,
occupancy of the ligand linoleic acid does not appear to
significantly affect the HNF4α transcriptional activity39. The
conversion of fatty acids to fatty acyl-CoAs by fatty acyl-CoA
synthetases is required for the modulation of HNF4α transcrip-
tional activity by fatty acids21. Using His-tagged full-length
HNF4α protein, GST-tagged LBD of HNF4α, and radio-labeled
fatty acyl-CoAs, fatty acyl-CoA thioesters were found to bind to
the LBD of HNF4α with high affinity and selectivity over
peroxisomal proliferator-activated receptor α (PPARα) and
RXRα21. The effects of saturated fatty acids on HNF4α are
dependent on chain length: (C16:0) acid activates whereas
(C18:0) acid suppresses HNF4α transcriptional activity, whereas
saturated fatty acids shorter than C16 are inactive. In contrast,
unsaturated long-chain fatty acids dose-dependently suppress
HNF4α transcriptional activity21. Interestingly, shorter chain
(C14:0 and C16:0) fatty acyl-CoA markedly enhances, whereas
long-chain (C18:0 or C18:3, ω-3) fatty acyl-CoA markedly
decreases the binding of HNF4α protein to its cognate enhancer
DNA21. Conversely, HNF4α has thioesterase activity40, which
might be a mechanism of feedback regulation. Acyl-CoA-binding
protein and liver type fatty acid binding protein (L-FABP)
physically interact with HNF4α, slow the degradation of fatty
acyl-CoA, and potentiate the transactivation of target genes by
HNF4α41. Dietary supplementation of medium-chain triglycerides
preserved HNF4α expression and improved alcohol-induced
hepatic lipid dyshomeostasis in rats12. Thus, further understanding
the mechanism of regulation of HNF4α transactivation activity by
various fatty acids and their acyl-CoA thioesters may help develop
novel approaches to activate HNF4α to treat liver and metabolic
diseases.
2.2. Post-translational modifications of HNF4α

2.2.1. Methylation
The arginine methyltransferase PRMT1 methylates arginine-100
(R100) in the DBD of HNF4α to enhance the affinity of HNF4α
for its binding site (Fig. 1B)42,43. Moreover, facilitated by the p160
family of coactivators, PRMT1 is recruited to the HNF4α LBD
and methylates histone H4 at arginine 3, leading to nucleosomal
alterations and subsequent RNA polymerase II preinitiation com-
plex formation42. Analysis of the crystal structure of the HNF4α
homodimer/DNA complex showed that the methylation of
arginine-100 would more firmly “glue” the DBD junctional
interface with both LBDs31.
2.2.2. Acetylation
Acetylation of HNF4α at lysine residues within the nuclear
localization sequence of DBD by CREB-binding protein (CBP)
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is essential for nuclear localization of HNF4α and transactivation
of HNF4α-target genes (Fig. 1B)43,44.

2.2.3. Phosphorylation
During inflammation-redox stress induced by combined treatment
of hepatocytes with interleukin 1β (IL-1β) and H2O2, phosphor-
ylation of HNF4α at serine-167 (S167) in LBD by p38 mitogen-
activated protein kinase (MAPK) is essential for the interaction of
HNF4α with the co-activator PC4 to induce the expression of
inducible nitric-oxide synthase45. Phosphorylation of HNF4α by
the p38 is important for the protein stability and nuclear levels of
HNF4α in hepatocytes46; however, phosphorylation at S167 by
p38 is not required for the induction of cytochrome P450 7A1
(CYP7A1) by HNF4α in hepatocytes, suggesting that p38 might
phosphorylate HNF4α at more than one site46.

The c-SRC tyrosine kinase markedly inhibits the activity of
P1, but not P2 products of HNF4α via selective phosphorylation
of P1 HNF4α proteins at tyrosine 23 (Y23) and 286 (Y286),
which correlates with isoform-specific loss of HNF4α in human
colon cancer47. Phosphorylation of HNF4α at S87 within DBD
by protein kinase C (PKC) decreased the DNA binding,
transactivation ability, and protein stability of HNF4α48. In
contrast, starvation decreased DNA-binding of HNF4α to the
promoter of L-type pyruvate kinase, a glycolytic enzyme in rat
liver via cAMP-PKA-phosphorylation of HNF4α at S142 and
S14349. Interestingly, the cAMP-mediated regulation of HNF4α
depends on the level of the co-activator PPARγ coactivator 1α
(PGC1α)50: cAMP/PKA inhibited the transcriptional activity of
HNF4α in COS-1 cells, whereas a stimulatory effect in HepG2
cells is dependent on the induction of PGC1α by cAMP in
HepG2 cells50. HNF4α and PGC1α are induced in mouse liver
during fasting51. Thus, the effects of HNF4α phosphorylation by
PKA may be gene- and cell-context dependent. The AMP-
activated protein kinase (AMPK) is the central component of a
cellular signaling system. AMPK inhibits the transcriptional
activity of HNF4α via direct phosphorylation of HNF4α at
S313 in the LBD, leading to decreased formation of homodimer
and accelerated degradation of HNF4α protein52.

2.3. Interaction with co-activators

PGC1α (Fig. 1C), which also has acetyltransferase activity, is a
key co-activator of HNF4α for the transactivation of certain
gluconeogenic genes such as phoenolpyruvate carboxykinase
(PEPCK) and glucose-6-phosphatase (G-6-Pase)51. However,
many other HNF4α-target genes are not co-activated by
PGC1α4. Co-activators steroid receptor coactivator-1 (SRC-1),
SRC-2, and SRC-3 also enhance the transcriptional activity of
HNF4α53,54.

2.4. Physical interaction with co-repressors

2.4.1. Interaction with Hes family bHLH transcription factor 6
(Hes6)
Hes6 is a direct transcriptional target of HNF4α; hepatic Hes6
mRNA expression is largely down-regulated in Hnf4α-null
mice55. Conversely, Hes6 inhibits the transactivation of Hnf4α
promoter by PPARα, and Hes6 forms a complex with HNF4α
during the fed state to inhibit the expression of certain HNF4α-
target genes55. Hes6 alone cannot directly bind to DNA. Hes6
physically interacts with HNF4α protein and displace coactivators
PGC1α and CBP from HNF4α55. During fasting, hepatic Hes6
expression is markedly down-regulated, and the HNF4α–Hes6
complex in the promoters of fatty acid metabolism–associated
genes is replaced by the activated PPARα, resulting in gene
induction54. Thus, Hes6 negatively regulates the HNF4α and
PPARα signaling. In mouse liver, Hes6 can be induced by retinoic
acid receptor in response to its natural agonist ligand all-trans
retinoic acid56. It remains unknown whether Hes6 acts as a general
or gene-specific co-repressor of HNF4α.

2.4.2. Interaction with small heterodimer partner (SHP)
Without a DBD, the orphan nuclear receptor SHP mainly functions
as a co-repressor by interacting with a large number of transcrip-
tion factors57. Overexpression of SHP causes fatty liver, whereas
SHP is a tumor suppressor in liver57. Interestingly, HNF4α appears
to play a key role in mediating the nuclear translocation of SHP: in
293T cells, the exogenously expressed SHP protein is localized in
both the cytosol and nucleus; ectopic expression of HNF4α results
in exclusive nuclear translocation of the SHP protein58. Interest-
ingly, the interaction of HNF4α with SHP markedly increases
nuclear and total cellular levels of both HNF4α and SHP proteins,
likely due to increased protein stability59. SHP can interact with
the AF-2 domain of HNF4α to prevent the recruitment of co-
activator SRC-3 to inhibit the transactivation of certain HNF4α-
target genes54. Co-activators SRC-1 and SRC-2 also interact with
the AF-2 domain of HNF4α53, and the coactivator CBP interacts
with both the AF-1 and AF-2 domains of HNF4α44, whereas the
coactivator PC4 and members of the basal transcriptional machin-
ery interact with the AF-1 domain of HNF4α45. Thus, the effect of
SHP on the transactivation activity of HNF4α is most likely gene-
and co-activator–specific. miR-34a is markedly induced in livers
from mice deficient in farnesoid X receptor (FXR), and the FXR
activator GW4064 down-regulates miR-34a in obese mouse liver
via inducing SHP to inhibit p53 occupancy at the miR-34a
promoter60. It appears that SHP might play an important role in
regulating cellular protein levels of HNF4α by increasing HNF4α
protein expression (via down-regulating miR-34a) and stabilizing
HNF4α protein (via physical interaction). It remains unknown
whether deficiency of HNF4α and SHP in vivo alters endogenous
protein levels and cellular localization of each other. In this regard,
Hnf4α deficiency causes marked induction of a large number of
genes in mouse liver61; however, the underlying mechanism
remains poorly understood. Future studies on the effects of
HNF4α and SHP deficiency on the cellular levels and localization
of each other will provide mechanistic insights on the role of SHP
in modulating the gene regulation and anticancer action by HNF4α
in the liver.

2.5. Crosstalk with nuclear receptors

2.5.1. Crosstalk with FXR
The role of BAs as hormones has been recognized since the
discovery of BAs as ligands for the nuclear receptor FXR62. The
pregnane X receptor (PXR), a key xenobiotic receptor, is also
activated by BAs63. HNF4α is required for FXR expression in the
fetal liver but not in the adult liver2. HNF4α can activate the
human PXR promoter by binding to the DR1 motif in hepatoma
cells64. In mice, HNF4α is essential for the expression of PXR in
fetal liver by binding to the PXR promoter65. However, Hnf4α
deficiency does not affect hepatic expression of PXR in adult
mouse liver, and DNA-binding activity of PXR is enhanced in
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Hnf4α-deficient young-adult mouse liver10. Interestingly, PXR is a
FXR target gene in mouse liver66. FXR is likely activated in the
adult Hnf4α-null liver by the accumulation of BAs during
cholestasis. Thus, it is proposed that activation of FXR might
prevent the down-regulation of PXR in adult Hnf4α-null livers10.
Interestingly, FXR plays a key role in mediating the marked
alterations of drug-processing genes (DPGs) in the long-lived
growth hormone–deficient lit/lit mice; loss of FXR largely
attenuated hepatic induction of Cyp2b9, Cyp2b10, Cyp4a10,
Cyp4a14, flavin containing monooxygenase 3,3ʹ-phosphoadeno-
sine 5ʹ-phosphosulfate synthase 2, cytochrome P450 oxidoreduc-
tase, sulfotransferase 1d1 (Sult1d1), UDP glucuronosyltransferase
1a1 (Ugt1a1), and ATP-binding cassette, sub-family B, member
1a (Mdr1a) in lit/lit mice67. Of these FXR-regulated genes,
Cyp2b9, Cyp4a14, Ugt1a1, and Mdr1a are induced in male
Hnf4α-null livers10,68.

FXR co-immunoprecipitates with HNF4α in mouse liver33, and
FXR physically interacts with HNF4α in in vitro GST pulldown
experiments69. ChIP-seq analysis showed that nearly 50% binding
sites of FXR and HNF4α in mouse liver overlap33. Moreover,
genes co-bound by FXR and HNF4α are enriched in drug
metabolism and PPARα signaling pathway33. The DNA-binding
of FXR to certain target genes, such as SHP and fibroblast growth
factor 15, is enhanced in the Hnf4α-null mouse livers, and
HNF4α antagonizes the transactivation of mouse SHP promoter
by FXR33. Conversely, bile acids activate the FXR/RXR hetero-
dimer to displace HNF4α from the promoter to down-regulate
APOC3 in mouse liver and human hepatocytes70. In contrast,
HNF4α potentiates the activation of the intron 1 of scavenger
receptor class B type 1 by FXR33. Thus, FXR and HNF4α can
cooperate or antagonize the activity of each other, suggesting that
both factors can compensate for each other's deficiency at certain
sites, and such compensation might be an important mechanism to
maintain cellular integrity and homeostasis in liver diseases.
Understanding how FXR signaling is altered in Hnf4α-deficient
liver will provide new insights on the regulation of drug
metabolism and homeostasis of bile acids and lipids during
Hnf4α deficiency.
2.5.2. Crosstalk with PPARα
In addition to HNF4α, PPARα is another key regulator of hepatic
metabolism of drugs and lipids. The promoter of PPARα can be
transactivated by HNF4α and PPARα itself71, and Hnf4α
deficiency down-regulated PPARα in adult mouse liver3. HNF4α
and PPARα share DR1 as the common consensus DNA-binding
site72. Interestingly, both antagonism and cooperation between
HNF4α and PPARα have been reported. Both HNF4α and PPARα
can bind to the DR1 sites in the promoters of acyl-CoA oxidase
and acyl-CoA thioesterase I, and PPARα is a much stronger
transactivator than HNF4α; consequently, HNF4α suppressed the
gene-activating function of PPARα on these two genes due to
competition for a common binding site73,74. In contrast, HNF4α
and PPARα cooperate to induce multifunctional protein 1, one of
the most abundant proteins in murine peroxisome75. Activation of
PPARα is required for the marked down-regulation of
Naþ-taurocholate cotransporting polypeptide (NTCP), an
HNF4α-dependent key BA uptake transporter, by perfluorodeca-
noic acid in mouse liver76. Interestingly, certain PPARα target
genes, such as genes of L-FABP and microsomal triglyceride
transfer protein (MTTP)77 were markedly down-regulated,
whereas three PPARα target genes, such as genes of carnitoyl-
palmitoyl transferase-II, MCAD, and 3-hydroxy-3-methylglutaryl
CoA synthase were markedly induced in Hnf4α-null mouse
livers3. Such differential changes in PPARα target genes in
Hnf4α-null livers may be due to the down-regulation of PPARα
as a strong transactivator, the loss of HNF4α as a competitor for
PPARα, or the induction of co-activator of PPARα, such as PPAR-
binding protein in Hnf4α-null livers10.

2.5.3. Crosstalk with PXR and CAR
PXR and CAR are key xenobiotic receptors that regulate hepatic
expression of a large number of DPGs78. HNF4α transactivates
hepatic expression of PXR and CAR65,79, and HNF4α synergizes
with PXR and CAR to induce PXR- and CAR-target DPGs80,81.
Interestingly, there is a functional inhibitory cross-talk between
CAR and HNF4α in hepatic lipid/glucose metabolism. CAR
down-regulates HNF4α-target genes through competing for com-
mon coactivators and/or competing with HNF4α for binding to
DR1 motif in the promoter of Cyp7a1, the rate-limiting enzyme in
bile-acid biosynthesis82. Accordingly, the CAR activator TCPO-
BOP decreased hepatic expression of Cyp7a1 and Cyp8b1 in mice.
Additionally, PXR also inhibits the expression of CYP7A1, likely
due to the competition of PXR with HNF4α for the common
coactivator PGC1α83. Interestingly, activation of PXR promotes
drug metabolism but causes hepatosteatosis, whereas activation of
CAR increases drug metabolism and attenuates steatosis84; differ-
ential effects of PXR and CAR activation on hepatic expression of
lipogenic genes may be the underlying mechanism85.

2.5.4. Crosstalk with estrogen receptor α (ERα)
ERα suppresses the HNF4α-transactivation of HBV enhancer I via
ERα–HNF4α physical interaction which is independent of DNA-
binding by ERα86. Hepatic ERα expression is stimulated by elevated
blood levels of estrogen86. Results from studies of Erα-null mice
demonstrate that ERα is essential in mediating estrogen-induced
cholestasis by down-regulating certain genes essential in the transport
and synthesis of bile acids87, some of which, namely Ntcp, Oatp1a1,
Cyp7a1, and Cyp8b1 are HNF4α-target genes9,10. The potential role
of ERα–HNF4α interaction in the down-regulation of DPGs by
estrogen during cholestasis warrants investigation.

2.6. Physical interaction with other transcription factors

2.6.1. Interactions with chicken ovalbumin upstream promoter
transcription factors (COUP-TFs)
The effects of orphan nuclear receptors COUP-TFI and COUP-
TFII on the transcriptional activity of HNF4α are promoter
dependent. COUP-TFs negatively affect gene transcription by
competing with HNF4α in binding to the common binding site
(e.g., DR1 site) within gene promoters of aldehyde dehydrogenase
2, hepatic lipase, apoA-I, apoA-II, apo-B, and apoC-III88–90. In
contrast, HNF4α and COUP-TFII synergistically induce CYP7A1
by binding to the adjacent different sites within the promoter of
CYP7A191. Conversely, COUP-TFs do not directly bind to the
HNF1α promoter; instead, COUP-TFs physically interact with the
LBD of HNF4α to markedly enhance the transactivation of
HNF1α promoter by HNF4α92.

2.6.2. Interactions with specificity protein 1 (SP1), c-Myc, and
cyclin D1 (CCND1)
In addition to activation of target genes through binding to DR1/
DR2 sites, HNF4α can interact with the general transcription factor
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SP1 to induce p21, which is independent of DNA-binding of
HNF4α93. The protooncogene c-Myc can compete with HNF4α in
interacting with the promoter-bound SP1 to block the induction of
p21 in hepatoma cells93. Moreover, c-Myc competes with HNF4α
for the control of apolipoprotein C3 (APOC3)93. Additionally,
CCND1 inhibits hepatic lipogenesis via inhibiting the activity of
the carbohydrate response element-binding protein (ChREBP), and
CCND1 binds to HNF4α protein to inhibit the recruitment of
HNF4α to the promoter of lipogenic genes in hepatocytes94.
CCND1 also inhibits the transcriptional activity of PPARγ, a
key lipogenic nuclear receptor, and Ccnd1-null mice have fatty
liver95. Knockout of Hnf4α in livers of adult chow-fed mice
markedly induced c-Myc, CCND1, and hepatocyte proliferation
which was associated with fatty liver but decreased blood levels of
triglycerides and cholesterol6. Interestingly, adenoviral overexpres-
sion of CCND1 in rat liver induced robust cell proliferation and
marked alterations in hepatic mRNA expression of a large number
of DPGs and lipogenic genes96. Thus, interaction of CCND1 with
HNF4α may play important roles in the regulation of the
metabolism of drugs and lipids during liver development and liver
injury repair.
2.6.3. Interaction with p53
The p53 protein is a well-established tumor suppressor. Hepatic
mRNA expression of p53 is much higher in perinatal liver than
adult liver in mice, and p53 ranks as a top upstream regulator of
target genes during liver development97. p53 is activated in
steatotic livers in patients, and inhibition of p53 by pifithrin-α p-
nitro attenuates steatosis and liver injury in a mouse model of non-
alcoholic fatty liver disease98. Moreover, inhibition of p53 protects
liver tissue against endotoxin-induced apoptotic and necrotic cell
death in rats99. The p53 protein inhibits HNF4α transcriptional
activity via interacting with its LBD and recruiting histone
deacetylase100. Moreover, p53 down-regulates HNF4α mRNA
expression by binding to the P1 promoter of HNF4α101. Further-
more, the p53-target miR-34a is a potent inhibitor of the protein
expression of HNF4α102. Thus, p53 appears to be a powerful
multifaceted inhibitor of HNF4α. A fine-tuned balance between
p53 and HNF4α may be important in maintaining the homeostasis
of the liver during liver development and injury repair.
2.6.4. Interaction with β-catenin in “metabolic zonation”
Metabolic zonation, manifested by differential expression of
metabolic genes in the periportal (PP) and perivenular (PV)
hepatocytes, is a key feature of differentiated mature liver. The
basal and xenobiotic-induced expression of the main phase I and
phase II drug-metabolizing enzymes is confined to the PV
hepatocytes103. The Wnt/β-catenin pathway is essential for both
the proliferation and differentiation of hepatocytes during liver
development. Spontaneous differentiation of liver stem cells gives
rise to PP hepatocytes that, after Wnt pathway activation, switches
into PV hepatocytes104. Hepatocyte-specific deletion of β-catenin
causes the loss of "metabolic zonation", manifested by the
dramatic down-regulation of certain DPGs such as Cyp1a2, Cyp2c,
and Cyp2e1105. HNF4α plays a dual role in regulating metabolic
zonation by activating PP genes but suppressing PV genes in PP
hepatocytes106. The Wnt downstream player LEF1 interacts with
HNF4α to displace HNF4α from its own consensus site to
suppress the expression of PP genes in the liver104. In Hnf4α-
deficient adult mouse liver, the Wnt/β-catenin pathway is strongly
activated107. Importantly, β-catenin interacts with different co-
factors to exert different biological activities. The CDP/β-catenin-
mediated transcription is critical for proliferation, whereas the
p300/β-catenin-mediated transcription initiates differentia-
tion108,109. Interestingly, CDP is a key co-activator of HNF4α,
whereas the interaction of p300 with HNF4α is essential to
potentiate the transactivation of HNF1-target genes110. Thus,
Hnf4α-deficiency may alter the interaction of co-activators CDP
and p300 with β-catenin, resulting in marked deregulation of β-
catenin signaling and accelerated cell proliferation and dediffer-
entiation of hepatocytes.
2.6.5. Interaction with thyroid hormone-responsive Kruppel-like
factor 9 (KLF9)
The prohormone T4 can be catalyzed by type 1 iodothyronine
deiodinase (Dio1) to form the active T3, whereas T3 can be
inactivated by Dio3. The high ratio of Dio3 to Dio1 in fetal liver
keeps T3 at low levels in the fetal circulation111. Upon birth, there
is a surge in blood levels of T4 and T3 which stimulate
gluconeogenesis in the liver111. Thyroid dysfunction profoundly
alters the expression of many key drug metabolizing enzymes and
transporters in liver, kidney, and intestine112–115. Thyroid hormone
(TH) is also important in regulation of hepatic lipid metabolism116.
TH potently induces P450 oxidoreductase (POR) in HepG2 cells
and rat liver117,118. TH increases HNF4α mRNA and protein levels
in HepG2 cells119. KLF9, a GC box-binding protein of SP1 family
transcription factors, regulates certain cytochrome P450 genes,
such as CYP1A1, CYP2D6, and CYP7A1, by binding to the
CACCC core sequence in the promoter120–122. KLF9 is induced
by TH receptor in mouse and human hepatocytes; the induction of
KLF9 by T3 in neonatal human hepatocytes is much stronger than
in adult hepatocytes123. KLF9 plays a key role in modulating the
response of HepG2 cells to T3123. Interestingly, KLF9 synergizes
with HNF4α to induce human CYP2D6122 and mouse Dio1124.
However, no direct physical interaction of KLF9 and HNF4α can
be detected122, whereas the physical interaction of GATA4 with
both HNF4α and KLF9 appears to be essential for synergistic
activation of Dio1 gene by HNF4α and KLF9124. Hepatic mRNA
expression of KLF9 increases during postnatal development,
whereas KLF9 is down-regulated in liver cancer, and overexpres-
sion of KLF9 inhibits the proliferation of liver cancer cells125.
Thus, KLF9 appears to play an important role in liver differentia-
tion and maturation promoted by TH and HNF4α. In contrast,
KLF9 promotes lipogenesis in adipocytes and hepatocytes126,127,
and KLF9 mediates acetaldehyde-induced c-Jun N-terminal kinase
(JNK)-dependent alphaI(I) collagen gene expression in hepatic
stellate cells (HSCs)128. Hnf4α deficiency in liver markedly
elevates blood levels of T4124 and rapidly causes fatty liver and
liver fibrosis. Thus, it will be interesting to determine how Hnf4α
deficiency may alter the expression and biological activities of
KLF9 in hepatocytes and HSCs and its contribution to fatty liver
and liver fibrosis.
2.6.6. Interaction with transforming growth factor-beta (TGF-β)
and SMAD
The TGF-β signaling pathway is essential in the regulation of
different cellular processes, including proliferation, differentiation,
migration or cell death, which is essential for tissue homeostasis.
TGF-β signaling participates in all stages of liver disease progres-
sion, from initial liver injury through inflammation and fibrosis, to
cirrhosis and cancer129. TGF-β promotes liver differentiation
during embryogenesis and physiological liver regeneration by
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exerting cytostatic and apoptotic effects on hepatocytes130. Inter-
estingly, TGF-β and HNF4α rank among the top 3 upstream
regulators of gene expression in postnatal liver development in
mice97. TGF-β plays a dominant role in suppressing the function
of HNF4α by transcriptional inhibition and posttranslational
modification of HNF4α131,132. TGF-β activates its membrane
receptor, which leads to phosphorylation and activation of Smad2
and Smad3 that can partner with the common mediator Smad4,
and these heteromeric complexes can translocate to the nucleus to
regulate specific gene expression129. In human hepatocytes, the
TGF-β–activated Smad3/Smad4, but not Smad2, physically inter-
act with HNF4α to synergistically induce apolipoprotein C3133,134.
In contrast, interaction of the TGF-β–activated Smad3 with
HNF4α inhibits the binding of HNF4α to the CYP7A1 promoter
and the activation of CYP7A1 in human hepatoma and primary
hepatocytes135. The DNA-binding of Smad2/Smad3 is highly cell-
type-specific. In a genome-wide study, HNF4α-binding motif is
identified as an enriched motif in the HepG2-specific Smad2/3
binding regions, and 32.5% of the Smad2/3 binding regions
overlap HNF4α bindings136, which illustrates an extensive cross-
talk of Smads with HNF4α and an important role of HNF4α in
dictating the cell-specific role of TGF-β. In hepatocytes, TGF-β
signaling via Smad2 (which does not directly interact with
HNF4α) promotes steatohepatitis through inducing cell death
and lipogenesis in mice137. In contrast, results from 3D co-
culture of hepatocytes and NIH3T3 cells demonstrate that TGF-β
is required for the enhanced hepatocyte function of drug metabo-
lism138. Taken together, there is extensive interaction of HNF4α
with TGF-β during liver development and disease progression.
2.6.7. Interaction with growth hormone (GH) and the JAK2/
STAT5 pathway
The essential role of GH in regulating body growth and maturation
of the liver is well demonstrated by studies of GH transgenic
mice139 and the Gh-deficient lit/lit mice which have a spontaneous
mutation in the growth-hormone releasing-hormone receptor140–
142. Pituitary GH secretion pattern in humans and other species is
highly pulsatile. In rodents, this pattern is sexually dimorphic;
males have regular high-amplitude pulses and relatively low
interpulse GH levels, and females have lower amplitude pulses
and higher interpulse levels. In rodents, pulsatile or continuous GH
increases or decreases STAT5b activation, respectively. The
intermittent pulses of liver STAT5 activity are first observed at
puberty (5 weeks of age in rats), when plasma GH pulsation first
begins and expression of male-specific, GH pulse-activated liver
genes first occurs143. Hepatic expression of drug metabolizing
enzymes and transporters are profoundly altered in lit/lit
mice142,144–146, demonstrating a critical role of GH in regulating
hepatic expression of DPGs. Disruption of GH-JAK2-STAT5
signaling is associated with liver diseases, including fatty liver,
fibrosis, and liver cancer147. In contrast, activation of the JAK2-
STAT5 pathway is a key driving force in the pathogenesis of
myeloproliferative neoplasms and inflammation148. Thus, the
biological role of STAT5 is highly cell-context-dependent. The
interaction of HNF4α with GH-Jak2-Stat5 pathway plays a key
role in coordinating gender-specific expression of DPGs in
mice11,149,150. Interestingly, STAT5b and HNF4α exhibit bi-
directional crosstalk which may enhance HNF4α-dependent gene
transcription but inhibit STAT5b transcriptional activity via the
inhibitory effects of HNF4α on JAK2 phosphorylation, leading to
inhibition of STAT5b signaling initiated by the GH receptor at the
cell surface149. Thus, HNF4α might play an important role in
dictating the differential biological effects of STAT5 activation
(anticarcinogenic in hepatocytes but procarcinogenic in
hematopoietic cells). Currently, there is no report on how
HNF4α deficiency alters STAT5 signaling in the liver.

GH secretion patterns are frequently disturbed during chronic
diseases. Chronic kidney disease (CKD) is associated with
resistance to the growth-promoting and anabolic actions of GH,
leading to retardation of body growth in children and contributing
to muscle wasting in adults151. In CKD rats, GH-induced tyrosine
phosphorylation and nuclear translocation of STAT5 is markedly
impaired152. Interestingly, the DNA-binding of HNF4α is mark-
edly decreased in livers of CKD rats, which is associated with
striking hepatic down-regulation of male-predominant CYP2C11
and CYP3A2153. Hyperlipidemia and decreased drug metabolism/
disposition are characteristics of CKD patients154,155, in which the
disruption in the interaction between HNF4α and GH-JAK2/
STAT5 pathway may have a key pathogenic role.
2.6.8. Interaction with glucocorticoids and glucocorticoid
receptor (GR)
Glucocorticoids are essential in postnatal liver development.
Results from studies of mice with liver-specific knockout of Gr
demonstrate that GR function in hepatocytes is essential to
promote postnatal body growth156,157. Additionally, direct GR–
STAT5 interaction in hepatocytes is essential in the control of
postnatal body growth and liver maturation156. Combined defi-
ciency in hepatic STAT5 and GR signaling in Stat5-Gr-double-
knockout mice increases hepatic lipid load and HCC formation158.
Mice lacking GR in hepatocytes are indistinguishable from their
littermates until 3–4 weeks of age, when the GH-dependent body
growth becomes essential157. Interestingly, GR physically interact
with STAT5 to function as an essential co-activator of STAT5 in
mediating hepatic GH signaling to activate the transcription of
genes essential for postnatal body growth156. Although both
Stat5 knockout and Stat5/Gr double knockout mice develop
hepatosteatosis, only the Stat5/Gr double knockout mice develop
inflammation and spontaneous liver tumors158. It is shown that GR
binding to the enhancer of Hnf4α may induce hepatic expression
of Hnf4α around birth in mice159. HNF4α and GR cooperate to
induce hepatic expression of phosphoenolpyruvate carboxyki-
nase160, a key gene in gluconeogenesis, and they synergistically
transactivate CYP2A6161. Additionally, induction of HNF4α by
GR in human hepatocytes leads to induction of organic cation
transporter 1 (OCT1)162. There is no report on whether HNF4α
and GR can physically interact to co-regulate gene expression.
2.6.9. Interaction with insulin-responsive transcription factors
The transcription factors sterol regulatory element-binding proteins
(SREBPs) are activated by insulin to promote lipogenesis and
inhibit gluconeogenesis. Insulin resistance is often associated with
hyperinsulinemia. During hyperinsulinemia, HNF4α is down-
regulated by SREBP2 in mouse liver and human hepatocytes163.
Through interaction of the transactivation domain of SREBP1 with
the ligand binding/AF2 domains of HNF4α, SREBP1 competi-
tively inhibits PGC1α recruitment by HNF4α, resulting in hepatic
down-regulation of gluconeogenic genes PEPCK and G6PC164.
The transcription factor FoxO1 interacts with the DBD of HNF4α
to inhibit the binding of HNF4α to the cognate DNA; phosphor-
ylation of FoxO1 by the insulin-PI3K pathway reverses the
repression of HNF4α transcriptional activity by FoxO1165. Thus,
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insulin appears to have a dual role in regulating the transcriptional
activity of HNF4α via SREBPs and FoxO1.
3. Factors modulating HNF4α expression

3.1. Down-regulation by inflammation/infection and metabolic
stresses

During inflammation, interleukin-1β (IL-1β) down-regulates HNF4α
via the MAPK kinase (MEK)-1/2 and JNK MAPK signaling
pathways in HepG2 cells and mouse liver166. A time-course study
showed that HNF4α mRNA expression was decreased more than
80% 2–4 h after IL-1β treatment, but returned to control levels 12 h
after IL-1β treatment in HepG2 cells166. Tumor necrosis factor α
(TNFα) also down-regulates HNF4α expression via the JNK
pathway in HepG2 cells167. Additionally, TNFα activates the NF-
κB pathway to suppress the transcriptional activity, but not the
expression, of HNF4α in hepatocytes168. Interestingly, HNF4α was
shown to exert anti-inflammatory effects in human hepatocytes via
the miR-124-IL6R-STAT3 pathway; knockdown of HNF4α in
human hepatocytes leads to down-regulation of miR-124, induction
of IL6R and IL6, and activation of STAT3169. However, there is no
induction of IL-6 or activation of STAT3 in adult mice with acute
loss of HNF4α6. Thus, there may be species difference between
humans and mice regarding the interaction of HNF4α with
inflammation in the liver. Additionally, HNF4α is down-regulated
by hepatitis B virus (HBV) X protein by unknown mechan-
ism170,171. The effects of HCV infection on HNF4α are less clear.
HNF4α has been shown to be induced by the HCV infection and the
HCV non-structural protein NS5172,173, whereas HNF4α protein
was reported to be reduced in HCV-infected hepatocytes and
hepatoma cells due to the targeting of the 30 UTR of HNF4α
mRNA by the HCV-derived small non-coding RNA vmr11174.
3.2. Inhibition of protein expression of HNF4α by microRNAs

The protein expression of HNF4α in hepatocytes is markedly
inhibited by miR-21, miR-24, and miR-34a16,102,175. miR-34a is
highly induced in patients with non-alcoholic steatohepatitis,
diabetic mice, and mice fed a high-fat diet16. Overexpression of
miR-34a reduces HNF4α expression and promotes liver steatosis
and hypolipidemia16. The expression of miR-24 and miR-34a is
markedly induced by the PKC/MAPK and reactive oxygen species
pathways102, whereas the oncomiR miR-21 is overexpressed in
alcoholic liver injury, liver fibrosis, and liver cancer175-177. Thus,
induction of miR-21, miR-24, and miR-34a during inflammation
and metabolic/oxidative stresses may contribute to the posttran-
scriptional down-regulation of HNF4α in the liver.
3.3. Post-translational regulation by G protein Gα12

The G protein Gα12 is overexpressed in many types of cancers
including liver cancer178. Transient expression of Gα12 only
decreased HNF4α protein levels, whereas stable expression of
Gα12 substantially decreased both the mRNA and protein levels of
HNF4α in the human hepatoma Huh7 cells179. In Huh7 cells,
activated Gα12 increased the ubiquitination and degradation of
HNF4α protein179; however, the underlying mechanism remains
unknown.
4. Knowledge gaps in understanding the role of HNF4α in
regulation of hepatic gene expression and pathophysiology

Although much have been known about HNF4α, there are still
some important knowledge gaps regarding the role of HNF4α in
regulating hepatic metabolism of drugs and lipids.
4.1. Differential role of HNF4α in regulation of DPGs in mice
and humans

In human livers, the mRNA expression of HNF4α correlates with a
large number of DPGs180. The causative role of HNF4α in
regulating DPGs in human liver has been studied by knocking
down HNF4α in human hepatocytes with siRNA or viral vectors.
Knockdown of HNF4α in human hepatocytes causes global down-
regulation of DPGs and certain xenobiotic receptors, including
CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6,
CYP3A4, UGT1A1, UGT1A9, SULT2A1, ABCB1, ABCB11,
ABCC2, OATP1B1 and OCT1, as well as those of PXR and
CAR181. CYP2E1 plays important roles in the metabolism of
environmental chemicals, ethanol, and therapeutic drugs such as
acetaminophen182. Knockdown of HNF4α did not affect CYP2E1
mRNA expression in primary human hepatocytes181. In contrast,
knockdown of HNF4α markedly decreases CYP2E1 expression in
HepG2 cells170. It is noteworthy that HNF4α mutation causes
diabetes which can induce CYP2E1182, and Hnf4α-deficiency in
adult mouse liver activates the Wnt/β-catenin pathway, a key
transactivator of Cyp2e1105. Thus, the role of HNF4α in the
regulation of CYP2E1, a highly inducible enzyme, is not
conclusive and may be cell context-dependent.

Sulfation is essential for the metabolism of hormones and
detoxification of bile acids183. SULT2A1 is important in the
sulfation of androgen precursor hormone dehydroepiandrosterone,
bile acids, and hydroxymethyl polycyclic aromatic hydrocarbon
procarcinogens184. HNF4α plays a central role in the control of
SULT2A1 transcription by directly binding to the promoter of
SULT2A1 in human hepatocytes185. In humans, the expression of
SULT2A1 is very low in fetal liver, but rapidly increases to high
levels at 1 year after birth and remains little changed afterwards;
there is no gender difference in hepatic expression of SULT2A1 in
humans186. In contrast, in mice, hepatic mRNA expression of
Sult2as peaks around weaning in both genders, after which hepatic
expression of Sult2as sharply decreases to undetectable levels in
male mice, but decreases to moderate levels in female mice, due to
suppressive effects of androgens and male-pattern GH secretion, as
well as stimulatory effects by estrogens and female-pattern GH
secretion187. In parallel, serum and urinary levels of BA sulfates
are high in humans but very low in adult male mice188,189. In mice,
Hnf4α deficiency increased hepatic expression of Sult2a2 in male
mice10, but moderately decreased Sult2a in female mice11. The
effect of HNF4α on the promoter activities of mouse Sult2as has
not been reported. There appears to be significant species
difference between humans and adult mice regarding the role of
HNF4α in regulating hepatic Sult2a expression as well as sulfation
of hormones and BAs, which may have significant implications in
the extrapolation of data from mice to humans. It remains to be
determined whether the neonatal and adolescent male mice, which
have similarly high hepatic expression of Sult2as, may be closer to
humans regarding the role of HNF4α in regulating Sult2as and
sulfation of hormones and BAs.
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4.2. Knowledge gap regarding the role of HNF4α in regulation
of lipid metabolism, inflammation, and cell death

The conversion of cholesterol to bile acids for biliary excretion is a
major pathway for the excretion of excess cholesterol. A common
feature in patients with chronic cholestatic liver disease is
hyperlipidemia manifested by a marked increase of low-density
lipoprotein (LDL) and variable high-density lipoprotein (HDL)
cholesterol levels190. In contrast, in adult mice with liver-specific
knockout of Hnf4α, the severe cholestasis is associated with
markedly lower blood levels of triglycerides and more than 50%
lower blood cholesterol than the wild-type mice3. Likewise,
knockdown of Hnf4α in adult mouse liver also result in markedly
decreased blood levels of triglycerides and cholesterol191. There
are no signs of apoptosis or inflammation in Hnf4α-deficient
livers of adult mice6. The marked deceases in blood levels of
triglycerides and cholesterol and lack of increases in apoptosis and
inflammation in Hnf4α-deficient livers of adult mice is in a sharp
contrast to the hyperlipidemia and increases in apoptosis and
inflammation in most chronic liver diseases such as alcoholic and
non-alcoholic steatohepatitis, cholestatic liver injury, viral hepati-
tis, and liver cirrhosis, diseases in which HNF4α is often markedly
down-regulated in both patients and animal models12–15. Thus,
there is apparently a key knowledge gap regarding the role of
HNF4α in the regulation of lipid metabolism, cell death, and
inflammatory responses during chronic liver diseases. Is such
discrepancy due to a partial loss of HNF4α in humans and mice
with liver diseases versus a nearly complete loss of HNF4α in
Hnf4α-null mouse livers? Alternatively, is such discrepancy due to
the differences in the causes of Hnf4α deficiency, namely
environmental insults (by inflammatory cytokines, viral proteins,
ethanol metabolites, etc.) versus genetic deletion? It is noteworthy
that various hormones and cytokines are dysregulated in chronic
liver diseases. As aforementioned, these hormones and cytokines
crosstalk extensively with HNF4α in the liver. Hepatocytes and
hepatoma cells are resistant to LPS-induced cell death. Knock-
down of HNF4α in immortalized human hepatocytes decreases
apoptosis169. Interestingly, the dedifferentiated hepatoma cells that
have been selected for the loss of the liver-enriched HNF4α/
HNF1α are very sensitive to LPS-induced apoptosis192. In this
regard, targeted deletion of Hnf4α in mouse intestines, where the
epithelial cells are exposed to LPS released from the gut bacteria,
increases both cell proliferation and apoptosis193. Moreover, when
challenged with dextran sulfate sodium, mice with intestine-
specific knockout of Hnf4α have markedly more severe colitis,
manifested by the absence of epithelium and intensive submucosal
infiltration of inflammatory cells194. Thus, loss of HNF4α might
provide cells the proliferative and survival advantage under
particular conditions, but might make cells more susceptible to
cell death induced by inflammation and/or metabolic stresses.

Alcohol consumption and fat ingestion are closely associated
and stimulated by each other195. Ethanol and fat consumption act
synergistically to increase blood triglycerides levels195. Alcohol-
induced hypertriglyceridemia is due to increased fat intake and
VLDL secretion, impaired lipolysis, and increased free fatty acid
fluxes from adipose tissue to the liver195,196. In contrast, the model
of ad libitum feeding with the Lieber–DeCarli diet that contains
ethanol, equal amount of fat (�30%–35% kcal fat) but much less
carbohydrate for 4 weeks has been widely used in animal models
of alcoholism; this model only induces mild steatosis and slight
elevation of serum ALT, with little or no liver inflammation197. In
comparison, feeding mice high-fat diet causes hepatic inflamma-
tion without hepatosteatosis198, whereas mice fed a high-fat
ethanol-containing diet followed by single dose of LPS injection
develop severe steatohepatitis manifested by marked elevation of
blood ALT, hepatic necrosis, accumulation of lipids, induction of
inflammatory cytokines such as TNFα and IL-1β, characteristics
that mimic human alcoholic steatohepatitis199.

Hepatic HNF4α activity is decreased in mice by chronic ethanol
consumption, partly due to the depletion of zinc as a key cofactor
for HNF4α15. In view of the inhibitory effects of ethanol, high-fat,
and inflammatory cytokines on the expression and/or activity of
HNF4α, it is conceivable that HNF4α is markedly down-regulated
in human alcoholic and non-alcoholic steatohepatitis16. It is likely
that the marked hypolipidemia and lack of apoptosis or inflamma-
tion in the adult regular-chow-fed mice with liver-specific knock-
out of Hnf4α might not reflect the role of HNF4α in the regulation
of lipid metabolism, apoptosis, and inflammation in patients and
animal models of alcoholic or non-alcoholic steatohepatitis, when
profound interactions among high-fat intake, LPS exposure, and/or
ethanol are factored in. Interestingly, after challenged with the
hepatic carcinogen diethylnitrosamine (DEN), adult Hnf4α-defi-
cient mice have more liver tumors, which is associated with
increases in inflammatory foci61. Future studies of mice with liver-
specific knockout of Hnf4α under these stress conditions (e.g.,
high-fat diet, ethanol consumption, and endotoxin challenge) may
unveil surprising novel roles of HNF4α in the regulation of lipid
metabolism, inflammation, and cell death in alcoholic and non-
alcoholic steatohepatitis.
4.3. Knowledge gap in developmental-stage-specific effects of
HNF4α deficiency on liver transcriptome and pathophysiology

Targeted deletion of Hnf4α in fetal mouse livers results in dramatic
down-regulations of a large number of liver-enriched transcription
factors, such as HNF1α, HNF1β, HNF3β, HNF6, liver receptor
homolog-1 (LRH-1), FXR, PXR and CAR2. In contrast, targeted
deletion of HNF4α in young-adult mouse livers results in only
moderate down-regulations of HNF1α and HNF3β, no changes in
FXR and PXR, but induction of HNF1β and LRH-12. Loss of
Hnf4α in fetal liver blocks the induction of proteins required for
cell junction assembly and adhesion200, resulting in the failure of
morphological and functional differentiation of hepatocytes201.
Hnf4α-deficient fetal liver has dramatic down-regulation of
glycogen synthase GYS2 and key gluconeogenic enzymes glu-
cose-6-phosphatase, catalytic subunit (G6PC) and phosphoenol-
pyruvate carboxykinase (PCK1), and much lower glycogen201.
However, there are no changes in apoptotic cell death or cell
proliferation between Hnf4α-null and control fetal livers201. In
contrast, loss of HNF4α in adult mouse liver causes rapid cell
proliferation, which is associated with activation of β-catenin and
induction of c-Myc and cyclin D1, key factors in cell prolifera-
tion6,107. However, there is no increase of apoptosis, resulting in
marked hepatomegaly in Hnf4α-null mice6. Thus, loss of HNF4α
in fetal and adult liver causes distinct changes in hepatic
transcriptome and cell proliferation; the underlying mechanism
remains poorly understood.

Little is known about the role of HNF4α in postnatal liver
development and maturation. There is a remarkable metabolic
switch during postnatal liver development. The expression of most
DPGs are very low in fetal liver202. Upon birth, there is an
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immediate need for the clearance of metabolic waste and xeno-
biotics. Consequently, there is a postnatal surge in hepatic
expression of DPGs right after birth97,202,203. In humans, hepatic
expression of most DPGs reach near-adult levels by 1 year of
age202, whereas hepatic DPG expression in mice approaches adult
levels shortly after weaning97. The remarkable postnatal changes
in DPG expression is associated with marked alterations in energy
and lipid metabolism. In utero, the main energy substrate
transferred across the placenta is glucose204. However, after birth
there is a sudden change of energy substrate to fatty acids due to
the consumption of high-fat, low-carbohydrate milk, and this is
associated with marked hepatic induction of the fatty-acid receptor
PPARα and its target genes, such as Cyp4a14/10, acyl-CoA
thioesterases, and Cpt1a during suckling205. Interestingly, a recent
genome-wide analysis of inducible transcriptome by PPARα in
human hepatocytes demonstrates a novel role of PPARα in
inducing key DPGs such as CYP3A4 and CYP2C8 in humans85.
The suckling-weaning transition is also accompanied by a change
of the major energy source back to carbohydrates due to the intake
of higher-carbohydrate and lower-fat solid foods. Thus, the
postnatal peri-weaning period represents a key unique develop-
mental stage for hepatic expression of genes essential in drug and
lipid metabolism, in which the activation of PPARα and its
extensive crosstalk with HNF4α72 may play a major role.
Currently, little is known about the role of HNF4α in postnatal
liver development. In neonatal (1–2 weeks of age) double
transgenic mice with HBV transgene, Hnf4α floxed at exons
4 and 5, and the Alb-cre, Hnf4α deficiency is associated with
50% lower body weight, hypoglycemia, elevated serum bile acids,
and markedly decreased viral replication and viral RNA load206.
Thus, HNF4α is essential for postnatal liver development and
HBV replication; however, the role of HNF4α in regulating
hepatic expression of DPGs and lipid metabolism during postnatal
liver development remains largely unknown. We found that
targeted deletion of Hnf4α in the neonatal peri-weaning mice
markedly altered hepatic transcriptome and lipid metabolism, with
some key changes highly distinct from those in mice with either
fetal-liver- or adult-liver-specific knockout of Hnf4α (unpublished
results). Understanding the mechanism of the neonatal/peri-wean-
ing-specific role of HNF4α in regulating DPGs and lipid metabo-
lism is important in developmental pharmacology.
4.4. Knowledge gap in differential effects of HNF4α mutations
on plasma lipid profiles in humans

There are conflicting reports regarding the association of HNF4α
mutations with blood lipid profiles in diabetic patients who carry
various HNF4α mutations. In a maturity-onset diabetes of the
young (MODY1) family with a nonsense mutation (R154X) of
HNF4α, there is a paradoxical 3.3-fold increase in serum levels of
lipoprotein(A)207, which consists of an LDL-like particle and the
specific apolipoprotein(A) (ApoA). Lipoprotein(A) [Lp(A)] levels
are also elevated in three Japanese patients with MODY1 HNF4α
mutations208. Type 2 diabetic patients with a loss-of-function
T130I HNF4α mutation have lower blood levels of HDL
cholesterol209. In contrast, 24 members of the HNF4α/MODY1
pedigree (Q268X mutation) have decreased blood levels of
Lipoprotein(A) and triglycerides210. Moreover, 6 young MODY1
patients in Sweden have decreased blood levels of VLDL and LDL
but slightly elevated HDL211. Currently, the mechanism of the
differential effects of different HNF4α mutations on blood lipid
profiles remains unknown. Although some confounding factors,
such as individual variations, dietary factors, or drug treatments,
may contribute to such discrepancy, mutations of HNF4α at
different sites have been shown to exert differential effects on
their transactivation activity, cellular localization, and the interac-
tion with wild-type (WT) HNF4α and the co-repressor SHP. The
R154X mutant lacks the E domain but retains DNA binding
activity in vitro; R154X mutant has markedly decreased transacti-
vation activity and exerts dominant-negative effects on WT
HNF4α in β-cells212. In contrast, the Q268X mutant contains an
intact DBD but a truncated dimerization domain and LBD; the
Q268X mutant does not bind to DNA or form dimer, and it does
not exert dominant-negative effect on WT HNF4α in HepG2
cells213. Interestingly, the R154X mutant lacks the binding ability
to WT HNF4α or SHP, whereas the Q268X mutant can interact
with and alter the cellular distribution of WT HNF4α and SHP 214.
It remains to be determined whether the putative differential
effects of Q268X and R154X mutations on the mutant and WT
HNF4α as well as SHP may cause divergent changes in lipid
metabolism in MODY1 patients.
5. Conclusions and future perspectives

After intensive studies of HNF4α in the past two decades, much
have been known about the importance of HNF4α in liver
pathophysiology. HNF4α is critical in regulating all key aspects
of liver development and function, with particular importance in
regulating hepatic expression of DPGs and genes essential for the
metabolism of cholesterol, bile acids, and lipids. The expression
and activity of HNF4α are regulated by diverse extracellular and
intracellular signaling pathways, and HNF4α crosstalks exten-
sively with other transcription factors to dictate hepatic gene
expression. Thus, HNF4α sits in the center of the hierarchy of
liver transcriptional network to coordinate various extra- and
intra-cellular signaling to fine-tune the liver transcriptome during
hepatocyte proliferation, differentiation, and maturation. HNF4α
mutations cause MODY1 in humans, whereas reduced expression
and/or activity of HNF4α is associated with all major liver
diseases, such as alcoholic and non-alcoholic steatohepatitis,
viral hepatitis, liver cirrhosis, and liver cancer. Although the
activation ligands for HNF4α have not been definitively identi-
fied, it is very encouraging that overexpression of HNF4α mRNA
in hepatoma and/or the cirrhotic liver can not only inhibit liver
cancer but also improve liver function and ameliorate liver
cirrhosis. This means that approaches that boost the mRNA or
protein expression of HNF4α can not only inhibit liver cancer but
also improve liver function, which is highly desirable for the
treatment of liver cancer, a deadly disease that lacks effective
pharmacological treatment.

Despite decades of intensive research, there are still some
important knowledge gaps regarding how the expression and
activity of HNF4α is regulated, and how the deficiency of
HNF4α may differentially affect gene expression and patho-
physiology under various infectious/inflammatory and meta-
bolic stresses. It remains to be determined whether the various
HNF4α mutations and posttranslational modifications (e.g.,
methylation, acetylating, and phosphorylation) of HNF4α and
co-activators/co-repressors cause uniform or gene-specific
changes in the expression of HNF4α-target genes. HNF4α
deficiency results in hepatic induction of a large number
of genes; however, the mechanism of suppression of gene
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expression by HNF4α remains poorly understood. In view of the
extensive crosstalk of HNF4α with other signaling pathways,
many of which have a dual role in modulating liver pathophy-
siology, deficiency of HNF4α will likely shift the balance of
these signaling pathways toward detrimental outcomes. For
example, the JAK/STAT5 pathway can promote inflamma-
tion147, and the TGF-β/Smad2, but not the TGF-β/Smad3
pathway, promotes steatohepatitis in hepatocytes136. Thus, it is
important to understand how HNF4α deficiency alters these
signaling pathways so that we can better understand the
pathogenesis induced by HNF4α deficiency. Some MODY1
patients develop young-onset diabetes before puberty, and
HNF4α is likely down-regulated in various inflammatory and
viral liver diseases in children. How HNF4α deficiency in
neonates and adolescence affects liver pathophysiology, parti-
cularly the metabolism of drugs and lipids, is an important
knowledge gap to be bridged in pediatric pharmacology. To
fully understand the impact of HNF4α deficiency on the liver
and the whole body, Hnf4α-null mice need to be challenged
with various stresses (e.g. viral infection, inflammation, high-fat
diet, and xenobiotic treatment). Lastly, the development of
novel approaches that effectively enhance the expression and/
or activity of HNF4α may provide very promising novel therapy
for liver diseases, particularly liver cancer.
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