
LORAKS Makes Better SENSE: Phase-Constrained Partial 
Fourier SENSE Reconstruction without Phase Calibration

Tae Hyung Kim1, Kawin Setsompop2, and Justin P. Haldar1

1Electrical Engineering, University of Southern California, Los Angeles, CA, USA

2Radiology, Harvard Medical School, Boston, MA, USA

Abstract

Purpose—Parallel imaging and partial Fourier acquisition are two classical approaches for 

accelerated MRI. Methods that combine these approaches often rely on prior knowledge of the 

image phase, but the need to obtain this prior information can place practical restrictions on the 

data acquisition strategy. In this work, we propose and evaluate SENSE-LORAKS, which enables 

combined parallel imaging and partial Fourier reconstruction without requiring prior phase 

information.

Theory and Methods—The proposed formulation is based on combining the classical SENSE 

model for parallel imaging data with the more recent LORAKS framework for MR image 

reconstruction using low-rank matrix modeling. Previous LORAKS-based methods have 

successfully enabled calibrationless partial Fourier parallel MRI reconstruction, but have been 

most successful with nonuniform sampling strategies that may be hard to implement for certain 

applications. By combining LORAKS with SENSE, we enable highly-accelerated partial Fourier 

MRI reconstruction for a broader range of sampling trajectories, including widely-used 

calibrationless uniformly-undersampled trajectories.

Results—Our empirical results with retrospectively undersampled datasets indicate that when 

SENSE-LORAKS reconstruction is combined with an appropriate k-space sampling trajectory, it 

can provide substantially better image quality at high-acceleration rates relative to existing state-

of-the-art reconstruction approaches.

Conclusion—The SENSE-LORAKS framework provides promising new opportunities for 

highly-accelerated MRI.
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Introduction

Slow data acquisition speed has always been a major limitation of MRI. While many speed 

improvements have been achieved over the past 40+ years of MRI technology development, 

relatively long data acquisition times are still a barrier in many important clinical and 

research scenarios.

Existing strategies for making MRI experiments faster include:

• The use of specialized pulse sequences that rapidly sample k-space like echo-

planar imaging (EPI) (1), spiral imaging (2), and steady-state free precession 

(SSFP) imaging (3,4).

• The use of novel non-Fourier encoding mechanisms like the spatially-varying 

sensitivity profiles of an array of receiver coils (5–12) and tailored spatially-

selective radiofrequency pulses (13–18).

• The use of powerful constrained reconstruction approaches that use prior 

knowledge about the image characteristics (e.g., phase constraints (19–23), 

support constraints (22, 24, 25), sparsity constraints (26–31), and rank 

constraints (32–34)) to enable data sampling below the conventional Nyquist 

rate.

These different fast imaging strategies can be combined in some scenarios to enable even 

higher acceleration rates. However, it's often the case that the ideal sampling strategy is 

different for different fast imaging methods. For example, fast EPI and balanced SSFP pulse 

sequences can be more prone to artifacts when used with nonuniform phase encoding step 

sizes (35, 36), and are most easily used with uniform k-space sampling. In contrast, 

advanced reconstruction methods based on sparsity or rank constraints often advocate the 

use of sub-Nyquist random or nonuniform k-space sampling (26–29, 31–34), while phase-

constrained partial Fourier methods often require a sizeable region from the center of k-

space (a “calibration region”) to be sampled at the Nyquist rate in order to estimate the 

image phase (20–22). These different sampling considerations are nontrivial to reconcile, 

and practical trade-offs are often made when these fast imaging methods are combined that 

end up limiting the potential acceleration rates.

In this work, we propose a new method called SENSE-LORAKS that combines parallel 

imaging with constrained image reconstruction based on phase and support constraints, in a 

manner that enables simple combination of partial Fourier acquisition with arbitrary 

sampling trajectories, including the uniform undersampling strategies used by fast EPI and 

balanced SSFP pulse sequences. Unlike existing methods for using these constraints, this is 

achieved using a flexible regularization constraint, without any need for the k-space 

trajectory to include a phase calibration region, nonuniform sampling, prior information 

about the image phase or support, or specialized processing to account for the features of the 

sampling pattern.

As the name would suggest, one component of SENSE-LORAKS is based on our original 

LORAKS (Low-RAnk modeling of local K-Space neighborhoods) framework (37,38), 
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which has recently been generalized in a number of ways (39–44). LORAKS is a novel 

constrained image reconstruction framework that is based on the fact that many MRI images 

have limited spatial support (i.e., there are empty regions within the field of view) and 

smoothly varying phase. These are the same constraints used in classical support-constrained 

and phase-constrained image reconstruction methods (19–22, 24, 25). However, a key 

difference from previous methods is that LORAKS does not require a prior estimate of the 

image phase or image support and does not require calibration data. This gives additional 

flexibility in the design of k-space sampling patterns, which can be leveraged to achieve 

higher experimental efficiency. However, a potential limitation of the LORAKS framework 

is that it often has substantially lower performance with uniform sampling relative to 

nonuniform sampling and/or sampling with a calibration region. To address this limitation, 

SENSE-LORAKS combines the LORAKS framework with the SENSE (SENSitivity 

Encoding) model for parallel imaging data acquisition (6, 7). SENSE modeling is powerful 

in this setting because it can use prior knowledge of the coil sensitivity maps (derived from a 

prescan) to resolve the structured aliasing ambiguities associated with uniform 

undersampling, while also providing benefits when used with arbitrary trajectories.

It should be noted that SENSE has already been combined with phase and support 

constraints in a number of different ways (45–50). However, unlike SENSE-LORAKS, these 

techniques all require a good prior estimate of the image phase and support, which is derived 

using a calibration region and/or specialized trajectory-specific data processing.

It should also be noted that SENSE-LORAKS is not the first generalization of LORAKS to 

parallel imaging. The LORAKS framework was previously extended to parallel imaging in a 

framework known as P-LORAKS (39), which leverages similar parallel imaging constraints 

to earlier methods like GRAPPA (8), PRUNO (11), ESPIRiT (12), and especially SAKÉ 

(34), but also enforces additional phase constraints. Compared to SENSE-LORAKS, P-

LORAKS is fully calibrationless and does not require prior information about the coil 

sensitivity maps. P-LORAKS and SENSE-LORAKS both utilize the same regularization 

penalty, allowing both approaches to enforce the same kinds of calibrationless support and 

phase constraints. However, for cases where coil sensitivities are available, SENSE-

LORAKS can take advantage of this additional information to produce improved 

reconstructions. This leads to substantial advantages for SENSE-LORAKS over P-

LORAKS, particularly for widely-available uniform undersampling trajectories.

Theory

Review of SENSE and Phase-Constrained SENSE

The SENSE framework models parallel MRI data acquisition as (6,7)

[1]

for m = 1, 2,…, M and ℓ = 1, 2,…, L, where ρ(x) is the unknown image to be estimated 

(which varies as a function of the spatial position x), dℓ(km) is the data measured from the ℓth 
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coil at the mth k-space location km, sℓ(x) is the sensitivity map for the ℓth channel, and nℓ(km) 

is the measurement noise from the ℓth coil at the mth k-space location. We use M to denote 

the number of k-space sampling locations and L to denote the number of channels.

Discretizing ρ(x) in terms of Q different voxels leads to

[2]

for m = 1, 2,…, M and ℓ = 1, 2,…, L, which can be written compactly as the matrix equation

[3]

where d is the length-LM vector of data samples from each coil dℓ(km), E is the LM × Q 
matrix containing entries e−i2πkm⋅xqsℓ(xq), ρ is the length-Q vector of unknown voxel 

coefficients ρ(xq), and n is the length-LM vector of noise samples nℓ(km).

Assuming Gaussian noise and that the inter-channel noise covariance has been whitened, the 

SENSE approach finds the statistically-optimal maximum likelihood estimate for ρ (when E 
has full column rank) by solving the simple least squares problem (6,7)

[4]

The matrices E, EH, and EHE are generally too big to fit within the memory limits of 

modern computers, so are neither stored in memory nor directly inverted. Instead, the 

solution to Eq. [4] can be found iteratively, using diagonal matrices, fast Fourier transforms 

(FFTs), and gridding (if non-Cartesian trajectories are used) to efficiently compute matrix-

vector multiplications with E and it's adjoint EH (7).

When k-space data is aggressively undersampled, Eq. [4] is frequently ill-posed, and it is 

necessary to impose additional constraints to avoid severe noise amplification. The most 

common approach is to use Tikhonov regularization (51,52)

[5]

which prefers reconstructions with smaller ℓ2-norms. The regularization parameter λT can be 

chosen to adjust the relative contributions of the data fidelity term and the regularization 

term to the final reconstruction.
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Phase-constrained partial Fourier methods are based on the well-known fact that real-valued 

images will have conjugate-symmetric Fourier transforms (19–22). As a result, it is 

unnecessary to measure data from both sides of k-space for such images, leading to 

substantial accelerations in data acquisition. In practice, MRI images are never real-valued, 

and instead will typically have slowly-varying phase. However, if the image phase is known, 

it is still possible to predict one side of k-space from the other (20–22), which still enables 

acceleration by almost a factor of two.

Phase-constrained approaches have been previously combined with SENSE reconstruction 

(45–50), and a typical approach is to use regularization to enforce the phase constraints (46–

49). Let ϕ̂(xq) denote the estimated phase for the gth image voxel ρ(xq), and let P be a Q × Q 
diagonal matrix of eiϕ̂(xq) values. Phase-constrained SENSE approaches generally solve

[6]

where Imag{PH ρ} is the imaginary part of PH ρ and λP is another regularization parameter 

that controls the strength of the phase constraint. Notice that if ϕ̂(xq) is estimated accurately, 

then PH ρ should be real-valued and Imag{PHρ} ≈ 0. This phase constraint is enforced by 

the third term of the cost function, which is the only difference between phase-constrained 

SENSE and Eq. [5].

Typically, the phase information needed for phase-constrained SENSE is estimated by 

acquiring additional phase calibration data from the low-frequency region of k-space. 

Measurement of this calibration information usually requires additional scan time, which 

limits achievable acceleration rates. In addition, measuring a Nyquist-sampled calibration 

region is not easily compatible with uniformly-undersampled accelerated EPI or balanced 

SSFP acquisitions.

Review of LORAKS and P-LORAKS

Our previous LORAKS work (37,38,40) was based on the observation that the linear k-space 

dependencies used for phase-constrained (19–22) and support-constrained (22,24,25) MRI 

reconstruction could be mapped into the nullspace vectors of specially-constructed 

structured matrices formed from Nyquist-sampled k-space data. As a result, powerful recent 

low-rank matrix recovery techniques (53) could be used to reconstruct MRI images from 

noisy and/or undersampled k-space data. Importantly, this approach could be used with both 

calibration-based and calibrationless partial Fourier k-space trajectories, and could be used 

without any prior information of the image support or phase. In addition, the support and 

smooth-phase constraints could be imposed as generic low-rank regularization penalties that 

can be combined with arbitrary k-space sampling trajectories and arbitrary additional 

regularization constraints. LORAKS has been demonstrated to offer unique capabilities, and 

enables the use of promising novel k-space sampling trajectories that are not very 

compatible with existing reconstruction approaches.
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The early LORAKS literature describes three different ways of constructing low-rank 

matrices from k-space data (37,38). All three of these low-rank matrix constructions could 

be used simultaneously within the LORAKS framework. However, to simplify the 

description, we focus in this work on one specific low-rank matrix construction (called the 

“S matrix” in previous literature) that has been empirically observed to be the most powerful 

of the low-rank matrix constructions across a range of applications (37–40,43,44). Using the 

S matrix alone instead of using all three matrices together has the effect of reducing 

computational complexity and simplifying the selection of regularization parameters, with 

only minor performance degradations observed in previous empirical studies (37). Due to 

space limitations, we only present a high-level description of the S matrix, and refer 

interested readers to (37) for further detail.

For simplicity, we will assume for this description that ρ(x) is a 2D image and that the 

discretization ρ(xq), q = 1, 2,…, Q is defined on a rectilinear grid of sampling locations. Let 

F be the Q × Q unitary FFT matrix such that f = Fρ is the length-Q vector of Nyquist-grid 

samples of the Fourier transform of ρ. We will use the notation f[p] to denote the value of f 
at the grid point specified by the integer vector p ∈ ℤ2. The S matrix can be constructed 

from the vector f according to a linear operator S(⋅) : ℂQ → ℝ2T× 2NR defined by

[7]

where the matrices Sr+, Sr−, Si+, Si− ∈ ℝT×NR have elements,

[8]

[9]

[10]

[11]

In this expression, the vectors mq, q = 1, 2,…, NR are the full set of integer vectors within a 

radius of R from the origin (i.e., ), and the vectors pt ∈ ℤ2, t = 1,2,…,T 
are the full set of integer vectors from a rectilinear Nyquist-sampled k-space grid. It should 

be observed that the matrices Sr+, Sr−, Si+, Si− are all convolution matrices, and that each 
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row from these matrices is constructed from a local neighborhood of NR points in k-space. 

The neighborhood radius R is a user-selected parameter that plays a similar role to the kernel 

size in GRAPPA and related parallel imaging methods (8,11,12,34). It should also be noted 

that Sr+ and Si+ are formed using data from the opposite side of k-space relative to Sr− and 

Si−, as would be expected since the S matrix captures linear dependence relationships 

between opposite sides of k-space. It has been shown that the S matrix will have low rank if 

the continuous image ρ(x) has limited spatial support or slowly-varying phase (37,40).

P-LORAKS (39) extends LORAKS to parallel imaging data, leveraging the same inter-

channel linear dependence relationships used in previous Fourier-domain parallel imaging 

methods (8, 11,12,34). Specifically, if f1, f2,…, fL are the Nyquist-sampled k-space data 

from L different channels in a parallel imaging experiment and fP denotes the length-LQ 
vector concatenating them, then P-LORAKS constructs a modified S matrix using the linear 

operator PS(⋅) : ℂLQ → ℝ2T×2LNRdefined by

[12]

i.e., the concatenation of the single-channel S matrices. The single-channel S matrices will 

have low rank if the image has limited support or slowly-varying phase, and the 

concatenation will have even better low-rank characteristics because of correlations between 

different channels. Importantly, this enables parallel imaging reconstruction without 

requiring knowledge of the sensitivity maps and without requiring a fully-sampled k-space 

calibration region.

The P-LORAKS matrix reduces to the LORAKS matrix when the number of channels L = 1, 

so we will use P-LORAKS notation without loss of generality. In much of our previous work 

(37–40,44), LORAKS/P-LORAKS image reconstruction was performed by minimizing

[13]

where U ∈ ℂLM×LQ is a block diagonal matrix representing the k-space subsampling 

operation for each channel, and ‖ ⋅ ‖F denotes the Frobenius norm. The first term in this 

expression is a standard maximum likelihood data fidelity term, while the second term is a 

nonconvex regularization penalty that encourages the S matrix to have low rank. The 

regularization parameter λS controls the tradeoff between these two terms. The operator ℒr : 

ℝ2T×2LNR → ℝ2T×2LNR computes the optimal rank-r approximation of its argument (using 

truncation of the singular value decomposition (54)), where r is a user-selected rank 

parameter.

The optimization problem in Eq. [13] is a nonconvex approach to imposing rank constraints 

that incorporates prior knowledge of the matrix rank. We have previously shown (55) that 

this kind of formulation can offer substantial performance advantages over alternative 
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convex relaxation approaches that are popular for imposing rank constraints (53). This type 

of formulation is not only found in previous LORAKS work (37–40, 44), but has also 

proven successful for other structured (34,41) and unstructured (32) low-rank matrix 

completion problems in MRI.

The Proposed SENSE-LORAKS Approach

The reconstruction approach proposed in this paper is a fusion of the SENSE and P-

LORAKS approaches, and takes advantage of their complementary advantages. Using the 

SENSE data model is beneficial, because it allows use of prior information about the coil 

sensitivity maps that wouldn't normally be taken into account by P-LORAKS. Specifically, 

the SENSE model can be interpreted as imposing inter-coil linear dependence relationships 

in k-space (12) in a similar way to P-LORAKS. However, P-LORAKS solves the much 

harder problem of estimating these linear dependence relationships from undersampled data, 

while SENSE derives these inter-coil relationships in a much simpler way by using prescan 

data. Although P-LORAKS can successfully estimate the inter-coil relationships when data 

is sampled appropriately, there are certain common structured k-space trajectories for which 

it is very challenging for P-LORAKS to learn the inter-coil relationships successfully. For 

example, with uniform undersampling (i.e., the most common undersampling trajectory 

provided by modern commercial MRI scanners), no two adjacent lines of k-space are ever 

sampled simultaneously, which makes it nearly impossible to learn the inter-coil k-space 

relationships between adjacent lines. Using SENSE modeling in combination with P-

LORAKS removes this ambiguity. Using the P-LORAKS model is also beneficial to 

SENSE, because it can incorporate support and phase constraints into SENSE reconstruction 

without requiring prior information about the image support or phase, without requiring 

support or phase calibration data, and without making any assumptions about the k-space 

sampling pattern.

Our proposed SENSE-LORAKS image reconstruction is obtained by solving the following 

optimization problem

[14]

where the matrix G ∈ ℂLQ×Q is constructed as

[15]

and the matrices Bℓ, ℓ = 1, 2,…, L are Q × Q diagonal matrices containing the samples of the 

sensitivity profiles sℓ(xq) for each channel. Intuitively, the matrix-vector multiplication Gρ 
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uses the image ρ and the sensitivity maps to generate a simulated set of Nyquist-sampled 

multi-channel k-space data, as required by P-LORAKS to construct the S matrix.

Similar to our previous LORAKS work (37–40), we solve the nonlinear optimization 

problem in Eq. [14] using an iterative majorize-minimize algorithm that is guaranteed to 

monotonically decrease the cost function. Convergence to the global optimum is not 

guaranteed because of the nonconvexity of the cost function, though our previous empirical 

experience suggests that the algorithm frequently converges to good local optima (37–40) 

without requiring a sophisticated initialization. The detailed steps of our algorithm are 

described below.

1. Set iteration number i = 0, and initialize ρ̂(0). For all results shown in this paper, 

we initialize with the simple (and likely sub-optimal) SENSE reconstruction 

obtained by solving Eq. [5].

2. Compute S(i) = PS(Gρ̂(i)), and its rank-r approximation L(i) = ℒr(S(i)).

3. Solve the least squares problem

[16]

In this expression, I is the Q × Q identity matrix,  is the adjoint of the 

PS(⋅) operator, and PPS is the LQ × LQ matrix representation of the operator 

. As described in (37,38,40), PPS is a simple diagonal 

matrix that is easy to calculate based on the structure of the S matrix.

Similar to SENSE (7), Eq. [16] can be solved iteratively using the conjugate 

gradient algorithm, using diagonal matrices, FFTs, and gridding to compute fast 

matrix-vector multiplications without directly constructing or inverting large 

matrices.

4. Set i = i + 1. Iterate steps 2 - 4 until convergence.

Methods

SENSE-LORAKS was implemented as described in the previous section, using a k-space 

neighborhood radius of R = 3. As will be discussed later, reconstruction performance was 

not very sensitive to the choice of the rank parameter r or the regulation parameters λS and 

λT. As a result, we used coarsely-tuned sampling-independent (suboptimal) parameters for 

SENSE-LORAKS, though performed much more thorough parameter tuning for the 

alternative reconstruction methods we compare against.
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The proposed SENSE-LORAKS reconstruction was compared against four alternative 

reconstruction techniques:

• SENSE (6,7,51,52). Image reconstruction was performed using Eq. [5], with the 

Tikhonov regularization parameter λT optimized for each sampling configuration 

to achieve the smallest possible normalized root-mean-squared error (NRMSE).

• Phase-Constrained SENSE (46–49). Image reconstruction was performed using 

Eq. [6]. The phase regularization parameter λP and the Tikhonov regularization 

parameter λT were optimized for each dataset and sampling configuration to 

achieve the smallest possible NRMSE.

• SENSE+TV (28,30). Image reconstruction was performed using

[17]

where the total variation (TV) norm ‖ ⋅ ‖TV computes the ℓ1-norm of the image 

gradient (as estimated using finite differences). The TV regularization parameter 

λTV was optimized for each dataset and sampling configuration to achieve the 

smallest possible NRMSE.

• P-LORAKS (39). Image reconstruction was performed using Eq. [13]. The rank 

parameter r and the LORAKS regularization parameter λS were optimized for 

each dataset and sampling configuration to achieve the smallest possible 

NRMSE.

Performance of these methods was evaluated on three different retrospectively undersampled 

datasets. To highlight the generality and flexibility of SENSE-LORAKS, we have chosen a 

diverse set of datasets, with variations in the number of receiver channels, acquisition matrix 

size, image contrast, and pulse sequences:

• T2-Weighted Turbo Spin Echo (TSE) Data

Fully sampled data was acquired from a healthy subject using a 2D multislice 

T2-weighted TSE sequence on a 3T Siemens Tim Trio scanner with a 12 channel 

headcoil. Imaging parameters included a 256 mm × 187 mm FOV, 256 × 187 

Cartesian acquisition grid, 1 mm slice thickness, TE/TR = 89 ms/13500 ms. For 

simplicity, we perform subsampling and reconstruction on a single slice from this 

dataset. The gold standard SENSE reconstruction (obtained using fully-sampled 

data) is shown in Fig. 1(a,b). For SENSE-LORAKS reconstruction with this 

dataset, we used the coarsely-tuned parameters λS = 1.9 × 10−3, λT = 10−3, and r 
= 40 for all acceleration rates and all undersampling patterns.

• T1-Weighted MPRAGE Data

Fully sampled data was acquired from a stroke patient using a 3D MPRAGE 

sequence on a 3T Siemens Tim Trio scanner with a 12 channel headcoil. The 

headcoil was operated in combined mode, producing 4 channels of output k-

space data. Imaging parameters included a 256 mm × 256 mm × 208 mm FOV, 

Kim et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



256×256×208 Cartesian acquisition grid, flip angle = 10◦, TI/TE/TR = 800 ms/

3.09 ms/2530 ms. A 1D inverse Fourier transform was applied along the 

frequency encoding dimension (superior-inferior) to decouple the reconstructions 

of the individual 2D slices. For simplicity, we perform subsampling and 

reconstruction on a single slice from this dataset. The gold standard SENSE 

reconstruction (obtained using fully-sampled data) is shown in Fig. 1(c,d). For 

SENSE-LORAKS reconstruction with this dataset, we used the coarsely-tuned 

parameters λS = 3.4 × 10−3, λT = 10−2, and r = 55 for all acceleration rates and 

all undersampling patterns.

For this dataset, while subsampling along both phase encoding dimensions 

would be feasible and improve reconstruction results for all methods (9), we only 

show results with common forms of 1D acceleration.

• T2-Weighted EPI data

Fully sampled data was acquired from a healthy subject using a single-shot 2D 

spin-echo EPI sequence on the Siemens 3T Connectom scanner with a 64 

channel headcoil. Imaging parameters included a 200 mm × 200 mm FOV, 

100×100 Cartesian acquisition grid, 2 mm slice thickness, TE/TR = 80 ms/7400 

ms. Discrepancies between even and odd lines were compensated using zero- 

and first-order phase corrections, and ramp sampled data was resampled onto the 

Nyquist grid prior to reconstruction. For simplicity, we perform subsampling and 

reconstruction on a single slice from this dataset. The gold standard SENSE 

reconstruction (obtained using fully-sampled data) is shown in Fig. 1(e,f). For 

SENSE-LORAKS reconstruction with this dataset, we used the coarsely-tuned 

parameters λS = 4.8 × 10−3, λT = 10−3, and r = 50 for all acceleration rates and 

all undersampling patterns. To preserve the characteristics of this EPI dataset, 

this dataset was only retrospectively under-sampled using uniform 

undersampling strategies. In addition, retrospective undersampling was restricted 

such that the readout gradient polarities alternate between adjacent lines.

Sensitivity maps were computed for each dataset by applying ESPIRiT (12) to a 32 × 32 

Nyquist-sampled grid of calibration data.

Our retrospective undersampling experiments explored several sampling schemes that are 

representative of modern sampling design strategies. Specifically, we considered the 

following four k-space sampling patterns for a range of different acceleration factors:

• Uniform sampling (Uniform)

This standard sampling scheme uses evenly-spaced phase encoding lines that are 

spread across both sides of k-space. This is the sampling scheme used by 

standard Cartesian SENSE (6), and is associated with coherent aliasing.

• Uniformly undersampled partial Fourier (Uniform PF)

Like Uniform sampling, this sampling scheme uses evenly spaced phase 

encoding lines. However, instead of sampling both sides of k-space, Uniform PF 

sampling spreads the phase encoding lines over 5/8ths of the relevant portion of 
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k-space (encompassing one full half of k-space plus the low-frequency region 

from the other side). Measuring 5/8ths of k-space is a typical strategy for partial 

Fourier methods (20–22). For the same total number of phase encoding lines, 

Uniform sampling PF will have a smaller sampling interval (higher sampling 

density) than Uniform sampling within the measurement region.

• Randomly undersampled partial Fourier (Random PF)

This sampling scheme is identical to Uniform PF, except that the phase encoding 

lines are randomly spaced according to a 1D Poisson disk distribution (56). This 

sampling pattern has less coherence than the previous sampling patterns, and as a 

result, may be better suited to sparsity-based and low-rank based methods like 

SENSE+TV and P-LORAKS.

• Autocalibrated partial Fourier (AC PF)

This sampling scheme is similar to Uniform PF, except that the sampling density 

is adjusted so that the center of k-space is sampled uniformly and densely, while 

high-frequency k-space is sampled uniformly but less densely. This is a 

conventional sampling approach for phase-constrained SENSE (46–49), since the 

highly-sampled center of k-space can be used to generate a high-quality phase 

estimate. For our implementation, we used the central 32 phase encoding lines as 

the calibration region. Rather than fully sampling this region (which would lead 

to extreme undersampling of the high-frequency content), we uniformly under-

sampled the calibration region by a factor of 2 (i.e., a total of 16 phase encoding 

lines were measured). The full calibration region was recovered using standard 

SENSE reconstruction with minimal loss of accuracy.

For all reconstructions, performance was quantified by computing the NRMSE with respect 

to the gold standard fully-sampled reconstruction. We also visualized the reconstructed 

images and associated error maps to provide insight into the spatial distribution of error.

Results

Performance Comparisons using TSE and MPRAGE Data

Figures 2-4 and Supporting Figs. S1-S4 show comparisons of the proposed SENSE-

LORAKS method against various other reconstruction methods for the TSE data and the 

MPRAGE data. Using these results to compare SENSE-LORAKS with conventional SENSE 

reconstruction, we observe, as expected (6), that conventional SENSE reconstruction with 

conventional Uniform sampling performs well at low acceleration factors, though 

performance degrades rapidly as the acceleration factor increases. As similarly expected, it 

is also observed that P-LORAKS does not work very effectively with Uniform sampling. In 

comparison, applying SENSE-LORAKS to the same Uniform data yields improved 

reconstruction performance. We believe that this improvement should be expected, since 

SENSE-LORAKS is able to incorporate additional phase and support constraints that are not 

modeled by SENSE.
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Using these same figures to compare SENSE-LORAKS with conventional Uniform 

sampling against SENSE-LORAKS with Uniform PF sampling, we observe that 

conventional Uniform sampling can slightly outperform Uniform PF sampling at low 

acceleration factors, while Uniform PF sampling is substantially better than conventional 

Uniform sampling at high acceleration factors. We believe that this result should also be 

expected. Specificially, at low acceleration factors, SENSE with Uniform sampling is a well-

conditioned inverse problem, while partial Fourier sampling has the potential to incorrectly 

estimate any high resolution information that does not completely satisfy the k-space 

symmetry constraints. On the other hand, we know that the reconstruction errors are 

dominated by the ill-posedness of the problem at high acceleration rates. In these settings, 

we expect that the lower sampling density obtained with conventional Uniform sampling 

will make the SENSE problem more ill-posed than it is for Uniform PF sampling with the 

same acceleration rate.

Figures 5-7 and Supporting Figs. S5-S8 present a comparison between SENSE-LORAKS 

against phase-constrained SENSE, SENSE+TV, and P-LORAKS for the TSE and MPRAGE 

data. For each comparison, sampling patterns were chosen that were most applicable to the 

method being compared against. For the TSE data (Figs. 5 and 7(a) and Supporting Figs. S5 

and S6), we observe that when SENSE-LORAKS is compared against the other methods 

using the same sampling pattern, SENSE-LORAKS consistently outperformed phase-

constrained SENSE and P-LORAKS, and outperformed SENSE+TV at all but the lowest 

acceleration factor. Among different SENSE-LORAKS sampling schemes, Uniform PF 

sampling always produced the best performance at high acceleration factors. Consistent with 

our previous results, conventional Uniform sampling yielded the best performance at low 

acceleration factors, which we again hypothesize is related to differences in the relatively 

well-posed nature of the SENSE problem for conventional Uniform sampling at low 

acceleration factors.

For the MPRAGE data (Figs. 6 and 7(b) and Supporting Figs. S7 and S8), SENSE-LORAKS 

again consistently outperformed phase-constrained SENSE and P-LORAKS. However, 

different from the TSE case, SENSE-LORAKS was consistently outperformed by SENSE

+TV when applied to conventional Uniform data. Despite this small difference, the 

MPRAGE results are largely consistent with the TSE results from the TSE data. Specifically, 

the best overall performance was still achieved by SENSE-LORAKS with Uniform PF or 

AC PF sampling at the higher acceleration factors, while SENSE+TV combined with 

Uniform sampling had the best performance at the lower acceleration factors. It should be 

noted that, while SENSE-LORAKS with AC PF sampling very slightly outperforms 

SENSE-LORAKS with Uniform PF sampling at an acceleration factor of 6×, the Uniform 

PF sampling scheme may still be preferred in practical applications because it yields smaller 

errors within the brain.

Comparing the error images shown in Figs. 2, 3, 5, and 6 and Supporting Figs. S2, S4, S6, 

and S8, it can also be observed that the majority of SENSE-LORAKS errors are spatially-

localized near the skull in these reconstructions, while errors within the brain parenchyma 

are generally much smaller in magnitude. We believe that these errors are related to the 
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relatively fast phase variations associated with extracranial lipid signal, which violate the 

smooth phase assumptions used by SENSE-LORAKS and other phase constrained methods.

Performance Comparisons using EPI Data

One benefit of the Uniform PF and conventional Uniform sampling strategies is that they 

have uniformly spaced phase encoding lines, and are therefore easily used with EPI and 

balanced SSFP acquisitions. Figure 8 shows results based on undersampled EPI data using 

these sampling patterns. The results in this case are consistent with the previous TSE and 

MPRAGE results. Specifically, SENSE-LORAKS outperforms conventional SENSE when 

both methods are applied to conventional Uniform sampling data. In addition, Uniform PF 

sampling can have substantially better performance than conventional Uniform sampling, 

particularly at high acceleration factors. Notably, SENSE-LORAKS with 7.7×-accelerated 

Uniform PF sampling is able to achieve similar reconstruction performance to conventional 

SENSE with 5×-accelerated conventional Uniform sampling.

Parameter Selection

Using SENSE-LORAKS requires the selection of three different reconstruction parameters: 

the low-rank regularization parameter λS, the rank constraint r, and the Tikhonov 

regularization parameter λT. Many strategies have been previously proposed for 

automatically selecting regularization parameters for general regularized reconstruction 

problems (52,57,58), and while these are applicable to SENSE-LORAKS, they are often 

computation-intensive. For practical applications, it is important to know how much fine-

tuning of the parameters is necessary to achieve good performance.

Figure 9 provides an analysis of reconstruction performance as the parameters λS, r, and λT 

are systematically varied. This evaluation was conducted using the TSE and MPRAGE 

datasets with Uniform PF sampling and 3× acceleration. Performance was quantified using 

NRMSE. In addition, we also computed NRMSE after applying a spatial mask that 

preserves the brain parenchyma while excluding the extracranial regions. The extracranial 

regions are typically less interesting for MRI brain studies, and as described previously, are 

also the spatial locations where SENSE-LORAKS tends to have the largest errors.

As seen from Fig. 9, reconstruction errors are relatively stable across a wide range of λS, r, 
and λT values. Rank parameters between 45–60 and λT and λS parameters between 10−3 

and 10−2 all produced similar NRMSE values in all cases. Therefore, fine-tuning of the 

reconstruction parameters may not be very important. This is also consistent with our 

previous observation that SENSE-LORAKS is very effective compared to other 

reconstruction methods across a range of different sampling patterns and acceleration rates, 

even though the SENSE-LORAKS reconstruction parameters were not individually tailored 

to each sampling configuration.

While our proposed formulation includes both Tikhonov regularization and LORAKS-based 

regularization, it is worth noting that the LORAKS constraint is primarily responsible for the 

improvements in image quality. The effect of Tikhonov regularization is to slightly improve 

the stability of the SENSE-LORAKS solution by reducing noise sensitivity, which is similar 

to its use in conventional SENSE (51, 52). A comparison of different regularization 
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strategies can be seen in Supporting Fig. S9. While the impact of Tikhonov regularization on 

SENSE-LORAKS reconstruction is not very dramatic, we have chosen to include it because 

it does lead to a small improvement in image quality, while not having a major negative 

impact on parameter tuning or computational complexity.

Discussion

Our results confirmed that SENSE-LORAKS with Uniform PF sampling can have 

substantial advantages over previous sampling and reconstruction methods, especially at 

high acceleration factors where the reconstruction error becomes dominated by the ill-

posedness of the SENSE problem. For simplicity, our results were based on simple 2D k-

space datasets with 1D Cartesian undersampling. However, it should be noted that the 

SENSE-LORAKS constraints are easily applied to other experiment types (including 

experiments with non-Cartesian sampling (7), experiments with non-negligible field 

inhomogeneity (59), 3D imaging with 2D or 3D undersampling (9), simultaneus multi-slice 

imaging (14–18), etc.) by making the appropriate modifications to the data acquisition 

model matrix E.

The LORAKS regularization constraint is also flexible, and is easily adapted to dynamic 

imaging (37, 42), simultaneous multi-slice imaging (44), or scenarios where the image has 

limited support or smoothly-varying phase in a known transform domain (40–42). In 

addition, one of the benefits of the LORAKS framework is that the constraints are applied 

using regularization techniques. As a result, it is easy to combine LORAKS constraints with 

other forms of regularization to achieve even higher reconstruction performance (37,39). As 

an example of this, it is possible to combine SENSE-LORAKS with TV regularization by 

solving

[18]

Figure 10 and Supporting Fig. S10 compare reconstruction performance for SENSE-

LORAKS with TV against SENSE-LORAKS and SENSE+TV for Uniform PF sampling. 

Results indicate that the combination of SENSE-LORAKS with the TV constraint improves 

performance, as would be expected because the different constraints use different and 

synergistic prior information about the structure of typical MRI images.

It is important to keep in mind that, similar to previous LORAKS work (37–40,43,44), the 

successful application of SENSE-LORAKS will depend on the phase, support, and parallel 

imaging characteristics of the measured data. Images with looser fields of view, slowly 

varying phase, and well-designed array coils will be easier to accelerate than images with 

tighter fields of view, rapidly varying phase, or array coils with suboptimal configurations. 

These different factors influence the matrix rank in predictable ways (37,40), and are 

important to keep in mind when designing an accelerated MRI experiment for use with 

SENSE-LORAKS reconstruction.
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It is also worth mentioning that, while our quantitative evaluation of SENSE-LORAKS was 

based on NRMSE, NRMSE is a coarse measure of image quality that hides information 

about the spatially-varying nature of the reconstruction errors and does not necessarily 

correlate with the context-specific tasks that reconstructed images are often used to perform 

(60) (e.g., pathology detection, parameter quantification, image registration, tissue 

segmentation/parcellation, morphometry, etc.). Showing the reconstructed images and error 

maps, as we have done, helps address a portion of these issues. Nevertheless, as we have 

previously described (31,37,39,60), we strongly believe that nonlinear reconstruction 

methods like SENSE-LORAKS should be tested thoroughly on context-specific tasks before 

they are deployed for routine use in practical applications.

As with all advanced constrained reconstruction methods, computation is an important 

practical issue for SENSE-LORAKS. In this work, we were primarily interested in 

investigating the potential usefulness of SENSE-LORAKS, and have not yet put any effort 

into optimizing computation speed. As a result, our preliminary Matlab-based 

implementation is relatively slow, especially when run on a simple desktop computer (Intel 

Xeon E5-1620 3.7 GHz quad core CPU processor and 16 GB memory). We have observed 

that reconstruction times depend on various factors, including convergence criteria, the 

number of channels L, the number of samples M, the size of the neighborhood size R used 

by LORAKS, the matrix rank constraint r, and the acceleration factor. For example, using 

our current implementation, it took 10-15 minutes to reconstruct the 12-channel TSE data at 

low acceleration rates (i.e., 2× or 3×), while it could take up to 30 minutes to reconstruct the 

same image with highly-accelerated data (i.e., 6× or 7×). The computation time also 

increases with the number of coils. For example, it took around 4 hours to reconstruct the 

64-channel EPI data with 7.7× acceleration. There are many opportunities to improve 

computation speed dramatically, since the optimization algorithm has not been designed for 

fast convergence speed and the computing hardware has not been optimized. In addition, the 

use of coil compression techniques (61) could also lead to substantially faster 

reconstructions. We believe that exploring faster implementations is a promising area for 

future development.

One of the key features of the proposed SENSE-LORAKS approach is that it is flexible 

enough to enable the use of phase-constrained reconstruction with highly accelerated 

calibrationless partial Fourier EPI trajectories. While the partial Fourier acquisition is useful 

for enhancing reconstruction performance because it enables increased sampling density 

relative to conventional uniform sampling, partial Fourier acquisitions also have other 

benefits in the context of EPI. For example, for fixed resolution and bandwidth, the use of 

partial Fourier acquisition can also be used to decrease the minimum echo time and mitigate 

the effects of relaxation during the readout (62). We believe that such features make SENSE-

LORAKS even more attractive for this context.

Conclusion

This work proposed and investigated the SENSE-LORAKS approach for constrained MRI 

reconstruction. Compared to existing methods, SENSE-LORAKS enables partial Fourier 

reconstruction without prior phase information, and is very flexible with respect to the data 
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sampling scheme. Specifically, SENSE-LORAKS can be used with both calibration-based 

and calibrationless sampling patterns, with both uniform and nonuniform sampling patterns, 

and with both partial Fourier and full Fourier sampling patterns. This flexibility provides 

new opportunities for sampling trajectory optimization, and also means that SENSE-

LORAKS can be more compatibile with classical fast imaging methods that use partial 

Fourier EPI and balanced SSFP pulse sequences. In addition, due to the simple 

regularization-based nature of the SENSE-LORAKS formulation, the approach is easily 

combined with other useful constraints like image sparsity. Our results suggest that SENSE-

LORAKS can provide state-of-the-art reconstruction performance, particularly at high 

acceleration rates, and we believe that this new approach has the potential to enhance data 

acquisition and image reconstruction performance across a wide spectrum of practical 

application scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by NSF CAREER award CCF-1350563 and NIH grants R01-NS089212, R24-
MH106096, and R01-EB019437.

References

1. Mansfield P. Multiplanar image formation using NMR spin echoes. J Phys C: Solid State Phys. 
1977; 10:L55–L58.

2. Ahn CB, Kim JH, Cho ZH. High-speed spiral-scan echo planar NMR imaging–I. IEEE Trans Med 
Imag. 1986; MI-5:2–7.

3. Carr HY. Steady-state free precession in nuclear magnetic resonance. Phys Rev. 1958; 112:1693–
1701.

4. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP – a new fast MRI 
sequence. Electromedica. 1986; 54:15–18.

5. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast 
imaging with radiofrequency coil arrays. Magn Reson Med. 1997; 38:591–603. [PubMed: 9324327] 

6. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. 
Magn Reson Med. 1999; 42:952–962. [PubMed: 10542355] 

7. Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-
space trajectories. Magn Reson Med. 2001; 46:638–651. [PubMed: 11590639] 

8. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. 
Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002; 
47:1202–1210. [PubMed: 12111967] 

9. Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM. 
Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med. 2006; 
55:549–556. [PubMed: 16408271] 

10. Lin FH, Wald LL, Ahlfors SP, Hamalainen MS, Kwong KK, Belliveau JW. Dynamic magnetic 
resonance inverse imaging of human brain function. Magn Reson Med. 2006; 56:787–802. 
[PubMed: 16964616] 

11. Zhang J, Liu C, Moseley ME. Parallel reconstruction using null operations. Magn Reson Med. 
2011; 66:1241–1253. [PubMed: 21604290] 

Kim et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT–an 
eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn Reson 
Med. 2014; 71:990–1001. [PubMed: 23649942] 

13. Maudsley AA. Multiple-line-scanning spin density imaging. J Magn Reson. 1980; 41:112–126.

14. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays 
for separation of signal from multiple slices simultaneously excited. J Magn Reson Imag. 2001; 
13:313–317.

15. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled 
aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. 
Magn Reson Med. 2005; 53:684–691. [PubMed: 15723404] 

16. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Ugurbil K. Multiband multislice 
GE-EPI at 7 Tesla, with 16-fold acceleration using partial parallel imaging with application to high 
spatial and temporal whole-brain fMRI. Magn Reson Med. 2010; 63:1144–1153. [PubMed: 
20432285] 

17. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Glasser MF, Miller KL, Ugurbil K, 
Yacoub E. Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion 
imaging. PLoS One. 2010; 5:1–11.

18. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled 
aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor 
penalty. Magn Reson Med. 2012; 67:1210–1224. [PubMed: 21858868] 

19. Margosian P, Schmitt F, Purdy D. Faster MR imaging: imaging with half the data. Health Care 
Instrum. 1986; 1:195–197.

20. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE 
Trans Med Imag. 1991; 10:154–163.

21. Huang F, Lin W, Li Y. Partial Fourier reconstruction through data fitting and convolution in k-
space. Magn Reson Med. 2009; 62:1261–1269. [PubMed: 19780148] 

22. Liang ZP, Boada F, Constable T, Haacke EM, Lauterbur PC, Smith MR. Constrained 
reconstruction methods in MR imaging. Magn Reson Med. 1992; 4:67–185.

23. Zhao F, Noll DC, Nielsen JF, Fessler JA. Separate magnitude and phase regularization via 
compressed sensing. IEEE Trans Med Imag. 2012; 31:1713–1723.

24. Cheung KF, Marks RJ II. Imaging sampling below the Nyquist density without aliasing. J Opt Soc 
Am A. 1990; 7:92–105.

25. Plevritis SK, Macovski A. Spectral extrapolation of spatially bounded images. IEEE Trans Med 
Imag. 1995; 14:487–497.

26. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR 
imaging. Magn Reson Med. 2007; 58:1182–1195. [PubMed: 17969013] 

27. Ye JC, Tak S, Han Y, Park HW. Projection reconstruction MR imaging using FOCUSS. Magn 
Reson Med. 2007; 57:764–775. [PubMed: 17390360] 

28. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils iterative image 
reconstruction using a total variation constraint. Magn Reson Med. 2007; 57:1086–1098. 
[PubMed: 17534903] 

29. Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via 
homotopic ℓ0-minimization. IEEE Trans Med Imag. 2009; 28:106–121.

30. Liang D, Liu B, Wang JJ, Ying L. Accelerating SENSE using compressed sensing. Magn Reson 
Med. 2009; 62:1574–1584. [PubMed: 19785017] 

31. Haldar JP, Hernando D, Liang ZP. Compressed-sensing MRI with random encoding. IEEE Trans 
Med Imag. 2011; 31:893–903.

32. Haldar JP, Liang ZP. Spatiotemporal imaging with partially separable functions: A matrix recovery 
approach. Proc IEEE Int Symp Biomed Imag. 2010:716–719.

33. Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank 
structure: k-t SLR. IEEE Trans Med Imag. 2011; 30:1042–1054.

Kim et al. Page 18

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Shin PJ, Larson PEZ, Ohliger MA, Elad M, Pauly JM, Vigneron DB, Lustig M. Calibrationless 
parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson 
Med. 2014; 72:959–970. [PubMed: 24248734] 

35. Bernstein, MA., King, KF., Zhou, XJ. Handbook of MRI Pulse Sequences. Burlington: Elsevier 
Academic Press; 2004. 

36. Bieri O, Markl M, Scheffler K. Analysis and compensation of eddy currents in balanced SSFP. 
Magn Reson Med. 2005; 54:129–137. [PubMed: 15968648] 

37. Haldar JP. Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI. 
IEEE Trans Med Imag. 2014; 33:668–681.

38. Haldar, JP. Low-rank modeling of local k-space neighborhoods (LORAKS): Implementation and 
examples for reproducible research Technical Report USC-SIPI-414. University of Southern 
California; Los Angeles, CA: 2014. 

39. Haldar JP, Zhuo J. P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel 
imaging data. Magn Reson Med. 2015; doi: 10.1002/mrm.25717

40. Haldar JP. Low-rank modeling of local k-space neighborhoods: from phase and support constraints 
to structured sparsity. Proc SPIE. 2015; 9597:959710.

41. Ongie, G., Jacob, M. Off-the-grid recovery of piecewise constant images from few Fourier 
samples. arXiv Preprint. 2015. http://arxiv.org/abs/1510.00384

42. Jin KH, Lee D, Ye JC. A novel k-space annihilating filter method for unification between 
compressed sensing and parallel MRI. Proc IEEE Int Symp Biomed Imag. 2015:327–330.

43. Haldar JP. Autocalibrated LORAKS for fast constrained MRI reconstruction. Proc IEEE Int Symp 
Biomed Imag. 2015:910–913.

44. Kim TH, Haldar JP. SMS-LORAKS: Calibrationless simultaneous multislice MRI using low-rank 
matrix modeling. Proc IEEE Int Symp Biomed Imag. 2015:323–326.

45. Samsonov A, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction 
for sensitivity encoded magnetic resonance imaging. Magn Reson Med. 2004; 52:1397–1406. 
[PubMed: 15562485] 

46. Willig-Onwuachi JD, Yeh EN, Grant AK, Ohliger MA, McKenzie CA, Sodickson DK. Phase-
constrained parallel MR image reconstruction. J Magn Reson. 2005; 176:187–198. [PubMed: 
16027017] 

47. Bydder M, Robson MD. Partial Fourier partially parallel imaging. Magn Reson Med. 2005; 
53:1393–1401. [PubMed: 15906299] 

48. Lew C, Pineda AR, Clayton D, Spielman D, Chan F, Bammer R. SENSE phase-constrained 
magnitude reconstruction with iterative phase refinement. Magn Reson Med. 2007; 58:910–921. 
[PubMed: 17969127] 

49. Blaimer M, Heim M, Neumann D, Jakob PM, Kannengiesser S, Breuer F. Comparison of phase-
constrained parallel MRI approaches: Analogies and differences. Magn Reson Med. 2015; doi: 
10.1002/mrm.25685.

50. Chang HC, Guhaniyogi S, Chen NK. Interleaved diffusion-weighted EPI improved by adaptive 
partial-Fourier and multiband multiplexed sensitivity-encoding reconstruction. Magn Reson Med. 
2015; 73:1872–1884. [PubMed: 24925000] 

51. Liang ZP, Bammer R, Ji J, Pelc NJ, Glover GH. Making better SENSE: Wavelet denoising, 
Tikhonov regularization, and total least squares. Proc Int Soc Magn Reson Med. 2002:2388.

52. Lin FH, Kwong KK, Belliveau JW, Wald LL. Parallel imaging reconstruction using automatic 
regularization. Magn Reson Med. 2004; 51:559–567. [PubMed: 15004798] 

53. Recht B, Fazel M, Parrilo PA. Guaranteed minimum-rank solutions of linear matrix equations via 
nuclear norm minimization. SIAM Rev. 2010; 52:471–501.

54. Golub, G., van Loan, C. Matrix Computations. third. London: The Johns Hopkins University Press; 
1996. 

55. Haldar JP, Hernando D. Rank-constrained solutions to linear matrix equations using power-
factorization. IEEE Signal Processing Letters. 2009; 16:584–587. [PubMed: 22389578] 

56. Nayak KS, Nishimura DG. Randomized trajectories for reduced aliasing artifact. Proc Int Soc 
Magn Reson Med. 1998:670.

Kim et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1510.00384


57. Ramani S, Liu Z, Rosen J, Nielsen JF, Fessler JA. Regularization parameter selection for nonlinear 
iterative image restoration and MRI reconstruction using GCV and SURE-based methods. IEEE 
Trans Image Process. 2012; 21:3659–3672. [PubMed: 22531764] 

58. Candes EJ, Sing-Long CA, Trzasko JD. Unbiased risk estimates for singular value thresholding 
and spectral estimators. IEEE Trans Signal Process. 2013; 61:4643–4657.

59. Sutton BP, Noll DC, Fessler JA. Fast, iterative image reconstruction for MRI in the presence of 
field inhomogeneities. IEEE Trans Med Imag. 2003; 22:178–188.

60. Kim JH, Song SK, Haldar JP. Signal-to-noise ratio-enhancing joint reconstruction for improved 
diffusion imaging of mouse spinal cord white matter injury. Magn Reson Med. 2015; doi: 10.1002/
mrm.25691.

61. Huang F, Vijayakumar S, Li Y, Hertel S, Duensing GR. A software channel compression technique 
for faster reconstruction with many channels. Magn Reson Imag. 2008; 26:133–141.

62. Hyde JS, Biswal BB, Jesmanowicz A. High-resolution fMRI using multislice partial k-space GR-
EPI with cubic voxels. Magn Reson Med. 2001; 46:114–125. [PubMed: 11443717] 

Kim et al. Page 20

Magn Reson Med. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Gold standard (a,c,e) magnitude and (b,d,f) phase images used for evaluation. Images 

correspond to the (a,b) TSE, (c,d) MPRAGE, and (e,f) EPI datasets.
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Figure 2. 
Comparison between (a) SENSE with conventional Uniform sampling, (b) P-LORAKS with 

conventional Uniform sampling, (c) SENSE-LORAKS with conventional Uniform 

sampling, and (d) SENSE-LORAKS with Uniform PF sampling for the TSE data with 5.1× 

acceleration. Images for other acceleration factors are shown in Supporting Figs. S1 and S2, 

while NRMSE values are plotted in Fig. 4(a). Reconstructed images are shown using a linear 

grayscale (normalized so that image intensities are in the range from 0 to 1), while error 

images are shown using the indicated colorscale (which ranges from 0 to 0.25 to highlight 

small errors). NRMSE values are shown underneath each reconstruction, with the best 

NRMSE values highlighted with red.
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Figure 3. 
Comparison between (a) SENSE with conventional Uniform sampling, (b) P-LORAKS with 

conventional Uniform sampling, (c) SENSE-LORAKS with conventional Uniform 

sampling, and (d) SENSE-LORAKS with Uniform PF sampling for the MPRAGE data with 

5.0× acceleration. Images for other acceleration factors are shown in Supporting Figs. S3 

and S4, while NRMSE values are plotted in Fig. 4(b). Reconstructed images are shown 

using a linear grayscale (normalized so that image intensities are in the range from 0 to 1), 

while error images are shown using the indicated colorscale (which ranges from 0 to 0.25 to 

highlight small errors). NRMSE values are shown underneath each reconstruction, with the 

best NRMSE values highlighted with red.
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Figure 4. 
Plots of the reconstruction NRMSE as a function of the acceleration rate for the (a) TSE data 

(corresponding images were shown in Fig. 2 and Supporting Figs. S1 and S2) and (b) 

MPRAGE data (corresponding images were shown in Fig. 3 and Supporting Figs. S3 and 

S4).
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Figure 5. 
Comparison of SENSE-LORAKS against (a) phase-constrained SENSE with AC PF 

sampling, (b) P-LORAKS with Random PF sampling, and (c) SENSE+TV with 

conventional Uniform sampling for the TSE dataset with 5.1× acceleration. Reconstructions 

obtained using SENSE-LORAKS with Uniform PF sampling are shown in (d). Images for 

other acceleration factors are shown in Supporting Figs. S5 and S6, while NRMSE values 

are plotted in Fig. 7(a). The reconstructed images are displayed using a linear grayscale 

(normalized so that image intensities are in the range from 0 to 1). The error images are 

displayed using the indicated colorscale (which ranges from 0 to 0.25 to highlight small 

errors). NRMSE values are shown underneath each reconstruction, with the best NRMSE 

values highlighted with bold text in each sampling pattern. The smallest NRMSE values for 

a given acceleration rate are indicated in red.
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Figure 6. 
Comparison of SENSE-LORAKS against (a) phase-constrained SENSE with AC PF 

sampling, (b) P-LORAKS with Random PF sampling, and (c) SENSE+TV with 

conventional Uniform sampling for the MPRAGE dataset with 5.0× acceleration. 

Reconstructions obtained using SENSE-LORAKS with Uniform PF sampling are shown in 

(d). Images for other acceleration factors are shown in Supporting Figs. S7 and S8, while 

NRMSE values are plotted in Fig. 7(b). The reconstructed images are displayed using a 

linear grayscale (normalized so that image intensities are in the range from 0 to 1). The error 

images are displayed using the indicated colorscale (which ranges from 0 to 0.25 to 

highlight small errors). NRMSE values are shown underneath each reconstruction, with the 

best NRMSE values highlighted with bold text in each sampling pattern. The smallest 

NRMSE values for a given acceleration rate are indicated in red.
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Figure 7. 
Plots of the reconstruction NRMSE as a function of the acceleration rate for the (a) TSE data 

(corresponding images were shown in Fig. 5 and Supporting Figs. S5 and S6) and (b) 

MPRAGE data (corresponding images were shown in Fig. 6 and Supporting Figs. S7 and 

S8).
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Figure 8. 
Comparison between (left) SENSE with conventional Uniform sampling, (middle) SENSE-

LORAKS with conventional Uniform sampling, and (right) SENSE-LORAKS with Uniform 

PF sampling for the EPI data. The left columns show reconstructed images using a linear 

grayscale (normalized so that image intensities are in the range from 0 to 1), while the right 

columns show error images using the indicated colorscale (which ranges from 0 to 0.25 to 

highlight small errors). NRMSE values are shown underneath each reconstruction.
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Figure 9. 
SENSE-LORAKS reconstruction performance as a function of (a) rank r, (b) Tikhonov 

regularization parameter λT, and (c) LORAKS regularization parameter λS. Except where 

parameter values are being explicitly changed, the r, λT, and λS parameters were set to their 

default values as described in the Methods section.
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Figure 10. 
Comparison between SENSE+TV, SENSE-LORAKS, and SENSE-LORAKS with TV 

sampling for TSE data with Uniform PF sampling and 5.1× acceleration. Other acceleration 

factors are shown in Supporting Fig. S10. The top row shows reconstructed images using a 

linear grayscale (normalized so that image intensities are in the range from 0 to 1), while the 

bottom row shows error images using the indicated colorscale (which ranges from 0 to 0.25 

to highlight small errors). NRMSE values are shown underneath each reconstruction, with 

the best NRMSE value highlighted in red.
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