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Abstract

Slow, variable, and error-prone performance on speeded reaction time (RT) tasks has been well 

documented in childhood ADHD, but equally well documented is the context-dependent nature of 

those deficits, particularly with respect to event rate. As event rates increase (or, as the 

interstimulus intervals become shorter), RTs decrease, a pattern of performance that has long been 

interpreted as evidence that cognitive deficits in ADHD are a downstream consequence of a 

fundamental difficulty in the regulation of arousal to meet task demands. We test the extent to 

which this is a misinterpretation of the data that occurs when RT and accuracy are considered 

separately, as is common in neurocognitive research. In two samples of children aged 8–10 with 

(N = 97; 33 girls) and without (N = 39; 26 girls) ADHD, we used the diffusion model, an 

influential computational model of RT, to examine the effect of event rate on inhibitory control in 

a go-no-go task. Contrary to longstanding belief, we found that fast event rates slowed the rate at 

which children with ADHD accumulated evidence to make a decision to “no-go”, as indexed by 

drift rate. This in turn resulted in a higher proportion of failed inhibits, and occurred despite 

increased task engagement, as reflected by changes in the starting point of the decision process. 

Thus, although faster event rates increased task engagement among children with ADHD, the 

increased engagement was unable to counteract the concurrent slowing of processing speed to “no-

go” decisions. Implications for theoretical models of ADHD and treatments are discussed.
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Response disinhibition is arguably one of the most well studied aspects of cognitive control 

in Attention Deficit Hyperactivity Disorder (ADHD), and much of this work has utilized the 

well-known stop signal paradigm (Barkley, 1997; Logan & Cowan, 1984; Nigg, 2001). In 
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the most standard version of this paradigm, children view a sequence of X’s and O’s that 

appear onscreen (“go” signal), and are asked to indicate whether the stimulus is an X or an 

O. On a minority of trials (e.g., 25%), an auditory tone is presented at some delay from the 

onset of the “go” signal which indicates that they should not respond to that trial. Results 

from several meta-analyses have reported that to be as successful as their non-ADHD peers 

in stopping an ongoing behavior, children with ADHD require a longer delay between the 

onset of a “go” and the onset of a “stop” signal because the speed of their inhibitory process 

(i.e. the stop signal reaction time, or SSRT) is slower (Alderson, Rapport, & Kofler, 2007; 

Lijffijt, Kenemans, Verbaten, & van Engeland, 2005; Metin, Roeyers, Wiersema, van der 

Meere, & Sonuga-Barke, 2012; Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). The 

slow speed of the inhibitory process is believed to contribute to the frequent impulsive 

behaviors that are so emblematic of the disorder.

However, the most common method of calculating SSRT (i.e. mean reaction time - mean 

stop signal delay), leads to estimates of SSRT that are strongly influenced by the shape of 

the reaction time (RT) distribution, and are highly correlated with mean RT (Verbruggen, 

Chambers, & Logan, 2013). This has prompted some to speculate whether a specific deficit 

in inhibitory control is present, or whether slow SSRT among children with ADHD instead 

reflects a more general deficit in processing speed (Alderson et al., 2007; Karalunas & 

Huang-Pollock, 2013; Lijffijt et al., 2005; Verbruggen et al., 2013). In fact, the most 

frequently used indices of performance on the most common measures of executive function 

(EF) (e.g. go-no-go, continuous performance tasks, flanker tasks, stroop, etc.), are RT and 

error rate. Thus, in comparison to the complex EF construct, a more tractable description of 

ADHD-related cognitive deficits may be that they tend to be slow, variable, and error prone 

on RT tasks.

Why might this be? The neuroenergetic theory (NeT) of ADHD (Killeen, 2013; Killeen, 

Russell, & Sergeant, 2013) proposes that responding to rapid and externally paced stimuli 

requires access to lactate, which the neuron uses for fuel. NeT posits that this supply chain is 

compromised in ADHD, possibly through a breakdown of the astrocyte-lactate-neuron-

shuttle (Brown & Ransom, 2007) responsible for meeting the local metabolic demands of 

firing neurons. According to NeT, the ultimate result of an insufficient neuronal energy 

supply is neuronal fatigue, which in turn causes the slow, variable, and error-prone 

performance that is characteristic of ADHD. In this way, NeT is similar to other 

biologically-based limited-resource/depletion models of self-control (e.g. Masicampo & 

Baumeister, 2008). What NeT would therefore predict is that as event rates increase (or, as 

the interstimulus intervals become shorter), and assuming explicit periods of rest are not 

provided between trials, longer and more variable response times should be seen among 

affected children in tasks requiring effortful control. This is because the rapid pace would be 

expected to exacerbate neuronal fatigue.

However, this prediction is in direct opposition with what is commonly observed: RTs tend 

to speed up with faster event rates (Andreou et al., 2007; Epstein et al., 2011; Sanders, 1970; 

Sergeant, 2000; Wiersema, van der Meere, Roeyers, Van Coster, & Baeyens, 2006). In fact, 

this relationship is one of the hallmark pieces of evidence used to support the well-known 

and influential cognitive energetic theory of ADHD, which was among the first theories to 

Huang-Pollock et al. Page 2

J Abnorm Child Psychol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest that cognitive deficits in ADHD were context-dependent (Sergeant, 2000, 2005; 

Sonuga-Barke, Wiersema, van der Meere, & Roeyers, 2010). Specifically, the cognitive 

energetic theory argues that manipulations which increase arousal (e.g. faster event rates) 

will improve performance as observed through RT speed-up.

That being said, how performance is affected by event rate depends in large part on which 

outcome variable is examined. A recent meta-analysis of event rate effects on go-no-go 

performance in ADHD reported larger ADHD deficits for slow event rates when RT was the 

dependent variable (effect size dRT=0.56 vs. 0.33), but larger ADHD deficits for fast event 

rates when commission errors (i.e. failed inhibits) were the dependent variable (effect size 

dCom=0.57 vs. 0.37) (Metin et al., 2012). How should such contradictory results be 

interpreted? The cognitive energetic theory has suggested that the relationship between event 

rate and performance takes the shape of an inverted U. That is, slow event rates are under-

arousing (leading to slow and variable RTs), but fast event rates are over-activating (leading 

to fast RTs and frequent failed inhibits).

What is often ignored, however, is that RT and accuracy are produced simultaneously; they 

are two descriptors of a single response, and are not generated by independent processes. 

Thus, considering RT and accuracy separately provides at best an incomplete understanding 

of performance, and at worse, erroneous interpretations of data. The most accurate 

description of performance would require a theory capable of accounting for both RT and 

accuracy simultaneously.

One way forward is to consider inhibitory control as part of a broader decision making 

process: a decision to go vs. not to go (Figure 1). The diffusion model is a stochastic 

accumulator model of simple (i.e. <2s) one and two-choice decisions that produces 

parameters which incorporate both RT and accuracy data in a single set of performance 

indicators (Ratcliff & McKoon, 2008). The model assumes that after a stimulus is encoded, a 

decision process (e.g. Is it a word or non-word? Do I go or not go?) begins from a start 

point, denoted as z, in the direction of one of the two decisional boundaries (0, “no-go” and 

a, “go”), until one of the boundaries is reached. At that point, depending on which boundary 

is crossed, the appropriate response is initiated (in the case of a “no-go” decision, the 

response would be to not press). The rate at which an individual accumulates information to 

reach one of the decision boundaries is called drift rate, and is denoted as v. Drift rate is 

influenced by individual and developmental differences where younger and atypically 

developing children have slower drift rates than typically developing children, adolescents, 

and adults (Cohen-Gilbert et al., 2014; Huang-Pollock, Karalunas, Tam, & Moore, 2012; 

Ratcliff, Love, Thompson, & Opfer, 2012). It is also influenced by states of arousal where 

low arousal leads to slower drift rates (Ratcliff & Van Dongen, 2011). Boundary separation, 

denoted as a, represents how much information an individual requires to make a decision, 

and is determined by an individual’s default speed-accuracy-trade-off setting, or by an 

explicit strategy (i.e. tending or being instructed to emphasize speed over accuracy). A larger 

boundary separation indicates a greater emphasis on accuracy, or more conservative 

responding. Start point, denoted as z, is influenced by the expectation of events or rewards 

(e.g. a decision will start closer to the “go” boundary if “go” signals are presented more 

often than “no-go” signals). Ter refers to the time it takes to complete all non-decision based 
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processes (primarily, the time it takes to encode a stimulus and motor preparation), and can 

be influenced by the complexity or difficulty of the required motor response.

Broadly speaking, these parameter values are obtained by simultaneously fitting the 

observed RT distributions for correct and error responses, by the RT distributions that are 

predicted by the diffusion model. Using an initial set of parameter values, predictions are 

derived and then the values of the parameters are adjusted using an automatic function 

minimization routine (SIMPLEX; see Ratcliff & Tuerlinckx, 2002). The routine generates 

parameter values near the starting values, computes the goodness of fit, and then replaces the 

parameter values that had the worst fit with new ones. By this method, it iterates to the 

parameter values that produce the best fit. Once the best fitting set of parameters is obtained, 

the values of those parameters are then used as indices of the latent psychological processes 

that each parameter represents (i.e. cognitive processing efficiency, speed-accuracy trade off 

settings, response bias, and the time to encode/prepare a motor response). Because the 

model is able to separate cognitive processing efficiency (i.e. drift rate), which typically 

represents the construct of interest, from other processes, including the speed of encoding 

and motor preparation/ execution, as well as speed-accuracy settings, it is a significant 

improvement over the individual use of RT or accuracy alone in the analysis and 

interpretation of cognitive performance data.

The model has been well-validated and used to understand cognitive performance in both 

healthy (Cohen-Gilbert et al., 2014; Ratcliff et al., 2012; Ratcliff, Thapar, & McKoon, 2006) 

and atypical (Huang-Pollock et al., 2012; Karalunas, Huang-Pollock, & Nigg, 2012; Pe, 

Vandekerckhove, & Kuppens, 2013; Weigard & Huang-Pollock, 2014, in press; White, 

Ratcliff, Vasey, & McKoon, 2010) populations across the lifespan. Recent studies have also 

linked these parameters to neural network functionality (Bogacz, Wagenmakers, Forstmann, 

& Nieuwenhuis, 2010; Philiastides & Sajda, 2007; White, Mumford, & Poldrack, 2012), 

demonstrating its utility and promise to move the field’s understanding of psychopathology 

from stagnant behavioral manifestations to specifying the neurocognitive processes that are 

unique and shared across disorders (White et al., 2010; Wiecki, Poland, & Frank, 2015).

Here, we examine the impact of event rate on inhibitory control using a go-no-go diffusion 

model applied to a go-no-go task (Gomez, Perea, & Ratcliff, 2007; Ratcliff, Huang-Pollock, 

& McKoon, in press). Like the two-choice model, the go-no-go diffusion model assumes 

that there are two decision boundaries. Termination at one boundary (i.e. decision to “go”) 

leads to a motor response, whereas termination at the other (i.e. decision to “no-go”) leads 

the participant to not make a button press and to wait out the trial. Because there is no RT 

measure for a no-go decision, the go-no-go model differs from the standard two-choice 

model in that no-go decisions are fit to the model using choice probabilities for no-go 

choices (Ratcliff & Tuerlinckx, 2002). Go-decisions are fit using RT distributions, as with 

the standard two choice model.

Our aim is to use the analyses provided by the diffusion model to evaluate the predictions 

the cognitive energetic and neuroenergetic theories of ADHD make with respect to event 

rate manipulations. From a decision process perspective, poor inhibitory control can be 

viewed as a bias in decision making that might occur in one of three ways. First, it may be 
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that ADHD drift rates are slower to the no-go vs. go boundary (i.e. there is a bias in drift; 

Figure 2a). Slower drift to no-go decisions would mean that the time required to make a 

decision to “no-go” is longer. In this way, drift to no-go is conceptually similar, but not 

equivalent, to SSRT. However, drift to no-go represents a purer measure of processing 

efficiency because the variance associated with non-decision time and speed-accuracy trade-

off settings has been removed. Second, it may be that children with ADHD set their start 

points closer to “go,” making it more difficult to inhibit when necessary (Figure 2b). Or, it 

could be a combination of those factors.

In summary, NeT predicts that fast event rates, in the absence of explicit between-trial 

periods of rest, will exacerbate neuronal fatigue. The inhibition of a prepotent response 

requires more effortful control than the more automatic process of allowing an ongoing 

action to proceed (Muraven & Baumeister, 2000). Because fatigue would affect processes 

that are more effortful, in the context of a go-no-go task, this should result in the preferential 

slowing of drift to the no-go decision relative to the go decision. In contrast, cognitive 

energetic theory predicts that fast event rates raise arousal levels, which would preferentially 

speed up drift rate. In line with this reasoning, our primary predictions are therefore as 

follows: results finding that drift to no-go is slower under fast event rates would be 

consistent with NeT, but results finding drift to no-go is faster under fast event rates would 

be consistent with the cognitive energetic theory. Children with ADHD may also show 

greater start point bias to “go,” (contributing to a greater proportion of failed inhibits), but 

we would not expect this to be altered by event rate in either theory. Ter and a are similarly 

not expected to vary by event rate.

Methods

Participants

Children aged 8–12 were community recruited from radio, magazine, and internet ads, as 

well as public flyers posted in the community and provided to local schools in the Central 

and Dauphin counties of Pennsylvania. Exclusion criteria included: (1) current non-

stimulant medication treatment (e.g., neuroleptics or antidepressants), (2) diagnosis of 

pervasive developmental disorder, intellectual disability, sensorimotor disability, psychosis, 

or other parent-reported neurological disorder, and (3) estimated Full Scale IQ (FSIQ)<80.

Children with ADHD—Children with ADHD met DSM-IV criteria for ADHD including 

age of onset, duration, cross situational severity, and impairment as determined by parent 

report on the Diagnostic Interview Schedule for Children-IV (DISC-IV: Shaffer, Fisher, & 

Lucas, 1997). At least one parent and one teacher report of behavior on the Attention, 

Hyperactivity, or ADHD subscales of the Behavioral Assessment Scale for Children-2 

(BASC-2: Reynolds & Kamphaus, 1992) or the Conner’s Rating Scale (Conners, 1997) was 

required to exceed the 85th percentile (T-score>61). Both measures are commonly used and 

well-validated for the evaluation and diagnosis of ADHD. Following DSM-IV field trials 

(Lahey et al., 1994), an “or” algorithm integrating parent report on the DISC-IV and teacher 

report on the ADHD Rating-Scale (DuPaul, Power, Anastopoulos, & Reid, 1998) was used 
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to determine final symptom count and subtype (Table 1). Children prescribed stimulant 

medication were asked to discontinue medication use for 24–48 hours.

Controls—Controls did not meet ADHD criteria on DISC-IV, had T-scores below the 80th 

percentile (T-score<58) on all ADHD-related parent and teacher rating scales, and had never 

been previously diagnosed or treated for ADHD. All had ≤4 total symptoms and ≤3 

symptoms per ADHD dimension according to the “or” algorithm. The presence of anxiety, 

depression, oppositional defiant, and conduct disorders were not exclusionary. To control for 

the potential confounding effects of IQ on the high end of the spectrum, controls were 

required to have estimated IQs <115. No upper IQ limit was set for children with ADHD.

Validation and comparison of samples in each condition—Children completed 

either the slow or fast event rate condition, with recruitment for the slow event rate condition 

occurring prior to the fast event rate condition. In the slow event rate condition, there were 

n=46 children with ADHD and n=21 non-ADHD controls. Sample ethnicity reflected 

regional demographics: 85% Caucasian, 7.5% African American, 1.5% Asian, and 6% 

mixed. Seventeen (37%) children with ADHD were prescribed a stimulant medication, and 

the median medication washout period was 74 hours.

In the fast event rate condition, there were n=51 children with ADHD and n=18 non-ADHD 

controls. Sample ethnicity was 78% Caucasian, 8.8% African American, 3% Hispanic, 3% 

Asian, and 7% mixed ethnicity. Fifteen (29%) children with ADHD were prescribed a 

stimulant medication, and the median medication washout period was 68 hours.

As expected, in both conditions, parent and teacher ratings of ADHD symptomology for the 

ADHD group exceeded controls (all p <.001). There were no diagnostic differences in age or 

IQ (obtained using a 2-subtest short form (vocabulary and matrix reasoning) of the Wechsler 

Intelligence Scale for Children-IV (Wechsler, 2003) (all p >.07). Children with ADHD who 

were recruited for the slow vs. fast event rate condition did not vary in ADHD severity, age, 

or estimated FSIQ (all p>. 12).

Procedures

Informed written consent from parents and verbal assent from children were obtained prior 

to participation. Parents were given $100 and relevant clinical feedback. Children were given 

a small prize. Participants completed the below paradigms as part of a battery of tasks 

associated with a larger study examining neurocognitive deficits in childhood ADHD.

Go-no-go paradigm—The GNG paradigm used stimuli from a numerosity discrimination 

task (Gomez et al., 2007 Exp 5; Ratcliff et al., 2012). Ten blocks of 80 trials were 

administered with optional rest periods in between. At the start of each trial, a number of 

white asterisks filled random positions in a 10 × 10 array at the center of a black screen. 

Children were told “We’re going to play a game called the Candy Factory now. Some of the 

boxes of candy that the factory makes have a lot of candy in them, and some only have a 

little. But, the sorter is broken! We need your help! Every time you see a box that has ‘a lot’ 

of candy, press the spacebar. Don’t press anything if the box has “a little” bit of candy. This 
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is a hard game, but try to work as quickly as you can without making mistakes. Let’s try 

some for practice.” Four practice trials were then given.

75% of the stimuli (selected at random without replacement) were “go” trials and contained 

61–70 asterisks. The remaining “no-go” trials contained 31–40 asterisks. Children were not 

informed of the sorting strategy, but were provided a brief tone on errors. In the slow event 
rate condition, stimuli remained onscreen for 1500ms, even if a response had already been 

made. This was followed by a 300ms blank screen before the next trial started. Time to 

completion was ~30 minutes. In the fast event rate condition, the next trial began 300ms 

after a response and took on average 20 minutes to complete.

Fitting the diffusion model—The first block of trials and RTs <300ms were removed 

from the data (Ratcliff et al., 2012). This is to ensure that atypical and outlier responses that 

are generated as participants are “getting used to” the paradigm are eliminated. The values 

of all parameters were estimated simultaneously for all the data for each participant 

individually (see Ratcliff & Tuerlinckx, 2002 for full details). To fit the model to the data, 

RT distributions for all “go” responses (i.e. correct “go” as well as failed inhibits) were 

represented by nine quantiles, the .1, .2, .3, …, .9 quantiles. The quantiles and the response 

proportions were entered into a chi-square minimization routine (Ratcliff & Tuerlinckx, 

2002), and the diffusion model was used to generate the predicted cumulative probability of 

a response occurring by that quantile RT. Subtracting the cumulative probabilities for each 

successive quantile from the next higher quantile gives the proportion of responses between 

adjacent quantiles. For a chi-square computation, these are the expected proportions, to be 

compared to the observed proportions of responses between the quantiles (i.e., the 

proportions between 0, .1, .2, …, .9, and 1.0, which are .1, .1, .1, …, and .1). The 

proportions are multiplied by the number of observations in the condition (this produces 

values of the proportions weighted by accuracy) to give observed (O) and expected (E) 

frequencies. Summing over (O-E)2/E for all conditions gives a single chi-square value to be 

minimized. The number of degrees of freedom in the data are the 20 proportions between 

and outside the quantiles (10 each for correct and error responses) minus 1 (because the sum 

must equal 1) multiplied by the number of conditions in the data.

For all "no-go" responses (i.e. correct "no-go" responses and errors of omission, where the 

child did not go when a go response should have been made), a single bin was used for the 

contribution to chi-square, namely, (O-E)2/E, where O is the observed frequency of "no-go" 

responses and E is the expected frequency of "no-go" responses. Thus, the number of 

degrees of freedom was 10-1 for the RT bins for the "go" responses plus 1 for the "no-go" 

responses.

We note that the within trial variance of the diffusion process for any given trial is usually 

treated as a scaling parameter. This means that if the parameter is set to a particular value 

(by convention, it is typically set to 0.1, see: Wagenmakers, van der Maas, & Grasman, 

2007). If this were doubled, then other parameters in the model would also be doubled, but 

the predicted values would be identical. Although the choice of the scaling parameter has no 

impact on significance testing, the arbitrary nature of the scaling parameter means that there 

are no “units” for the absolute value of drift rate (v), boundary separation (a), or start point 
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(z), and the interpretation of these values is dependent on the relative values. Larger absolute 

values of drift rate indicate faster drift. Larger values of boundary separation indicate more 

conservative responding, and z represents the distance between the start point and no-go 

boundary. Ter is reported in seconds.

Results

Table 2 contains performance (RT and accuracy values) as well as the diffusion model 

parameters. Figure 3 shows the behavior of diffusion model parameters graphically.

Slow event rate

Compared to controls, children with ADHD made more errors of omission, 

F(1,65)=5.54,p=. 02, η2 =0.08, had significantly larger standard deviation of RT (SDRT), 

F(1,65)=9.87, p=.003, η2=0.13, and non-significantly slower RTs, F(1,65)=3.28, p=. 08, η2 

=0.05. There were no group differences in the number of failed inhibits, F(1,65)=1.53, p=.

22,η2=0.02.

With respect to diffusion model parameters, drift rate to “go” was slower, F(1,65)=5.06,p=. 

03, η2=0.07, and start point (z) was closer to the no-go boundary, F(1,65)=4.33,p=.04, 

η2=0.06, among children with ADHD, but there were no group differences in drift rate to 

“no-go,” a, or Ter (all p>. 14, all η2<03).

Fast event rate

Compared to controls, children with ADHD made more failed inhibits, F(1,67)=14.44, p <.

001, η2=0.18, and had larger SDRTs, F(1,67)=9.35, p=.003, η2=0.12. There were no group 

differences in RT or errors of omission (both p>. 18, both η2<03).

With respect to diffusion model parameters, there were no group differences in start point 

(z), F(1,67)=0.15, p=.70,η2 =0.002. Drift to “go”, F(1,67)=3.77,p=.06,η2 =0.05, and drift to 

“no-go,” F(1,67)=15.13,p <001,η2 =0.18, were slower among children with ADHD, 

although drift to “go” was not significantly slower. There were no group differences in a or 

Ter (both p>.45, both η2<01).

Comparing event rate effects within groups

NeT predicts that fast event rates will exacerbate neuronal fatigue among children with 

ADHD. Therefore, evidence in favor of NeT would be observed if drift to no-go slowed 

(relative to go) in the fast event rate condition. Slowing of drift to no-go relative to go is 

expected because the inhibitory process in a go-no-go task is the process that requires effort. 

In contrast, the cognitive energetic theory predicts that faster event rates would lead to 

increases arousal, which would be reflected in faster drift rates to no-go decisions (relative to 

go).

We found that among children with ADHD, RTs were faster, t(95)=5.32,p <.001, there were 

fewer errors of omission, t(37)=2.26,p<.03, and more failed inhibits, t(37)=−5.92,p <.001 in 

the fast vs. slow event rate condition. There were no effects of event rate for drift to “go” or 

SDRT (both t <1.76, both p>.08). However, consistent with NeT, drift to “no-go” was slower 
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under fast event rates, t(96)=−2.42,p=.02. Start point, z, also shifted further away from the 

no-go boundary, t(96)=−3.98,p <.001 under fast event rates. Finally, a was smaller, 

t(96)=2.77,p=.007, and Ter was faster, t(96)=1.97,p=.05.

Among controls, event rate did not alter the number of omissions, SDRT, a, z, drift to “go,” 

or drift to “no-go” (all t <1.53, all p>.14). However, RTs, t(37)=2.78,p=.01, and Ter, t(37)= 

2.28,p=.03 were faster in the fast event rate condition, and there were more failed inhibits, 

t(37)=−2.32,p=.03.

In summary, diffusion model analyses found that among children with ADHD, fast event 

rates slowed drift to “no-go” decisions, and shifted ADHD start points closer to the go 

boundary, compared to the slow event rate condition. In contrast, performance for controls 

was not as strongly influenced by event rate as that of children with ADHD.

Discussion

We examined the effect of event rate on inhibitory control in children with ADHD to 

evaluate the neuroenergetic (NeT) and cognitive energetic theories of ADHD. We did so 

using the diffusion model which, in its simultaneous consideration of both RT and accuracy 

data, allows it to isolate the multiple cognitive subprocesses that interact with and contribute 

to speeded decision making. Primary components of the model include information 

processing efficiency (drift rate, or v), start point (z), speed-accuracy trade off settings 

(boundary separation, or a), and the time it takes to encode a stimulus and plan a motor 

response (non-decision time, or Ter).

Consistent with NeT, compared to slow event rates, fast event rates were associated with 

slower drift to the “no-go” decision, and a higher proportion of failed inhibits. This was 

despite the fact that (a) RTs for both groups were faster in the fast vs. slow event rate 

condition, and that (b) there were no group differences in RT in the fast event rate condition. 

Until now, this main effect of RT speedup under fast event rates, representing a hallmark 

piece of evidence in favor of the cognitive energetic theory, has historically been interpreted 

as evidence of improved performance secondary to increased arousal (Metin et al., 2012; 

Sergeant, 2000, 2005).

The cognitive energetic theory predicts that the relationship between event rate and arousal 

is an inverted U-shaped function, with the worst performance seen under both very slow and 

very fast event rates. It therefore remains possible that our fast event rate condition overshot 

the optimal state of arousal. Though such a possibility should of course be considered in the 

design of future studies, the need to invoke an inverted U only occurs when RT and accuracy 

data are believed to be independent indicators of performance. When drift rate, a better 

index of processing speed, because it is isolated from non-decision time (captured in Ter) 
and speed-accuracy trade off strategies (captured in a), is used as the primary index of 

performance, the interpretation is more parsimonious. That is, faster event rates were 

associated with slower/less efficient processing among children with ADHD.

Beyond the implications of our results to understanding the neurocognitive mechanisms that 

may be involved in the development of childhood ADHD, our findings highlight how easy it 
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is to misinterpret cognitive data when standard indices of performance are used. For 

example, within our ADHD sample, had we based our analyses on RT alone, we would have 

concluded that faster event rates improved performance. But, had we based our analyses on 

the number of failed inhibits, we would have concluded that faster event rates lead to worse 

performance. And, had we based our analyses on RT variance (i.e. standard deviation of 

RT), we would have concluded that event rates do not affect performance at all. It is only 

through the simultaneous consideration of the shape of the RT distributions for correct and 

incorrect responses that we are able to obtain the most accurate and complete description of 

performance.

Furthermore, continuing to depend on unidimensional performance indices hinders the 

development of strong etiologic theory and the evaluation of therapeutic effects. For 

example, what would we make of a medication or psychotherapy if it showed evidence of 

improving reaction times at the expense of increases in error rate? Even in the absence of 

speed-accuracy-trade-off effects, consider the implications of a treatment that reduces RTs 

by improving central cognitive processing efficiency vs. one that reduces RTs through 

improvements in the speed of stimulus encoding. ADHD is the prototypical childhood 

psychiatric disorder associated with cognitive performance deficits, and in particular, with 

failed inhibitory control, and the go-no-go task is widely used in both research and clinical 

settings to document deficits in inhibition. It is therefore of utmost importance that the field 

recognize the limitations inherent in the use of standard indices of performance (RT and 

accuracy) on this and all simple RT tasks.

Go:No-go signal ratio was 75% in both event rates. Because the majority of trials required a 

go response, typically developing children, like adults (Leite & Ratcliff, 2011; Mulder, 

Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012), tended to respond (or were biased to 

respond) “go” (i.e. their start points were closer to the go than to the no-go boundary) 

regardless of condition. Curiously, however, children with ADHD set their start points not on 

the absolute proportion of go signals, but on the rate at which go signals appeared. In the 

slow condition, a new stimulus appeared every 1800 ms (i.e. the total ISI) vs. in the fast 

condition, a new stimulus appeared twice as rapidly, about 1 every 900 ms (300 ms ISI + the 

average RT in that condition, ~600 ms). At slow event rates, ADHD start points were closer 

to the no-go boundary (because the majority of the time, they were not “going,” even though 

the majority of the stimuli were “go” stimuli). But, under fast event rates, ADHD start points 

were similar to that of controls, and were set closer to the go boundary.

Increased sensitivity to the passage of time among children with ADHD has previously been 

noted (Castellanos & Tannock, 2002; Noreika, Falter, & Rubia, 2013; Rubia, Halari, 

Christakou, & Taylor, 2009), though the cause of such sensitivity is not well understood. 

However, competition for attentional resources results in the experience of temporal 

shortening (i.e. “time flies when you’re having fun”) (Block, Hancock, & Zakay, 2010; 

Brown, 1997; Droit-Volet & Gautier, 2000; Gautier & Droit-Volet, 2002a, 2002b). So, 

consistent with the cognitive energetic theory, one could still argue that fast event rates are 

associated with increased arousal, which results in greater task/attentional engagement 

thereby correcting children’s experience of the proportion of Go:No-go signals (as reflected 

in changing start points). All of this could ultimately lead to a greater preparedness to 
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respond. That being said, these changes should have improved performance. But that was 

not the case.

Indeed, reward and response cost manipulations designed to increase task engagement/

motivation have been inconsistent in their ability to normalize cognitive performance across 

a range of laboratory tasks (Luman, Oosterlaan, & Sergeant, 2005). Standard explanations 

for these inconsistencies have included variations in the type, frequency, and schedule of the 

rewards, individual differences in the valuation of those rewards, and variation in the 

outcome variables being monitored (e.g. RT, accuracy, or SSRT). All of that is likely true. 

However, interpreted in the context of NeT, it could also be that increased motivation/ 

engagement leads to improved overall performance only to the extent that the neuronal 

energy supply is not simultaneously being depleted by that increased engagement.

The potential implications of these findings to ADHD specifically (assuming additional 

validations of NeT) are that the consistent application of behavioral incentives and rewards, 

which represents an important mechanism of action in evidence-based psychosocial 

treatments for ADHD (Fabiano et al., 2009; Pelham & Fabiano, 2008; Sagvolden, Johansen, 

Aase, & Russell, 2005), may simultaneously, by virtue of increasing cognitive engagement 

and response preparedness, more rapidly deplete the neuronal energy supply. This could help 

explain both the short-term effects of psychosocial treatments and the moderately larger 

effect sizes that amphetamine products have over methylphenidate products (Faraone & 

Buitelaar, 2010). That is, deficits in dopamine-related reward systems have long been 

proposed for ADHD, and though the exact mechanism of action of stimulant drugs is not 

known, such deficits are generally believed to be mitigated by the increase in tonic 

dopamine made available through the administration of a stimulant-based medication 

(Sagvolden et al., 2005). However, amphetamines block both dopamine, as well as the re-

uptake of norepinephrine, which directly influences lactate availability. In comparison, 

methylphenidate’s mechanism of action is presumed to act primarily on the dopamine 

system (Faraone & Buitelaar, 2010).

It bears mentioning that motivation and reward-based models of self-control (Botvinick & 

Braver, 2015; Inzlicht, Schmeichel, & Macrae, 2014; Westbrook & Braver, 2015) have taken 

issue with depletion theories, of which NeT is one. These models posit that organisms weigh 

the benefits of task engagement and the execution of cognitive control (i.e., good 

performance or an explicit reward) against the anticipated costs of that control (i.e., loss of 

leisure or opportunity costs). When benefits outweigh the costs, then cognitive exertion is 

expended in the service of acquiring those benefits. The invocation of a biologically-based 

limited-resource is seen as an unnecessary construct. Under this rubric, the utility for 

maintaining preparedness for a target that appears more frequently in time would be greater 

than that for a target that appears less frequently in time. Thus, similar to predictions of 

cognitive energetic theory (but for different reasons), these models would predict faster drift 

rates with faster event rates. This of course was not observed.

Faster event rates were associated with faster Ter and smaller a, but there were no diagnostic 

group differences in either condition. How the diffusion model parameters change in 

response to event rate has not been specifically examined, but a decreases when speed is 
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emphasized over accuracy, or when a time pressure to respond is experienced (as might be 

the case in the fast event rate condition when the next trial begins immediately after a 

response). In these situations, motor responses must also be more rapidly executed so that a 

shortening of Ter, reflecting a potential motor priming effect, would not necessarily be 

unexpected.

One of the many strengths of the design were that go and no-go stimuli were distinguished 

by degree rather than kind, which allowed the paradigm to index a more effortful (vs. 

automatic) form of inhibitory control (Verbruggen & Logan, 2008). It also circumvented the 

need to have a clear, unambiguous external stop signal that is commonly used in standard 

laboratory tasks of inhibitory control, but seldom experienced in the real world (Aron, 

2011). Limitations of the study include the use of a between subjects design, and two event 

rates (rather than 3 or more) to better estimate the shape of the performance function. 

Clearly, replication using a within-subjects multiple-event rate design is needed. However, it 

is also worthwhile to consider future paradigms that titrate event rate to optimal 

performance, which might better quantify the degree of cognitive heterogeneity in the 

population. Finally, with respect to motivation and reward-based models of self-control, it 

remains possible that children with ADHD found the fast event rate condition less 

motivating/engaging than the slow event rate condition because the no-go trials arrive more 

frequently in time alongside the go trials. If this were the case, then slower drift in the fast 

event rate condition could still be consistent with a reward/motivation account of 

disinhibitory control. However, given well documented evidence of delay aversion in ADHD 

(Patros et al., 2015; Pauli-Pott & Becker, 2011; Sonuga-Barke, Sergeant, Nigg, & Willcutt, 

2008), finding a reversed preference for slower vs faster event rates seems unlikely. 

Regardless, the design of the current study is unable to rule out this possibility. One way to 

examine this in future studies, however, would be to directly measure preference for task 

engagement (Westbrook & Braver, 2015; Westbrook, Kester, & Braver, 2013).

Summary and Conclusions

In summary, we found that consistent with the neuroenergetic theory of ADHD, faster event 

rates were associated with slower drift to no-go decisions, which was in turn responsible for 

a higher proportion of failed inhibits in that condition. Earlier models and data were 

hampered in their interpretation by using methods that restricted analyses to either RT or 

accuracy alone, and were unable to isolate/separate variance associated with non-decision 

components (encoding time, motor preparation, speed-accuracy trade-off effects). 

Intriguingly, we also found that the start point of the decision process in children with 

ADHD was similar to controls under fast event rates, suggesting increased motivation or 

preparedness to respond. However, this increase in preparedness under fast event rates was 

ultimately unable to counteract the effects of slowed processing speed in that condition, 

which may have important implications for understanding the long term effects of 

psychosocial and medical treatments for ADHD.

The promise of computational approaches is that it allows psychological research to move 

away from dependence on unidimensional variables, to one that is more sensitive and better 

suited to identifying the neurocognitive basis of behavior (White et al., 2010; Wiecki et al., 
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2015). The strength and nuance of our findings is only possible because the diffusion model 

was able to capture the independent cognitive processes that would otherwise be hidden and 

thus misinterpreted.
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Figure 1. 
Anatomy of a reaction time. After a stimulus is encoded, the decision process starts at z, and 

moves in the direction of one of two boundaries (is the stimulus a word or non-word? 

Should I go or not go?). Drift rate (v) is the rate at which information accumulates towards a 

decision. Once the decision process has reached one of the boundaries, the corresponding 

motor response is initiated. How far apart the boundaries are (i.e. the boundary separation, or 

a) is an indication of the conservativeness of the response criterion. Wider separations 

indicate more conservative responding (i.e. more information is needed before a decision 

can be reached). Non-decision time (Ter) represents the time it takes to complete all non-

decision processes, such as stimulus encoding and motor preparation. Reaction time = 

Decision Time + Non-decision Time. Trial-to-trial variability in drift produces RT 

distributions.
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Figure 2. 
Hypothetical causes of inhibitory deficits in ADHD.

a. Bias in drift where drift to no-go is slower than drift to go. ADHD dashed lines.

b. ADHD start point biased to “go”
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Figure 3. 
DDM parameters. SE bars displayed.
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