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Abstract An expanded polyglutamine (polyQ) tract at the

amino-terminus of the androgen receptor (AR) confers

toxic properties responsible for neuronal and non-neuronal

degeneration in spinal and bulbar muscular atrophy

(SBMA), one of nine polyQ expansion diseases. Both

lower motor neurons and peripheral tissues, including

skeletal muscle, are affected, supporting the notion that

SBMA is not a pure motor neuron disease but a degener-

ative disorder of the neuromuscular system. Here, we

review experimental evidence demonstrating both nerve

and muscle degeneration in SBMA model systems and

patients. We propose that polyQ AR toxicity targets these

components in a time-dependent fashion, with muscle

pathology predominating early and motor neuron loss

becoming more significant at late stages. This model of

pathogenesis has important therapeutic implications, sug-

gesting that symptoms arising from degeneration of nerve

or muscle predominate at different points and that directed

interventions targeting these components will be variably

effective depending upon disease progression.
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Abbreviations

SBMA Spinal and bulbar muscular atrophy

CAG Cytosine adenine guanine

PolyQ Polyglutamine

AR Androgen receptor

T Testosterone

DHT Dihydrotestosterone

NTD Amino-terminal domain

DBD DNA-binding domain

LBD Ligand-binding domain

AF-1/AF-2 Activation function

Tau-1/Tau-5 Transcription activation unit

SRC-1 Steroid receptor coactivator-1

NLS Nuclear localization signal

PEST Proline, glutamic acid, serine, threonine

CBP c-AMP responsive element binding

protein

Hsp Heat shock proteins

CHIP Carboxyl terminus of Hsc70-interacting

protein

N/C interaction Amino- and carboxy-terminus

interaction

Lys Lysine

Ser Serine

SIRT1 Sirtuin 1

IGF-1 Insulin-like growth factor-1

CNS Central nervous system

Introduction

Over the last two and a half decades, neurogeneticists have

identified nine degenerative disorders caused by abnor-

mally long CAG/polyglutamine (polyQ) tracts in the

coding sequence of disease-causing genes [1]. This type of

mutation was first identified in the androgen receptor (AR)

gene as the cause of spinal and bulbar muscular atrophy
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(SBMA; Kennedy disease) [2]. Since then, similar coding

region microsatellite expansions have been identified as the

causative mutation in otherwise unrelated genes encoding

huntingtin protein, responsible for Huntington’s disease, in

atrophin-1, causing dentatorubral-pallidoluysian atrophy,

and in ataxin-1, -2, and -3, in the Cav2.1 P/Q voltage-

dependent calcium channel, in ataxin-7, and in TATA-

binding protein, causing spinocerebellar ataxias type 1, 2,

3, 6, 7, and 17, respectively.

As a group, these disorders share both a common

mutational mechanism and several important clinical fea-

tures that suggest the existence of shared underlying

pathogenic mechanisms. All are chronic, progressive neu-

rodegenerative diseases with symptom onset most

frequently in mid-life and phenotypes that are slowly

progressive. In each case, the length of the glutamine tract

is negatively correlated with the age of onset and positively

correlated with the disease severity. As the expanded repeat

is unstable and shifts in length as it is passed from one

generation to the next, intergenerational expansions

underlie genetic anticipation [1]. Importantly, in each dis-

ease, the mutation leads to toxicity as a result of misfolding

of the mutant protein. While these mutations impact nor-

mal protein function to yield disease-specific

manifestations, proteotoxicity unrelated to normal function

is also common to all of these disorders and is a significant

mediator of cell dysfunction and death. Notably, while

eight of the polyQ disorders are inherited as autosomal

dominant disorders, the penetrance of the SBMA pheno-

type is dependent upon male levels of circulating

androgens. This feature leads to the occurrence of disease

only in men.

Spinal and bulbar muscular atrophy

The initial clinical description of SBMA appeared in the

Japanese literature over a century ago and is attributed to

Hiroshi Kawahara [3]. Nearly three quarters of a century

later, William Kennedy documented details of the clinical

and pathological features of this disorder and described its

X-linked pattern of inheritance [4]. Anita Harding provided

a subsequent comprehensive clinical description, noting

that symptoms are frequently late in onset and do not occur

in heterozygous female carriers [5], features that make the

family history of the disease less obvious and the diagnosis

more difficult. Additional analyses have confirmed that

female carriers show only subclinical disease manifesta-

tions [6, 7]. SBMA patients often present with symptoms of

muscle weakness between 30 and 60 years of age. These

features are typically preceded by tremors, muscle cramps,

and elevated serum levels of creatine kinase. Bulbar, facial,

and proximal muscles of the arms and legs are involved as

the disease progresses. Dysphagia and aspiration can occur

in advanced cases. In addition to neuromuscular symptoms,

patients may develop sensory neuropathy, particularly

affecting vibration in the distal legs, as well as signs of

partial androgen insensitivity, including gynecomastia,

reduced fertility, and testicular atrophy [8, 9]. The preva-

lence of the disease is estimated at 1–2 per 100,000

individuals, although precise numbers are difficult to

ascertain. SBMA patients may be misdiagnosed with other

neuromuscular diseases, such as amyotrophic lateral scle-

rosis, from which it is distinguished clinically by its

striking sex bias, slow progression, and absence of upper

motor neuron signs. The sex bias of disease reflects the

importance of male levels of circulating androgens in

triggering toxicity of the polyQ AR protein. This feature of

pathogenesis was first established in mouse models of

disease by Gen Sobue and colleagues, where surgical or

chemical castration of transgenic male mice produced

marked improvement of symptoms, whereas testosterone

administration to female transgenic mice markedly exac-

erbated symptoms and pathologic features; subsequent

studies in additional mouse models have confirmed these

observations [10–12].

Androgen receptor

Linkage studies initially localized the genetic defect

responsible for SBMA to the proximal long arm of the X

chromosome (Xq11–12) in a region containing the AR gene

[13]. Analysis of this candidate gene by Kenneth Fischbeck

and colleagues identified an expansion of a CAG trinu-

cleotide repeat encoding a polyglutamine tract in the

coding sequence of exon 1 [2]. This repeat encodes 9–34

glutamines in normal individuals and is expanded from 38

up to the mid-60s in SBMA patients. The AR protein is a

110-kDa nuclear receptor that belongs to the steroid/thy-

roid hormone receptor family. After binding ligand, either

testosterone (T) or dihydrotestosterone (DHT), AR

translocates to the nucleus and regulates the expression of

target genes. Notably, DHT is much more potent than T as

an AR ligand because it has a fourfold higher affinity and a

fivefold slower dissociation rate from the receptor [14].

DHT is synthetized from T by the enzyme 5a-reductase,
especially in the prostate. In other tissues where 5a-re-
ductase activity is absent, such as skeletal muscle, T is the

natural ligand of the AR. Variation in the length of the

CAG repeat, even within normal alleles, influences AR

function as a ligand activated transcription factor, such that

shorter repeats are associated with a more transcriptionally

active receptor. This variation in AR function has been

associated with a variety of phenotypic outcomes in men

[15–17]. AR is expressed in reproductive tissues as well as
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in skeletal muscle, liver, kidney, adrenal gland, skin, and

the central nervous system, indicating that it supports the

development and/or the maintenance of many cell types

[18].

AR structure

Of the eight exons composing the AR gene, exon 1 encodes

an amino-terminal transactivation domain (NTD) that

contains the CAG trinucleotide repeat (Fig. 1a). The

domain encoded by exon 1 possesses the major transcrip-

tional regulatory activity of the receptor, including the

strong activation function 1 (AF-1, residues 142–485)

region that contains the two transcription activation units,

Tau-1 (residues 100–360) and Tau-5 (residues 360–485)

[19, 20]. These regions are required for AR’s interaction

with transcriptional coregulators. Notably, AF-1 mediates

interaction with members of the p160 family of nuclear

receptor coactivators. Through this mechanism, steroid

receptor coactivator-1 (SRC-1) and c-AMP responsive

element binding protein (CBP) are recruited to the AR [21–

23]; these interactions are altered in disease models [24,

25] (see below). In addition to the polyQ tract, the amino-

terminal domain of the AR protein contains polyglycine

and polyproline stretches, but these polyamino acid tracts

are not implicated in disease, and their functional roles are

poorly understood.

Fig. 1 Expansion of the androgen receptor’s polyglutamine tract

triggers neuromuscular degeneration in SBMA. a Linear diagram of

the AR, indicating the presence of the glutamine tract in the

N-terminal domain (highlighted in red). This track is expanded in

SBMA patients to C38 glutamines. Also shown are the central DBD

and hinge regions, C-terminal LBD, and several additional functional

domains that are detailed in the text. Numbers indicate amino acid

residues. b Model of time-dependent pathology in SBMA resulting in

skeletal muscle and motor neuron degeneration. Skeletal muscle

alterations occur early in disease progression and are reflected by

myopathic symptoms, including elevated serum creatine kinase levels

and muscle cramps. Symptoms arising from motor neuron degener-

ation predominate at later stages and progress to motor neuron loss at

end stage. Nuclear accumulation and intranuclear inclusions of the

polyQ AR (in red) occur throughout the disease in both nerve and

muscle cells. Data from model systems suggest that expression of the

polyQ AR in skeletal muscle plays an important role in disease

symptoms and progression
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The central DNA-binding domain (DBD, residues

556–623) and the hinge region (residues 624–665) are

encoded by exons 2 and 3. The DBD is composed of two

zinc fingers that allow specificity in DNA binding and

stabilization of DNA–protein interactions, whereas the

hinge region contains a PEST sequence (P proline, E glu-

tamic acid, S serine, T threonine) that has been suggested

to target proteins for degradation through the proteasome

[26]. In addition, the junction between the DBD and hinge

region contains a nuclear localization signal (NLS, residues

621–635) that interacts with a-importin and drives AR into

the nucleus following ligand binding [27]. In addition to

influencing nuclear localization and proteasomal degrada-

tion, these regions have complex affects on DNA binding,

on the interaction of amino- and carboxy-terminal domains

(so-called N/C interaction), and on the recruitment of

coregulators [28, 29]. These regions are also the site of

functionally important post-translational modifications,

including acetylation, ubiquitylation, and methylation [30].

For example, acetylation at Lys residues 630, 632, and 633

affects subcellular localization, interaction with coregula-

tors, and transcriptional activity [31].

The carboxy-terminal ligand-binding domain (LBD,

residues 666–919) is encoded by exons 4–8, and undergoes

ligand-dependent conformational changes that lead to the

assembly of the less potent activation function 2 (AF-2)

region [32]. This region has weak interactions with tran-

scriptional coregulators, such as SRC-1. The hydrophobic

surface of AF-2 is essential for the interaction of the car-

boxy-terminus of the receptor with the NTD and, therefore,

for the full activity of the AR [33]. The LBD is also

important for the regulation of AR nuclear export. It con-

tains a nuclear export signal (NES, residues 742–817) that

helps to complete AR nuclear/cytoplasmic shuttling after

ligand withdrawal [34].

AR in SBMA

Expansion of the AR’s polyQ tract results in ligand-de-

pendent protein unfolding/misfolding as well as a partial

loss of transactivation function. Proteotoxicity caused by

the polyQ tract expansion occurs through mechanisms that

are distinct from normal AR function (so-called toxic gain

of function) [35] and is manifest in several cell types,

including both lower motor neurons and skeletal muscle

cells [36–38]. In addition, the polyQ tract expansion in AR

is also responsible for the partial loss of normal function

that is characteristic of SBMA. The mutation seems to

disrupt the interaction between the amino-terminal trans-

activation domain and transcriptional coactivators [14].

Reduced AR activity likely contributes to the endocrine

symptoms observed in many SBMA patients. Notably,

endocrine target tissues also express high levels of the

polyQ AR protein and show effects of proteotoxicity [39].

This complex mixture of effects mediated by protein mis-

folding and loss of normal function is a feature shared by

SBMA and several other degenerative proteinopathies.

Underlying proteotoxicity is the expanded polyQ tract in

the amino-terminus of the AR protein that alters the con-

formation of this domain from a random coil to a b-sheet.
This change is believed to favor the formation of soluble

oligomeric species that are considered to be rate-limiting in

aggregation [40]. These oligomers are thought to be a toxic

species that initiates a complex downstream series of

events that lead to cell degeneration [41–43]. Oligomers

are also capable of coalescing into insoluble fibrils, which

are the building blocks of histopathologically visible

nuclear inclusions that are present in SBMA tissue [44, 45].

While these AR immunoreactive intranuclear inclusions

are indicative of protein unfolding/misfolding as a result of

the CAG repeat expansion, several studies demonstrated

that they may play a protective role in pathogenesis by

sequestering the mutant protein and preventing its toxicity

[42]. In fact, diffuse accumulation of misfolded polyQ

proteins, rather than protein aggregates, correlates more

closely with the initiation of neurodegeneration in several

polyglutamine diseases [46]. In support of this notion,

Adachi et al. [38] demonstrated that diffuse nuclear accu-

mulation of the polyQ AR is more frequent than nuclear

inclusions in the anterior horn of the spinal cord and that it

is strictly correlated with the number of glutamines in the

AR polyQ tract. It has been suggested that the polyQ AR

principally accumulates within the nuclei of motor neurons

in a diffusible form, leading to neural dysfunction and

eventual cell death (reviewed in [32]). Reports have also

suggested that the polyQ AR accumulates in the cytoplasm

of certain types of cells, including sensory neurons [38].

The importance of these cytoplasmic aggregates is uncer-

tain as studies in model systems have established that

nuclear localization of the polyQ AR is essential for toxi-

city. Indeed, mutation of the nuclear localization signal or

addition of a nuclear export signal reduces toxicity in

cellular and Drosophila models of SBMA [47, 48].

Regulation by the Hsp90/Hsp70-based chaperone

machinery

Both the normal and expanded polyQ ARs are client pro-

teins of the heat shock protein 90 (Hsp90) and Hsp70-based

chaperone machinery [49, 50]. Unlike the classical notion

of individual chaperones binding to newly synthesized or

unfolded/misfolded proteins to help them attain their fol-

ded conformation, the Hsp90/Hsp70-based chaperone

machinery interacts with pre-folded proteins in their native

or near-native conformations. Through this interaction, the

chaperone machinery regulates essential aspects of client
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protein proteostasis, including ligand binding, cytoplasmic

to nuclear shuttling, and degradation [49, 51]. In the pro-

tein quality control function of the chaperone machinery,

Hsp90 and Hsp70 have opposing effects on client protein

stability [52]. For instance, when cycling with Hsp90 is

blocked by specific inhibitors, client proteins undergo rapid

ubiquitination and degradation through the proteasome,

thereby revealing an essential role of Hsp90 in maintaining

protein stability. In contrast, Hsp70, along with its co-

chaperone Hsp40, mediates turnover of unfolded/misfolded

client proteins by facilitating the recruitment of chaperone-

dependent E3 ubiquitin ligases, such as CHIP (carboxyl

terminus of Hsc70-interacting protein) [53]. These mech-

anisms tightly regulate degradation of the polyQ AR. In

fact, Hsp90 inhibition or Hsp70 or CHIP overexpression

ameliorates disease in a transgenic mouse model of SBMA

[54, 55]. Notably, both Hsp90 and Hsp70 have ATP

binding sites and intrinsic ATPase activity. Both of these

chaperones have low affinity for their substrates in their

ATP-bound states, but the hydrolysis of ATP to ADP

changes their conformation and increases their binding

affinity [51]. This allosteric regulation of Hsp70 binding

affinity to unfolded/misfolded clients has enabled the

identification of genetic and pharmacological strategies to

favor the ADP-bound form of Hsp70 and, thereby, promote

ubiquitination and clearance of the polyQ AR [56].

When T or the more potent ligand DHT binds to the

polyQ AR, its interaction with the chaperone machinery

becomes much more dynamic. This permits the receptor to

undergo conformational changes resulting in the disasso-

ciation of Hsp90 and the rapid initiation of intramolecular

interactions between the amino- and carboxy-terminus of

the AR (N/C interaction), followed by nuclear transloca-

tion. After nuclear translocation, the AR dimer stably binds

to androgen response elements in promoter or enhancer

regions of target genes [57]. As a result, AR mediates the

effects of the androgens by modulating the expression of

target genes. These steps are also critical in the patho-

genesis of SBMA: nuclear translocation of the polyQ AR is

necessary, but not sufficient for its toxicity [38]. Moreover,

ligand-dependent interactions of the carboxy-terminal AF-

2 domain with coregulators [58] and N/C interaction [59,

60] are both required for polyQ AR toxicity in model

systems.

Altered transcriptional activity

The AR NTD mediates the majority of the AR’s tran-

scriptional activity and serves as a surface for the

recruitment and assembly of transcriptional coregulators.

The polyQ tract expansion in the NTD alters interaction

with these coregulators and impacts gene expressions. The

mutant receptor undergoes a partial loss of function, and,

thereby, fails to regulate a subset of genes that are normally

androgen-responsive [61]. This likely contributes to a loss

of trophic support for target cells, including both skeletal

muscle and lower motor neurons. The coactivator SRC-1, a

member of the p160 family, interacts directly with the

NTD domain of AR, where Tau-5 has high affinity for a

glutamine-rich domain in the p160 proteins [19]. This

coactivator also interacts with AF-2 in the LBD of AR, but

this particular interaction is not considered essential for AR

transcriptional function [23]. The interaction between AR

and SRC-1 potentiates receptor activity by recruitment of

additional cofactors, including CREB-binding protein

(CBP)/p300 and coactivator-associated arginine methyl-

transferase 1 (CARM1) that modify chromatin structure by

histone acetyltransferase and histone methyltransferase

activity [21, 62]. The presence of the polyQ tract expansion

in SBMA reduces p160-mediated coactivation and,

thereby, affects AR regulation of gene expression. It has

been proposed that a shorter polyQ tract gives the AR a

more accessible or stable surface for AR-interacting pro-

teins like SRC-1 [22]. Conversely, there is evidence that

polyQ AR toxicity is mediated by abnormal interactions

with components of the transcriptional regulatory appara-

tus. For example, the expanded polyQ tract may favor

aberrant association with coregulators, such as NF-Y and

p300/CBP-associated factor to alter the expression of

critical genes [63]. These data are consistent with the

observation that toxicity of the polyQ AR in a Drosophila

model requires DNA binding followed by association with

coregulators [58]. In addition, nuclear accumulation of the

polyQ AR is suggested to cause broad effects on gene

expression by sequestering and interfering with the func-

tion of essential transcriptional coregulators [24]. For

example, sequestration of Sp1 and CBP by the polyQ AR

has been shown to reduce histone acetyltransferase activity

in cellular models of disease [24]. The decrease in histone

acetylation may alter chromatin structure and diminish

expression of genes (e.g., vascular endothelial factor and

type II TGF-beta receptor) that promote neuronal survival

[63, 64]. In support of this view, increased acetylation by

treatment with histone deacetylase inhibitors mitigates

neuronal dysfunction and ameliorates motor phenotype in

cellular and animal models of polyglutamine repeat dis-

eases [65–68].

Post-translational modifications

A large number of post-translational modifications have

been identified that influence AR function and stability,

including phosphorylation, acetylation, and sumoylation.

PolyQ AR phosphorylation on Ser 215 and Ser 792,

mediated by the serine-threonine protein kinase Akt, inhi-

bits ligand binding and mitigates toxicity in cultured motor
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neurons [69]. Insulin-like growth factor 1 (IGF-1) increases

this effect in cell culture. Muscle-specific IGF-1 overex-

pression attenuates both muscle and spinal cord pathology

in SBMA transgenic mice, and its beneficial effects may

occur through phosphorylation and inactivation of the

polyQ AR by Akt [70]. Acetylation at Lys 630, 632, and

633 has been shown to increase polyQ AR cytotoxicity.

PolyQ AR nuclear hyperacetylation is suppressed by sirtuin

1 (SIRT1, a nicotinamide adenine dinucleotide-dependent

histone deacetylase), an effect that reduces polyQ AR

nuclear accumulation and toxicity in primary motor neu-

rons [71]. Sumoylation inhibits the transcriptional

regulatory activity of the polyglutamine protein [72]. Dis-

ruption of polyQ AR sumoylation at Lys 385 and 518

enhances its activity as a hormone-dependent transcrip-

tional regulator and increases its trophic support. In a

knock-in mouse model, disruption of polyQ AR sumoyla-

tion rescues exercise endurance, type I muscle fiber

atrophy, and early death [73], thereby revealing ligand-

induced trophic effects that are beneficial in disease.

Motor neuron degeneration

Lower motor neuron degeneration has long been considered

to be a primary pathological event in SBMA [4, 5, 74]. In

subjects evaluated at autopsy, loss of lower motor neurons

and, to a lesser extent, primary sensory neurons of the dorsal

root ganglia is observed [74]. Motor neuron degeneration

occurs in the anterior horn of the spinal cord and in brain-

stem motor nuclei, and is associated with decreased axon

numbers in the ventral spinal nerve roots. In contrast,

neurons in Onuf’s nucleus, the intermediolateral columns,

and Clarke’s columns of the spinal cord are generally well

preserved [74]. Electromyography of SBMA subjects shows

significantly decreased motor conduction velocities, com-

pound muscle action potentials, sensory conduction

velocities, and sensory nerve action potentials. These fea-

tures are indicative of axonal degeneration that involves

both motor and sensory nerves [75, 76]. Similarly, motor

unit number estimation revealed that the number of func-

tioning motor units is reduced in SBMA patients compared

with controls, a defect that correlates with diminished

ipsilateral grip strength and disease duration [77].

Pathological analyses provide evidence of polyQ AR

unfolding/misfolding within lower motor neurons. Nuclear

inclusions of the mutant AR protein are present in motor

neurons of the spinal cord and brainstem of SBMA

patients. Similar inclusions are also found in non-neuronal

tissues, including scrotal skin, dermis, kidney, heart, and

testis [44]. These inclusions show immunoreactivity with

antibodies specific for epitopes at the amino-terminus of

the androgen receptor and with antibodies against

ubiquitin; antibodies recognizing epitopes at the carboxy-

terminus of the protein are unable to detect nuclear inclu-

sions, thus suggesting that the carboxy-terminal domain is

cleaved and not present in the inclusions or is masked

within the inclusion itself [44, 45].

Skeletal muscle degeneration

Clinical reports have established that SBMA patients fre-

quently present with initial myopathic symptoms, including

both muscle cramping and serum creatine kinase levels that

exceed those which are typically observed in denervating

diseases [78, 79]. Moreover, muscle biopsies from SBMA

patients show myopathic features, indicating that expres-

sion of the polyQ AR in skeletal muscle exerts cell

autonomous toxic effects [78–80].

These clinical reports are buttressed by findings in a

variety of model systems that support the occurrence of

skeletal muscle degeneration in SBMA. Analysis of a

knock-in mouse model shows that skeletal muscle pathol-

ogy characterized by both myopathic and neurogenic

features occurs early in the disease and precedes the

occurrence of spinal cord pathology by many months [10].

Interestingly, muscle atrophy in diseased mice is promoted

by robust activation of macroautophagy [81–83], raising

the possibility that overactivity of this pathway may be

deleterious in SBMA. Supporting the concept that skeletal

muscle is an important component of disease pathogenesis

are data from transgenic mice that overexpress the wild

type AR only in skeletal muscle and show hormone-de-

pendent myopathy and motor axon loss [84]. Moreover,

muscle-specific overexpression of IGF-1 or peripheral IGF-

1 administration mitigates SBMA symptoms in transgenic

mice [70, 85]. In addition, skeletal muscle satellite cells

isolated from SBMA patients show impaired myogenic

capacity in cell culture [86]. The notion that skeletal

muscle is an important and therapeutically attractive target

was recently tested in SBMA mouse models. Subcutaneous

delivery of antisense oligonucleotides to knock-in and

BAC transgenic models of SBMA diminished polyQ AR

expression in the periphery but not spinal cord, and rescued

muscle atrophy, neuromuscular function and survival [36].

These findings were corroborated by genetic studies in

which deletion of a floxed polyQ AR allele in muscles of

BAC transgenic mice produced similar robust effects [37].

Neuromuscular degeneration

We have come to view SBMA as a degenerative disorder

of the neuromuscular system, with contributions to patho-

genesis by both skeletal muscle cells and lower motor
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neurons. This model is distinct from the idea that degen-

eration in SBMA exclusively targets the central nervous

system (CNS), leading to secondary effects in skeletal

muscle that are wholly attributable to motor neuron loss.

We propose that the relative contributions of each of these

cell types changes as the disease progresses (Fig. 1b). Early

in the disease course, when patients exhibit prominent

myopathic features (muscle cramping, elevated serum

creatine kinase), contributions from skeletal muscle may be

most significant. It is at this stage that impaired trophic

support by affected muscle may expedite the occurrence of

motor neuron dysfunction. Diminished expression of sev-

eral neurotrophic factors by diseased muscle has been

demonstrated in SBMA mouse models, including neu-

rotrophin-4, glial-cell derived neurotrophic factor, and

brain derived neurotrophic factor; the loss of these factors

or other signals may eventually promote motor neuron

degeneration [10, 87]. Experimental evidence also suggests

that polyQ AR expression in motor neurons contributes to

disease manifestations. Indeed, transgenic expression of the

polyQ AR only in motor neurons [88] or intrathecal gene

knockdown by antisense oligonucleotide administration to

SBMA transgenic mice [89] both support a contribution of

motor neurons to pathogenesis. By end-stage, when sub-

jects come to autopsy, frank motor neuron degeneration is

present, indicating that late in the disease symptoms

attributable to motor neuron loss likely predominate. This

model of pathogenesis has important therapeutic implica-

tions. It suggests that interventions that occur early, prior to

neuron loss, are most likely to be beneficial. Moreover, this

model implies that strategies to target peripherally

expressed polyQ AR in muscle may be effective, particu-

larly early in the disease course. It is our hope that as new

and promising therapies move into the clinic, these con-

cepts will help to guide trial design to enable the discovery

and validation of disease modifying therapies.
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