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Abstract

The choice of a cycle length in state-transition models should be determined by the frequency of 

clinical events and interventions. Sometimes there is need to decrease the cycle length of an 

existing state-transition model to reduce error in outcomes resulting from discretization of the 

underlying continuous-time phenomena or to increase the cycle length to gain computational 

efficiency. Cycle length conversion is also frequently required if a new state-transition model is 

built using observational data that have a different measurement interval than the model’s cycle 

length. We show that a commonly used method of converting transition probabilities to different 

cycle lengths is incorrect and can provide imprecise estimates of model outcomes. We present an 

accurate approach that is based on finding the root of a transition probability matrix using 

eigendecomposition. We present underlying mathematical challenges of converting cycle length in 

state-transition models, and provide numerical approximation methods when the 

eigendecomposition method fails. Several examples and analytical proofs show that our approach 

is more general and leads to more accurate estimates of model outcomes than the commonly used 

approach. MATLAB codes and a user-friendly online toolkit are made available for the 

implementation of the proposed methods.

INTRODUCTION

State-transition models (STMs) are frequently used to inform medical decision making 

because of their simplicity in representing complex real-life phenomena (1–4). Examples of 

applications of STMs include cost-effectiveness analyses of new interventions, clinical 

decision making to maximize benefits or minimize harm, and optimal screening intervals for 

disease diagnoses (5).

STMs typically simulate occurrence of events (e.g. disease stage, death) that evolve over 

time. Though time is continuous, STMs often discretize time in fixed steps known as cycles 

(e.g. monthly or yearly). A critical step in building STMs is the choice of cycle length. The 
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ISPOR-SMDM Modeling Good Research Practices Task Force report recommends that the 

cycle length should be short enough to represent the frequency of clinical events and 

interventions (6). This choice is determined by a number of factors, including availability of 

data and frequency of clinical follow-up. For example, an annual cycle length may be 

appropriate for a model evaluating the cost-effectiveness of colorectal cancer screening (7); 

whereas, a weekly cycle length may be desired when modeling the cost-effectiveness of HIV 

treatment as disease management and complications develop at a relatively fast time scale 

(8).

There is a tradeoff when choosing between shorter versus longer cycle lengths. The 

discretization of time in steps introduces error in the estimates of model outcomes. The error 

arises mainly because discrete-time STMs assume that state transitions occur only at fixed 

times, i.e. either at the beginning or end of a cycle; whereas, in most biological and 

healthcare systems, as time runs continuously, state transitions can occur at any time. Use of 

half-cycle correction can reduce the error by making appropriate adjustments to outcomes in 

the first and last cycle (9). This, however, does not completely eliminate the error. The 

shorter the cycle, the smaller is the error and vice versa (3). Therefore, shorter cycles in 

STMs can reduce the error by simulating events closer to the continuous time situation, as in 

real life.

While shorter cycles reduce the error, they increase the computational burden by adding 

multiple steps to simulate progression of time. This sometimes can impose challenges in 

conducting model validations, probabilistic sensitivity analysis (PSA), and value of 

information (VOI) analysis, especially in individual-level STMs. Therefore, increasing the 

cycle length can improve computational time efficiency by substantially reducing the 

computer time needed for PSA or VOI analysis.

Cycle length conversion could be required in two scenarios. First, a model exists whose 

cycle length needs to be increased or decreased. For example, a breast biopsy decision 

making model by Chhatwal et al. (10) converted an annual cycle length to a six-month cycle 

length to account for follow-up exams every six-months (11). In another example, an 

existing hepatitis C virus cost-effectiveness model using annual cycle length (12) was 

converted to another model that used a weekly cycle length (13). Another scenario where 

cycle length conversion is frequently required is when a new state-transition model is built 

using observational data that have a different measurement interval than model’s cycle 

length. This is almost always the case when developing a de novo STM.

Few publications have discussed issues regarding changing the length of the cycle in STMs. 

Sonnenberg and Beck (3), and Miller and Homan (14) warned against simply dividing the 

transition probabilities to shorter cycle when changing the cycle length. For example, when 

changing the cycle length from annual to monthly, one should not divide the transition 

probability by 12. Instead they recommended converting an annual probability into a rate 

and then transforming that rate into a monthly probability. They acknowledged that they 

considered only the case in which only a single transition within a two-state model is 

possible. However, the overwhelming majority of STMs have multiple states with multiple 

transitions, also known as competing risks models. The case of multiple states and 
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competing risks in STMs has received very little attention, and has primarily focused on 

estimation of transition probabilities using classical or Bayesian statistical techniques given 

different structures of raw data (15, 16). Despite its relevance to only two-state progressive 

models, the approach by Sonnenberg and Beck (3) remains ubiquitous in the applied 

modeling field (17).

The objective of this study is to explore the issues involved when changing the length of the 

cycle in STMs, and to present an accurate and generalizable approach of converting model 

inputs (particularly, transition probabilities) to different cycle lengths. We highlight the 

limitations of commonly used approaches, provide a unified and mathematically correct 

approach that can lead to more accurate adjustment, explore some mathematical issues with 

our suggested approach, and offer numerical approximation methods.

We start by assuming that the analyst has all model inputs computed appropriately and 

expressed in terms of a common cycle length. Thus, the objective is only to convert these 

inputs into a different cycle length. We later relax this assumption and introduce methods for 

computing model inputs when the data come from multiple sources, with varying lengths of 

follow up. We also assume that the cycle length remains fixed throughout the duration of the 

model. Depending upon the situation, the analyst may need to either increase or decrease the 

cycle length. We first present the most common case where the desire is to have a shorter 

cycle length. The case of longer cycle lengths is presented later.

BACKGROUND

Which Model Inputs Change When the Cycle Length Changes?

An STM consists of an initial state distribution, a transition probability matrix, a cycle 

length, state rewards (costs and utilities), and a termination criterion. Changing the cycle 

length of a model requires examination of all model inputs that are defined as units per time. 

These are: costs, discount rates, transition probabilities, and termination conditions if they 

involve time (e.g., terminate model if current time is greater than a specified time horizon). 

Because initial state distribution and health state utilities do not have a time dimension, these 

should not be changed when changing a cycle length.

For simplicity, we assume that the original cycle length is one year, and we divide the year 

into n periods (cycles) of equal length so that the cycle length is 1/n of a year (e.g., n = 12 

indicates that the new model has a monthly cycle).

Costs—STMs involve two types of costs: nonrecurring and recurring (expressed as units 

per time). Nonrecurring costs (e.g., cost of one-time screening test) are not related to time 

and are not affected by changing the cycle length. Recurring costs are typically incorporated 

per state per cycle. For example, many models include a cost of staying in a given health 

state for a year. The annual cost c of a given state can be converted to a one-nth of a year 

cycle cost as . For example, an annual disease recurring cost of $1,200 corresponds to 

$100 cost per month (i.e., n = 12).
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Discount rate—It is very common to have discount rates for future costs and quality-

adjusted life years (QALY) be given as rates per year. To convert the annual discount rate r 
into a one-nth of a year cycle discount rate we use compounding techniques. For example, 

$1 invested today will yield $(1+r) after one year if the rate is r per year. The same $1 should 

return  after one year if it is compounded at a rate of  per 1/n of a year. Thus, 

. Solving this equation for  yields, . For example converting 

a discount rate of 3% per year into a monthly rate using the above formula yields the 

discount rate of 0.247% per month.

Transition probabilities—The transition probabilities between states are typically 

converted to different cycle lengths using the approach defined in previous studies (3, 14, 

17). This approach i) uses the relationship between annual probability p and a constant 

instantaneous rate z per year, i.e., p = 1 − e−z to convert the annual probability into a 

constant rate as z = ln(1 − p); ii) adjusts the rate according to the new cycle length 1/n year 

by dividing by n; and iii) then converts the rate back into adjusted probability, . Thus, 

.

Next, we review issues with this widely used approach and show that it is applicable to only 

two-state STMs and can result in significant error when estimating state distribution or 

outcomes.

Issues with Traditional Approach for Transforming Probabilities

We present an example demonstrating issues with using the traditional approach for 

converting annual transition probabilities to monthly transition probabilities. We used a 

simplified three-state Markov competing risk model of end-stage liver disease with the state 

of decompensated cirrhosis (DeCirr) transitioning to either hepatocellular carcinoma (HCC) 

or “Death” (Figure 1). We estimated the transition probabilities from two published clinical 

studies (details provided in Appendix A) (18, 19). The state-transition probabilities matrix of 

this model can be written as:

We converted the annual transition probabilities p12, p13 and p23 to monthly probabilities, 

using the traditional formula , where n = 12, and found that , 

, and .

Using the above monthly probabilities, we next projected the Markov trace of 10,000 people 

starting in DeCirr at time 0 to the end of 3 years, i.e. 36 monthly cycles (Table 1). The 

outcomes at n-th cycle represent the number of patients in HCC and Death after n months. In 

theory, we expect that the number of patients in each state when observed at the end of 12th-

cycle (i.e. 1 year) should match those observed at the end of 1st-year using the annual cycle 

length. We found that at the end of 12th cycle (i.e. end of 1 year), 427 patients developed 
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HCC and 2,304 patients died. However, using the original probabilities with an annual cycle 

length, the Markov trace estimated that 619 patients developed HCC and 2241 patients died. 

Similarly, at the end of 24th cycle (Year 2) and 36th-cycle (Year 3), the number of patients in 

DeCirr, HCC, and Death obtained with the traditional approach did not match those obtained 

with the original model using the annual cycle. Therefore, the traditional formula to convert 

transition probabilities to the monthly cycle did not provide identical results. In fact, the use 

of the traditional formula introduced a different Markov chain. The above discrepancy 

indicates that the monthly probabilities were not computed correctly.

EIGENDECOMPOSITION APPROACH

The correct approach to convert transition probabilities requires taking the 12-th root of the 

annual transition probability matrix, P to find the corresponding monthly transition 

probabilities. In general, converting an annual cycle length to a shorter, a one-nth of a year 

cycle, requires finding the n-th root of the annual transition probability matrix (21).

The root of the matrix is found by using eigendecomposition (also known as spectral 

decomposition) (22). Provided that it is diagonalizable, we can decompose a general k by k 
matrix P such that P = V ∗ D ∗ V−1, where D is a diagonal matrix consisting of eigenvalues 

of matrix P, and V is the associated matrix of eigenvectors and V−1 is its inverse. This is 

called the eigendecomposition of the matrix P (22). Then, P1/n = V ∗ D1/n ∗ V−1 which we 

denote by . The root of the diagonal matrix, D is found by simply taking the root of the 

diagonal entries.

Using the above approach, we converted the annual transition probability matrix to monthly 

cycle. Because the matrix P given in the example is upper triangular, its eigenvalues are 

given by the diagonal elements as 1, 0.7140, and 0.5728. The corresponding eigenvectors 

can be derived as

The eigendecomposition yields:

Using the above method, we found , , and . The values of 

 and  are different from the values obtained by the traditional approach in the previous 

section. Performing eigendecomposition or taking the root of a matrix are complex matrix 

operations, but can be easily achieved using most modern mathematical computing packages 

such as R, MATLAB®, Maple (Maplesoft™), and Mathematica® (23–25).
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With the above monthly transition probabilities, we again projected the Markov trace of 

10,000 people starting in DeCirr at time 0 until the end of 36th-cycle (Table 1). At the end of 

year 1, 2 and 3, we found that the number of patients who transitioned to HCC or Death 

were identical to that obtained using an annual-cycle Markov trace. Unlike the traditional 

approach, the eigendecomposition method did not alter the underlying Markov chain while 

changing the cycle length.

ANALYTICAL APPROACH

In some instances, it is feasible to obtain an analytical solution that can accurately convert 

transition probabilities to different cycle lengths. Below, we derived analytical formulas for 

our 3-state progressive model to convert annual transition probabilities to a one-nth of a year 
cycle using the eigendecomposition method. The annual transition probability matrix of this 

model is given by

We first make the assumption that p12 + p13 ≠ p23, so that the eigenvalues are distinct and 

diagonal matrix of the eigenvalues {1,1 − p12 − p13, 1 − p23} is:

The matrix of eigenvectors V and its inverse are given by:

Thus,

Performing matrix multiplication we obtain
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where

Using n = 12, the above formulae will provide monthly transition probabilities, which are 

identical to the values obtained by the eigendecomposition approach in the numerical 

example above, . Note that the formulae for  and  are substantially different from the 

formulae obtained by the traditional approach.

We now consider the case when p12 + p13 = p23 or p12 = p23 − p13 > 0. In this case the 

transition probability matrix becomes

with eigenvalues 1, 1 − p23, 1 − p23. Note that one eigenvalue has multiplicity 2. It turns out 

that matrix P does not have 3 linearly independent eigenvectors. Hence, P is not 

diagonalizable.

Instead the matrix power can be achieved by diagonalizing P using Jordan decomposition 

and expressing it as

where S is a similarity matrix and J is Jordan canonical form:

Since J is block-diagonal we get the 1/nth power of J as
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The similarity matrix S and its inverse are given by:

Performing matrix multiplication we obtain

It is interesting to note that the exact formulas can be obtained by evaluating the limit of the 

matrix obtained using the eigendecomposition method as p12 → p23 − p13. We used 

I’Hospital’s rule to evaluate the limit.

Even for a simple three-state STM, the new formulae can be analytically complex. These 

formulae take into account the competing risks between HCC and Death from the current 

DeCirr state as well as transitions from the future HCC state. For example, with a cycle 

length shorter than a year patients can now progress to HCC and die from HCC before the 

end of the year. Hence, the probability of death from HCC (p23) is included in the formula 

for the transition probabilities p12 and p13 to account for this. Because there is no competing 

risk for individuals in HCC and the only future death state is absorbing, the new formula for 

transition from HCC to Death is identical to the traditional formula. Note that it may not 

always be possible to obtain a closed-form analytical solution that converts a transition 

probability from one cycle to another for any STM using eigendecomposition or Jordan 

decomposition.

ERROR WITH THE TRADITIONAL APPROACH

By altering the Markov chain, the traditional approach introduces error (“conversion error”) 

in the model’s distribution of health states and outcomes. To estimate the conversion error, 

we ran the model using a monthly-cycle length with both the traditional and 

eigendecomposition approach and predicted the number of deaths, cumulative incidence of 

HCC, total cost, and quality-adjusted life years (QALYs). We defined error as the difference 

in the outcomes obtained using the traditional versus eigendecomposition approach.
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The traditional approach overestimated (i.e. positive error) the number of deaths until year 4 

and underestimated (i.e. negative error) the number of deaths afterwards using the monthly 

cycle length (Figure 2A). Second, the traditional approach underestimated the cumulative 

incidence of HCC, and the error monotonically increased with time (Figure 2B). These 

results seem intuitive because the probability of death from DeCirr was overestimated and 

the probability of progressing to HCC was underestimated by the traditional approach.

The traditional approach underestimated the total QALYs until the time horizon of 6 years, 

and overestimated QALYs afterwards (Figure 2C). Not surprisingly, the conversion error in 

QALYs is very similar to the error in the number of deaths because QALYs are greatly 

influenced by death. Finally, the traditional approach underestimated total costs, and the 

error monotonically increased with the time horizon of the model (Figure 2D). With the 

lifetime horizon, the total error in the cumulative incidence of HCC, costs and QALYs were 

−42%, −19% and 0.9%, respectively. The directions of these conversion errors are dependent 

on the model structure and parameter values, therefore, use of an incorrect approach can 

under- or over-estimate model outcomes.

We further evaluated the effect of different cycle lengths on the conversion error in model 

outcomes. For that purpose, we estimated the error in model outcomes obtained with bi-

annual and weekly cycle length models (Figure 2A–D). Interestingly, the error in all model 

outcomes increased as the cycle length decreased from bi-annual to weekly. The reason for 

such a trend is that by using incorrect conversion of transition probabilities, the error in the 

model increases, as the cycle lengths decreases even though fine discretization (because of 

shorter cycle length) in the STMs approach the underlying continuous-time process.

THEORETICAL ISSUES AND PRACTICAL SOLUTIONS

Limitations of the Eigendecomposition Approach

We caution that not all matrices are diagonalizable. A k × k matrix P is diagonalizable if and 

only if P has k linearly independent eigenvectors. In addition, even if the 

eigendecomposition approach successfully finds the n-th root of a matrix, it does not 

guarantee that the resulting matrix root is real (i.e., may include complex entries) or is 

always stochastic (21, 26). A stochastic matrix must satisfy the following conditions: each 

element of matrix must be non-negative (because probabilities cannot be negative); and the 

elements of each row should sum up to one (because the sum of probabilities of staying or 

leaving any one state should equal to one)(20).

To illustrate limitations of the eigendecomposition approach, we used a previously published 

Markov model for antiretroviral therapy for human immunodeficiency virus (HIV), first 

presented by Chancellor et al. (27). This is a well-known example that has been used 

extensively as a pedagogical tool to illustrate some of the concepts of economic evaluation 

(28, 29). The following state-transition probability matrix defines annual probabilities with 

monotherapy for HIV treatment:
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We converted the annual transition probabilities to monthly probabilities using the 

traditional approach (shown by ) and eigendecomposition approach (shown by ).

The 12-step transition matrix using monthly probabilities should yield the distribution of 

states at the end of 12-th cycle. Alternatively, computing the 12-th power of matrices  and 

 should yield the distribution of states at the end of 12-month (i.e. end of 1 year). We note 

, which implies that the traditional formulae do not yield the original annual 

transition probability matrix, P. On the other hand, . Despite the fact that the 

eigendecomposition approach yields the original matrix, P at the end of 1 year,  has a 

negative probability for the transition from state 2 to 4 given by p24 = −0.0053, which is not 

a valid probability.

For this specific model structure, we found that the eigendecomposition approach provides a 

stochastic 12-th root for a different set of transition probabilities, i.e. for p12 = 0.3, p13 = 

0.09, p14 = 0.08; p23 = 0.06; p24 = 0.21; p34 = 0.13, where pij represents a transition 

probability from state i to state j. Therefore, the success of eigendecomposition approach is 

dependent not only on the structure of a model but also on the actual transition probability 

values.

Later we present a numerical approach that yields a stochastic monthly transition matrix for 

the above HIV model and compare it with . We first consider theoretical issues 

underlying the problem so that we can identify classes of models that do not suffer from 

these problems.

Conditions for the Existence of Stochastic Roots of a Matrix

Analogous to the traditional conversion of transition probabilities from one time unit to 

another as done through rates, it is logical to attempt a similar approach for converting 

transition probability matrices from one cycle length to another. This approach consists of 

converting the annual probability matrix P into an instantaneous intensity rate matrix by 
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taking the matrix (not element-wise) logarithm of P, adjusting the rate matrix according to a 

new cycle length 1/n year by dividing by n, and then converting the rate back into adjusted 

probability by taking the exponential of the intensity rate matrix. In the Mathematics 

literature, the problem of finding a stochastic root of a transition probability matrix of a 

discrete-time model is connected to the embeddability problem of continuous-time Markov 

chains, namely the existence of a unique intensity matrix Q such that P(t) = et·Q (21, 26). 

Some useful necessary conditions have been established for a matrix to be embeddable, 

which may also be necessary conditions for the eigendecomposition approach to work (26). 

For a stochastic matrix P, the following conditions are necessary for its embeddability (i.e. 

existence of the matrix logarithm):

i. determinant (P) > 0,

ii. determinant (P) ≤ ∏i pii (i.e, product of diagonal elements),

iii. there are no states i and j such that j is accessible from i, but pij = 0. We 

define a state j is accessible from i if there exists a finite sequence of states 

k0, k1, …, km such that  for l = 0, …, m − 1.

In general, if one of the above conditions is not satisfied in the model’s state-transition 

matrix, then there does not exist a corresponding continuous-time Markov chain. However, 

note that meeting the conditions above is only necessary for existence of the matrix 

logarithm but may not be necessary or sufficient to guarantee the existence of a stochastic 

root. This is clearly illustrated by the HIV example where both the determinant and product 

of the diagonal elements are given by 0.3142 so condition (i) and (ii) are met. It is also 

obvious that condition (iii) is satisfied. Yet, the eigendecomposition approach yielded a non-

stochastic probability matrix.

Approach for Non-Stochastic Matrix Roots

Several methods exist that can convert a non-stochastic matrix to stochastic matrix. 

However, we particularly use an algorithm that either finds the stochastic n-th root given by 

eigendecomposition or approximates the principal n-th root with the closest stochastic 

matrix if eigendecomposition does not produce a stochastic root (30). The algorithm is based 

on the distance minimization and aims at choosing elements of a stochastic matrix such that 

the norm of the difference between its power and the original transition probability matrix is 

minimum (Appendix B1). We also provide the corresponding MATLAB® (MathWorks, 

Natick, MA, USA) code in Appendix B2, and implement the code in MATHEMATICA® 

(Wolfram Research, Inc., Champaign, IL, USA) toolbox (Appendix B3). Applying the above 

approach to our HIV example, we obtained the following monthly transition probability 

matrix, :
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We compared the error introduced in the HIV model using the approximate n-th root matrix 

 generated from our algorithm and the traditional  matrix formed with the traditionally 

used formula . For that purpose, we compared the original transition 

probability matrix, P with the 12-th power of  and  (which define the state of the 

system at the end of 1 year). We defined the error between matrices as below:

• Percentage error between the original matrix and traditional approach 

,

• Percentage error between the original matrix and our approach 

.

Where ‖ . ‖F represents the Frobenius norm given by . We found that 

the error using the traditional and our approach were 5.80% and 3.37%, respectively. Our 

algorithm introduced less error than the traditional formulas in the HIV model. Though we 

only compared the numerical error in matrices using the Frobenius norm, the error in long-

term outcomes such as QALYs and costs could be even wider.

In Appendix C4, we evaluated six models of varying degrees of complexity. We found that 

in all models, the traditional approach was incorrect. Note that even for a simple three-state 

Markov chain, the traditional approach did not work. We used our toolbox to find a 

stochastic 12-root of each model’s annual transition probability matrix. We compared the 

error obtained using traditional and numerical approximation approaches. We found that the 

error using our approach was always less than that obtained with the traditional approach. 

Further, the range of examples considered suggests that the error disparity does not arise 

from the size of the matrix, but correlates with the number of transitions in a matrix. 

Therefore, our approach of numerical approximation provides especially more accurate 

results than the traditional approach when dealing with models that have a large number of 

transitions.

The Issue of Identifiability

The second issue concerning finding the root of a stochastic matrix using 

eigendecomposition approach is that more than one matrix may exist. This is known as the 

issue of identifiability. The eigendecomposition approach produces the principal n-th root of 

the original transition matrix, but there are other n-th roots of the matrix that may be 

stochastic. An example of such roots is provided elsewhere (8). The issue of identifiability 

could in some cases become important because two different matrices originating from one 

transition matrix can lead to two different outcomes and potentially different conclusions 

about the cost-effectiveness of an intervention. However, identifiability issue is not as 

common as stochasticity issue, therefore, is not considered here.
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Converting Inputs to a Longer Cycle Length

Here we investigate the less common case where the analyst wishes to increase the length of 

the cycle. This could arise because of the need to improve computational efficiency. 

Adjusting costs and discount rates can be performed in a manner similar to the case where 

the task is to shorten the cycle length.

The traditional approach to changing cycle lengths may also fail when there is a need to 

increase a cycle length. In addition, the diagonal elements of the transition probability 

matrix may become negative when using the tradition approach. Converting an annual cycle 

length to a longer, m-th cycle (e.g. 5-year cycle) would require taking the m-th power of the 

annual transition probability matrix. Stochastic matrices have the property that raising a 

stochastic matrix to any integer power still yields a stochastic matrix. Therefore, the issues 

of stochasticity, embeddability, and identifiability do not arise when increasing the cycle 

length of STMs to the multiple of the original cycle length. However, when the cycle length 

is converted to a non-multiple (i.e. non-integer) value, the resulting matrix is not guaranteed 

to be stochastic when using the eigendecomposition approach. This is because we will need 

to find a root of a form “m/n” which is similar to finding the root of a form “1/n.” When the 

eigendecomposition is not possible or the resulting matrix using the eigendecomposition 

approach is non-stochastic or complex, we would need to use an approximation algorithm to 

convert the resulting matrix to a stochastic matrix, similar to the case of finding the root of a 

matrix.

Converting Probabilities from Different Data Sources

So far we have assumed that the transition probabilities in our examples came from a single 

source. However, it is typical that transition probabilities are estimated from multiple 

sources, with varying lengths of follow up. For a specific example, we provide an approach 

for computing transition probabilities to a common cycle length when these estimates come 

from multiple sources. We consider a 3-state example whose transition probability matrix 

takes the following form:

Each element of the transition probability matrix can come from different sources. The first 

study may include the probability of transitioning from State 2 to death as p23 over n1 years. 

The last two studies provide estimate of p12 and p13 over n2 and n3 years, respectively. 

Because there is only one transition from State 2, and State 3 is an absorbing state,  can 

be estimated using the traditional formula as

By raising the matrix  to the powers n2 and n3 we can define p12 and p13 as
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With  known, these two equations can be solved for  and  in terms of the known 

values of p12 and p13 and the follow up periods n2 and n3. Unfortunately, these nonlinear 

equations cannot be solved analytically, so we compute numerical solutions.

To illustrate this point, consider the following values: n1 = 10, n2 = 5, n3 = 3, p12 = 0.10, p13 

= 0.05, p23 = 0.20. There are two numerical solutions with real positive roots: 

 and . The first 

solution can be ruled out because it does not yield p12 = 0.10 and p13 = 0.05 when matrix 

is raised to the power 5 or 3, respectively.

To avoid obtaining negative or multiple solutions, we suggest following a distance 

minimization approach similar to the one used to deal with nonstochastic matrices. The 

algorithm requires defining sum of squared residuals (SSRD) between matrix  and matrix 

P. In the above example, SSRD is given by

This minimization problem can be solved with many general-purpose optimization routines 

such as those in R, Mathematica, or Excel. With the values given above, the minimum is 

achieved by setting  and  For complex models, the analytical approach 

may not be feasible. In that case, a numerical approximation approach would be needed to 

minimize SSRD, similar to calibration techniques (34).

As observed, changing cycle lengths when transition probabilities are estimated from 

multiple sources, with varying lengths of follow-up is more complex than when all transition 

probabilities are expressed in a common cycle length. In this section, we provided an 

approach to deal with such situations for a specific 3-state STM. However, a general 

approach to change cycle length for any structure of a STM is needed and is beyond the 

scope of this study.

DISCUSSION

In this study, we reviewed approaches to changing cycle lengths in STMs, which are 

commonly used for medical decision making. In particular, we showed anomalies with the 

commonly used approach of adjusting cycle lengths in STMs. We showed that the traditional 

approach is not guaranteed to work for any STM with more than two states. Furthermore, we 

presented an approach based on eigendecomposition to correctly change transition 

probabilities to different cycle lengths. We also discussed theoretical challenges, and 

provided a general approach that provides numerical solutions that are more accurate than 
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the traditional approach. We provided MATLAB codes and a user-friendly toolkit to convert 

transition probabilities to different cycle lengths.

The issue of transforming transition probabilities has been discussed in other fields of social 

sciences and credit ratings (21, 26). Earlier studies in the medical field have primarily 

focused on estimation of transition probabilities for Markov chains from partially and fully 

observed data (15–17). These studies did not discuss the issues that could arise when 

converting transition probabilities to different cycle lengths. In contrast, we highlighted the 

problems with the most common approach for conversion of transition matrices. We 

provided analytic results using eigendecomposition for the three-state progressive model, 

discussed issues with the eigendecomposition approach, and provided complimentary 

approaches when those issues are present. We provided several mathematical conditions to 

evaluate the existence of feasible solutions, and steps to find approximate solutions if they 

do not exist.

We differentiate between eigendecomposition and the distance minimization algorithms. 

When it works, the eigendecomposition is exact (no approximation is needed). In this case 

there is no issue with accuracy. If the eignedecomposition method fails (i.e., the matrix is not 

diagonalizable or the resulting power of the matrix includes negative or complex entries), the 

second approach of finding an approximation to the power of the matrix using distance 

minimization can be used. Our approach always finds a better solution than the traditional 

approach but its implementation in currently available algorithms cannot always guarantee 

finding a global minimum. However, we think that our approach is a step in the right 

direction and further research is warranted to explore this issue further.

Our study also highlights an interesting relationship between the cycle length and accuracy 

of model outcomes. While discretization of a continuous time function introduces error 

(discretization error) in model outcomes because of the time spent in each health state, the 

error decreases as the cycle length gets shorter. On the other hand, incorrect conversion of 

cycle length adds error (conversion error) to model outcomes because state membership is 

incorrectly computed. In this case, the error increases as the cycle length get shorter. 

Therefore, contrary to the common notion that shorter cycle lengths always yield more 

accurate results, the overall error in model outcomes can in some instances increase as the 

cycle length becomes shorter. This observation underscores the importance of using the 

correct approach to adjust probabilities to different cycle lengths. Therefore, only a shorter 

cycle length obtained using the correct conversion approach would remove the conversion 
error and reduce the discretization error.

Our study also draws attention to the inherent difficulties in adjusting cycle lengths in STMs. 

We highlight two potential issues—embeddability and identifiability of a Markov chain. 

Essentially, the limitation arises from trying to identify which Markov processes arise from 

shorter time-cycle processes. We note that even the theoretical literature on finding 

stochastic n-th roots and identifiability is relatively scarce. Therefore, more theoretical 

advancements are needed before such problems can be addressed in a systematic way.
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Our study made some limiting assumptions that provide directions for future research. For 

simplicity, we only focused on constant (i.e., do not change from cycle to cycle) transition 

probabilities. However, in practice, almost all state-transition models include some 

probabilities that change with time. Note that our approach is applicable to time-varying 

probabilities, however this would require applying the eigendecomposition method to 

transition probabilities at each cycle. Further research is needed to find a generalizable 

approach that can be practically implemented without substantial effort. Second, we 

assumed that all transition probabilities were available for a given cycle length (e.g. monthly, 

annual, etc.); however, in practice, state-transition probabilities are estimated from different 

studies reporting values in different time scales. In that case, each parameter cannot be 

individually converted to a fixed cycle length from each study. Using a simple example, we 

provided an approach for computing model inputs when the data come from multiple 

sources, with varying lengths of follow up. To our knowledge, no earlier study has addressed 

this issue in a systematic way, which warrants further research on finding a generalizable 

approach. Our study is only the first step to acknowledge the limitations of the commonly 

used approach of changing cycle lengths in STMs. Finally, we did not evaluate any error in 

comparative cost-effectiveness results using the traditional approach, which is left for future 

work. It is possible that in some problems the error in two arms of a cost-effectiveness 

model cancels each other out when incremental outcomes are computed. However, this does 

not obviate the need to use our proposed method because there may still be a need to 

compute accurately total intermediate or final outcomes (e.g., cumulative outcomes, total 

costs).

In conclusion, we showed that the commonly used approach of converting transition 

probabilities to different cycle lengths can result in incorrect transformations, thereby 

leading to incorrect model outcomes. The correct approach based on the eigendecomposition 

method and distance minimization provides more accurate outcomes; however, further 

research is needed to easily implement our approach in decision-analytic models.
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Appendix A. Estimation of Transition Probabilities of the End-Stage Liver 

Disease Model

We estimated the transition probabilities of our three-state Markov model of end-stage liver 

disease using two published clinical studies. Particularly, we estimated progression from 

decompensated cirrhosis (DC) from Planas et al. (19), which presented data on 187 DC 

patients with complete follow up over a mean period of 34 months as follows: 72 were still 

in DC, 33 developed HCC, 75 died from DC, and 7 died from unrelated cause. Note that we 

cannot calculate probabilities directly for most health states (except remaining in DC state) 
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because of competing risks and progression from future HCC state. Therefore, we use the 

following approach.

The DC patients evolve in continuous-time as follows:

We used the following definitions for hazard rates:

α = progression rate to HCC,

μ = death from DC,

δ = death from HCC.

This model can be solved as

We calculated the number of DC patients who developed HCC or remained in the DC state 

over the follow up period T as

These 2 equations can be solved for α, and μ as

Using the values , DC(0) = 187, DC(T) = 72, HCCT = 33, we find α = 0.0967, μ = 

0.2402.

Fattovich et al. (18) report that 17 of the 29 patients with HCC died in the first 19 months, 

which translates into annual mortality rate of HCC equal to δ = −(12⁄19) ln(1 − 17⁄29) = 

0.5573. Writing the intensity matrix Q as

Taking the matrix exponential of Q gives the annual probability matrix as
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The monthly probability matrix is

Raising this to 34 months,  and multiplying by the vector of initial patients in the original 

study (187,0,0) we obtain

confirming that 72 patients were still in DC state after 34 months, as in the original study by 

Planas et al. Note that the total number of deaths 100 was more than the number of 82 in 

Planas et al. because the 100 deaths include additional deaths from patients who also 

developed HCC. In general, the number of patients in DC state t months from now is 187. 

(0.9723)t. The number of people in HCC state at time t is given by

Note that we used the actual monthly hazard rate (0.008055 = 0.0967/12) rather than the 

monthly probability of HCC (0.00776) as the risk of HCC is continuous over time. Applying 

the trapezoidal rule for within-cycle correction and summing over 34 months we obtain:

Similarly, deaths from DC state can be defined as:

Similar calculations confirmed that total death from DC after 34 months is
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Appendix B: Non-stochastic Matrix Issue and Solution

B1. Distance minimization algorithm

Given where a ∈ Rn where a is the row of the principal n-th root matrix, this computes a row 

vector xRn, xi ≥ 0, Σixi = 1 that minimizes ‖x − a‖:

1) If Σiai =1 and ai ≥ 0, x = a, quit, end

2) while true

3)  λ = (Σiai − 1)/n, x =a − λ

4)  if x ≥ 0, quit, end

5)   for i = 1: n

6)    xi = max 0, xi

7)   end

8)  a = x

9) end

B2. MATLAB code for distance minimization algorithm

Algorithm. % stochroot.m

% This script executes the distance minimization algorithm for a transition

% matrix A with desired pth root. The function nrootmat is the function

% used earlier to calculate the pth root of the matrix.

function b = stochroot(A,p)

Ap = mpower(A,p);

n=length(A);

b = zeros(n,n);

for j=1:n

a = real(Ap(j,:));

while true

 if sum(a)==1 && min(a)>=0

   b(j,:) = a;

   break;

 end

lambda = (sum(a)−1)/n;

x = a − lambda*ones(1,n);

 if min(x)>=0

   b(j,:)=x; break;

 end

  for k=1:n

   x(k) = max(0,x(k));

  end

  a = x;

end

end
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B3.Matrix conversion toolbox

We developed a toolbox in MATHEMATICA to convert a transition probability matrix to a 

different cycle length. The toolbox converts a non-stochastic matrix to stochastic matrix 

using distance minimization algorithm. Figure B1 below provides the snapshot of the 

toolbox.

Figure B1. 
Snapshot of the toolbox for cycle length conversion

To compute a root of a matrix:

1. Select the order of the matrix (i.e., number of heath states). The default is 

a 3×3 matrix. The current tool can allow up to a 10×10 matrix.

2. Fill in the cell of the matrix. Make sure that the matrix is stochastic by 

checking that each cell is nonnegative and all rows add up to 1.

3. Select the cycle length by choosing the number of cycles per period (n). 

For example, if the original matrix has an annual cycle and you want to 

change it to a monthly cycle, input 12. The default input is 1, which 

returns the original matrix.

4. If the resulting new matrix is non-stochastic, choose to approximate it by 

checking the box “Do you want to use the approximation method?”
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5. To start over again, use the reset button in the upper right corner. Note that 

there are two reset buttons, one for resetting the order of the matrix to the 

default value of 3 and the other for resetting the matrix cells to 0.

B4. Numerical results on non-stochasticity

We present below six Markov chains of increasing complexity. For each model, the original 

transition probability matrix represents annual probabilities. We converted annual transition 

probabilities to monthly using both the traditional formula, . We also 

converted the annual transition probabilities to monthly using our toolbox described in 

Appendix B3, which numerically finds a stochastic 12-th root of the annual transition 

probability matrix. We compared the two approaches by estimating percentage error in the 

Frobenius norm. We compared the original transition probability matrix, P with the 12-th 

power of  and  (which defines the state of the system at the end of 1 year). We defined 

the error between matrices as below:

• Percentage error between the original matrix and traditional approach = 

,

• Percentage error between the original matrix and our approach = 

,

where ‖ . ‖F represents the Frobenius norm given by .

Example 1. Three-state chain model

Figure B2. 
Three-state Markov chain
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Figure B2 present a three-state model does not include any competing risks states. Even for 

this simple structure, the traditional approach did not work. The eigendecomposition 

approach also failed to provide a stochastic 12-th root; therefore, we applied the numerical 

approximation. We found that the error using the traditional and distance-minimization 

approach were 6.21% and 6.03%, respectively. Errors were very similar with both 

approaches.

Example 2. Five-state chain model

Figure B3. 
Five-state Markov model

We next consider a five-state example (Figure B3). In this model structure, the traditional as 

well eigendecomposition methods did not work. We applied the numerical approximation 

and compared the error. We found that the error using the traditional and distance-

minimization approach were 6.13% and 6.06%, respectively. As in the previous example, 

errors were very similar with both approaches.

Example 3. Four-state competing risks model A

Figure B4. 
Four-state Markov model with two competing-risks states
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We consider a four-state model with two competing risks states (shaded in Figure B4). We 

found that the error using the traditional and distance-minimization approach were 9.21% 

and 6.10%, respectively. In this example, the error was considerably lower with our 

approach.

Example 4. Four-state competing risks model B

Figure B5. 
Four-state Markov model with three competing-risks states

We next considered a different four-state model structure that has three competing-risks 

states (shaded in Figure B5). In this example, the eigendecomposition method provided a 

stochastic root, and there was no need for any numerical approximation. The error using our 

approach was 0%, whereas the error using the traditional approach was 5.13%.

Example 5. Four-state competing risks model C

Here we considered the same model structure as in the in the previous example, but used a 

different set of transition probabilities. In this example, the eigendecomposition methods 

failed to provide a stochastic root, therefore, we applied numerical approximation to convert 

the 12-th root matrix to a stochastic matrix. We found that the error using the traditional and 
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distance-minimization approach were 11.66% and 4.83%, respectively. As noted, the error 

was considerably lower using in our approach than that with the traditional approach.

Example 6. Five-state competing risks model

Figure B6. 
Five-state Markov model with four competing-risks states

We next provide a five-state model that has four competing-risks states (Figure B6). We 

found that the error using the traditional and distance-minimization approach were 76.84% 

and 0.11%, respectively. In this complex model structure, the error was substantially lower 

when our approach was used. We observed that as the model complexity increased (from 

example 1 to example 6), the error with traditional approach became increasingly larger than 

that with our approach.
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Figure 1. 
State-transition model showing health states and transitions between states. DeCirr, 

decompensated cirrhosis; HCC, hepatocellular carcinoma.
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Figure 2. 
Error in model outcomes using shorter cycle length from traditional approach in comparison 

to that obtained with eigendecomposition approach. We applied 3% discount rate and 

within-cycle correction to estimate total costs and quality-adjusted life years (QALYs). 

HCC, hepatocellular carcinoma.
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