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ABSTRACT
Background: Abnormal proliferation of vascular smooth muscle cells (VSMC) is a

major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular

injury triggers VSMC dedifferentiation, which results in VSMC changes from a

contractile to a synthetic phenotype; however, the underlying molecular

mechanisms are still unclear.

Methods: In this study, we examined how VSMC responds under mechanical stress

by using time-course microarray data. A three-phase study was proposed to

investigate the stress-induced differentially expressed genes (DEGs) in VSMC. First,

DEGs were identified by using the moderated t-statistics test. Second, more DEGs

were inferred by using the Gaussian Graphical Model (GGM). Finally, the

topological parameters-based method and cluster analysis approach were employed

to predict the last batch of DEGs. To identify the potential drugs for vascular diseases

involve VSMC proliferation, the drug-gene interaction database, Connectivity Map

(cMap) was employed. Success of the predictions were determined using in-vitro

data, i.e. MTT and clonogenic assay.

Results: Based on the differential expression calculation, at least 23 DEGs were

found, and the findings were qualified by previous studies on VSMC. The results of

gene set enrichment analysis indicated that the most often found enriched biological

processes are cell-cycle-related processes. Furthermore, more stress-induced genes,

well supported by literature, were found by applying graph theory to the gene

association network (GAN). Finally, we showed that by processing the cMap input

queries with a cluster algorithm, we achieved a substantial increase in the number of

potential drugs with experimental IC50 measurements. With this novel approach,

we have not only successfully identified the DEGs, but also improved the DEGs

prediction by performing the topological and cluster analysis. Moreover, the

findings are remarkably validated and in line with the literature. Furthermore, the

cMap and DrugBank resources were used to identify potential drugs and targeted
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genes for vascular diseases involve VSMC proliferation. Our findings are supported

by in-vitro experimental IC50, binding activity data and clinical trials.

Conclusion: This study provides a systematic strategy to discover potential drugs

and target genes, by which we hope to shed light on the treatments of VSMC

proliferation associated diseases.

Subjects Bioinformatics, Molecular Biology, Drugs and Devices

Keywords Drug repositioning, Cardiovascular disease, Gaussian graphicalmodel, Vascular smooth

muscle cell, Gene set enrichment analysis, Topological parameters, Time-course microarray,

Mechanical stress

BACKGROUND
Cardiovascular diseases (CVDs), such as coronary heart attacks, arrhythmia, and

cerebrovascular diseases (strokes), are the leading causes of death in many countries.

According to the World Health Organization (WHO) report, CVDs affect tens of millions

of human beings each year. Therefore, how to improve the diagnosis, treatment, and

prevention of CVDs is an urgent and important issue. Vascular smooth muscle cells

(VSMC) comprise the majority of the wall of the blood vessel and play an important role

in the pathogenesis of CVD. It has been known that when the vessel is exposed to high

pressure such as mechanical stretch, this injurious forces will lead to differential gene

expression, and then induce VSMC hypertrophy and hyperplasia as well as changes in

phenotype from the contractile state to the synthetic state and matrix proteins (Anwar

et al., 2012; Intengan & Schiffrin, 2001; Levy et al., 1988). This type of transition between

different phenotypes is referred to as “phenotypic modulation” or “vascular remodeling.”

Contractile VSMC are elongated, spindle-shaped cells, whereas synthetic VSMC are

less elongated and have a cobblestone morphology (Rensen, Doevendans & van Eys, 2007).

Vascular injury triggers VSMC dedifferentiation and then results in phenotypic

modulation (Campbell & Campbell, 1990) which is the major cause of restenosis

(Haudenschild, 1993), atherosclerosis (Rivard & Andres, 2000) and hypertension (Lemarié,

Tharaux & Lehoux, 2010). However, to date, the intracellular molecular mechanisms that

regulate the VSMC phenotype have not been well understood. In this study, we identified

and characterized the mechanical stress-induced genes that resulted in an abnormal

expression (namely, differentially expressed genes (DEGs)), as well as the inter-molecular

interaction network in the VSMC.

Time-course gene expression experiments have been extensively used for studying a

wide range of biological processes (BPs). Due to the use of the temporal structure

embedded in the time-course data, we may be able to capture the dynamical behavior of

the gene expression. In particular, time series data allow us to infer the gene association

network (GAN).

To study how VSMC react in response to mechanical stress, time-course microarray

data were used to identify stress-induced genes, and further to understand the role of

gene regulatory networks under mechanical stress in the VSMC. First, we identified DEGs

and then conducted the gene set enrichment analysis to highlight the most relevant
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biological process terms associated with a given gene list. Next, the Gaussian Graphical

Model (GGM) was employed to infer the GAN by considering the partial correlation

coefficient based on the previous study proposed by Schafer & Strimmer (2005). More

studies had also reported the use of GGM in biological systems, such as, inferring the gene

dependency network (Schafer & Strimmer, 2006), circadian rhythm regulatory network

construction (Liu et al., 2012), and integration of multiple sources of genomics data to

infer gene regulatory network (Chun et al., 2013). After that, the GAN derived from the

GGM can be characterized by certain topological parameters. Finally, graph theory

approach was introduced to analyze the GAN. Furthermore, we also validated that our

prediction of stress-induced genes corresponds to previous publications; hence, we can

demonstrate the effectiveness of the present approach.

MATERIALS AND METHODS
Datasets
To examine how mechanical stress contributes to the response of VSMC and its

underlying signal transduction pathways, we made use of the microarray experiment,

E-MEXP-569, downloaded from the ArrayExpress database (Brazma et al., 2003). The

experiment compared the gene expression profiles of the VSMC in response to a cyclical

mechanical strain over a time-course of 0, 2, 4 and 24 h. Each sample consisted of two

replicates prepared from human aortic VSMC purchased from Cambrex Bioscience.

Differentially expressed gene identification
A gene which has an observed score that deviates significantly from the expected score

is considered as a DEG. There are many statistical methods available for identifying

DEGs by microarray data analysis. The use of false discovery rates (FDR) is a common

approach to discover significant genes (Efron & Tibshirani, 2002). Analysis of variance

(ANOVA) is another approach to investigate the impact of microarray gene expression

values within a single factor (Kerr et al., 2002). Among the many statistical methods,

Significance Analysis of Microarray (SAM) (Tusher, Tibshirani & Chu, 2001; Zhang, 2007),

Empirical Bayes Analysis of Microarrays (EBAM) (Efron et al., 2001), and empirical

Bayes statistics (EBAYES) (Efron, 2003) are three commonly employed approaches to

identify DEGs.

SAM is a statistical method for identifying DEGs by comparing two or more groups of

samples. It uses repeated permutations of the data to estimate FDR based on observed

versus expected scores obtained from randomized data. SAM is able to handle time-course

data, by considering different time points as distinct groups (Mutarelli et al., 2008).

EBAM performs one and two class analyses using either a modified t-statistic or

standardizedWilcoxon rank statistic, and a multiclass analysis using a modified F-statistic.

Moreover, this function provides an EBAM procedure for categorical data such as SNP

data and the possibility of employing a user-written score function. EBAM can be applied

to a differential time-course experiment to determine a subset of cDNAs that have the

largest probability of being differentially expressed with respect to treatment conditions

across a set of unequally spaced time points (Eckel et al., 2004).
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The EBAYES algorithm computes moderated t-statistics, moderated F-statistics, and

log-odds of differential expression by empirical Bayes shrinkage of the standard errors

towards a common value. The moderated t-statistics is defined by

~tgk ¼
�̂gk

~sg
ffiffiffiffiffiffi

vgk
p (1)

where g and k denote the gth gene and the kth time respectively, the contrast estimator

�̂gk denotes the difference between two classes, ~sg stands for the shrinkage estimation

of the standard deviation of the gth gene expression level, and vgk represents the kth

diagonal element of the covariance matrix.

The EBAYES algorithm overcomes the possibility of identifying genes with small

fold-change that might be significant from statistical analysis. In our previous study

(Chen, Wu & Ng, 2012), we suggested that EBAYES, SAM, and EBAM achieve a similar

level of cancer gene prediction accuracy, i.e. around 20%; therefore, without any bias

EBAYES is adopted in the present analysis.

The microarray data were pre-processed by using the Bioconductor (Efron, 2003;

Irizarry, 2005) R package ‘limma’ before passed to EBAYES for performing moderate

F-test. The pEBAYES-value reported in the manuscript is the p-value for moderate F-test,

i.e. F.p.value < 0.01, this value sets the threshold (Efron & Tibshirani, 2002) used to

determine the DEGs.

Gene set enrichment analysis
Functional annotation of the DEGs is given by implementing the Database for

Annotation, Visualization and Integrated Discovery, DAVID (Huang, Sherman &

Lempicki, 2009). DAVID accepts batch annotation and conducts GO term enrichment

analysis to highlight the most relevant GO terms associated with a given gene list.

The gene identifiers used in DAVID is the microarray probe ID, i.e.

AFFYMETRIX_3PRIME_IVT_ID.

Gaussian graphical model (GGM)
Inferring gene regulatory networks from microarray data is an important issue in systems

biology. GGM is a graphical model, which was developed by Dempster (1972) to study

the dependencies among a set of variables. In principle, the GGM infers GAN by

considering the partial correlation coefficient instead of the Pearson correlation coefficient

(PCC). The simple method of inferring GAN based on the PCC is not valid in most

case studies because the high PCC of two variables does not imply a direct relationship.

The GGM solves such a problem by using partial correlations to measure the

independence of two genes. In partial correlation calculation, one introduces a third

variable that has a relationship between the other two variables, and then calculates the

correlation between two variables while excluding the impact of the third variable.

Therefore, GGM allows us to distinguish between direct and indirect gene-gene

interactions.
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Within the GGM framework, the presence of an edge between two genes, gi and gk,

is determined by the value of the partial correlation, pcor(i,k). Given the covariance

matrix of all genes, S, it can be shown that full order pcor(i,k) is given by (Schafer &

Strimmer, 2005),

pcorði; kÞ ¼ � !ik
ffiffiffiffiffiffiffiffiffiffiffiffi

!ii!kk
p ; (2)

where ��1 ¼ !ik , which denotes the covariance between the i-th and j-th genes in the

inverse of the covariance matrix. If an entry in the inverse covariance matrix is close to

zero, then genes gi and gk are condition independent given all remaining genes. Since the

number of microarray samples is much smaller than the number of genes considered,

we employed a technique called shrinkage to improve the estimation of the sample

covariance matrix. In actual implementation, we used the R package, GeneNet

(Schäfer, Opgen-Rhein & Strimmer, 2006) to infer the GAN from microarray data.

Topological graph theory
In this work, we introduce the graph theory approach to analyze the GAN. Many studies

indicated that there are underlying global and local topological structures of biological

networks. The GAN derived from the GGM may have a complex topology. A complex

network can be characterized by certain topological parameters; these parameters can

be computed by using the SBEToolbox (Konganti et al., 2013). The 11 computed

topological parameter values have been normalized between -1 and 1, a larger topological
parameter value implies stronger topological effect. Three global topological parameters

(average graph distance, diameter and network efficiency) and eight local topological

parameters; i.e. the topological parameters of a node in the network (closeness centrality

(CC), degree centrality (DC), eccentricity centrality (EC), betweenness centrality (BC),

bridging centrality (BRC), clustering coefficient (CLC), brokering coefficient (BROC),

local average connectivity (LAC)) are defined in the Section 1 of the Supplemental

Information.

In the previous study, we have proposed a method to identify the important nodes

in a network by topological parameter-based classification (Huang, Chen & Ng, 2016).

Given a GAN, we propose that nodes have a higher degree, betweenness, centrality and

densely connected which may play an important role in VSMC under mechanical stress.

To test and demonstrate the presented concept, we classified eight of the 11 parameters

into five groups based on their topological properties. Our classification considers the

local parameters only. Classification of the eight parameters is shown in Table 1. Global

topological parameters are not included, i.e. diameter, average graph distance and

network efficiency.

In order to further our understanding of the GAN network property, we sorted the

results of the eight local parameters’ values in descending order. For each group, if a

node is ranked in the top 10%, a score value (SV) of one is assigned to this node. Since

there are five groups, a node can have a maximum score of five. Since groups 4 and 5

consist of more than one topological parameters, a node will receive an SV of one if it
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ranks in the top 10% in any one of the parameters. The same analysis is repeated with

the 15 and 20% thresholds.

Cluster analysis by using CFinder
In order to deepen our understanding of the GAN, we proposed that genes do not

highly interact with others were assumed less important and consequently removed before

the enrichment analysis.

The clustering tool, CFinder (Palla et al., 2005) which is based on the clique percolation

clustering approach, was employed to perform the cluster analysis. The CFinder

program identifies interacting clusters, which are called k-communities. A 3-community

is set as k being equal to three (complete subgraphs of size 3). Any two k-communities

are adjacent if they share k-1 common nodes. A k-community is constructed by merging

all possible adjacent (k-1)-communities.

Drug repositioning
The idea of drug repositioning is a recently developed approach in the pharmaceutical

industry that endeavors to identify new uses for existing drugs; and has achieved

certain successes (Ashburn & Thor, 2004). This approach has the potential to reduce

the development time required for drug discovery, as well as reducing side-effects.

There are many works on identifying repositioned drugs which are based on various

methods: the graph-based inference method (Iorio et al., 2010; Wu, Wang & Chen, 2013),

the microarray expression method (Wu, Wang & Chen, 2012), and the differential

expressed correlation method (Sun et al., 2013).

We made use of the drug-gene interaction databases, Connectivity Map (cMap)

(Lamb, 2007), to find potential drugs for the treatments of VSMC proliferation associated

diseases. Although the cMap resource is aimed at identifying drug treatment for

cancer diseases, it is hypothesized that some of the known drugs may be repositioned

for treating VSMC proliferation associated diseases.

Both CVDs, including atherosclerosis, as well as cancers lead to the cause of death

worldwide, and they are characterized by a local increase in tissue mass. Many studies

have suggested that atherosclerosis and cancer formation involve similar cellular processes

i.e. cell proliferation, inflammation, and genomic instability. Both types of diseases

possess a significantly common role in the pathogenesis and progression of atherosclerosis

and cancer, especially in molecular pathways (Li & Gao, 2005; Ross et al., 2001a;

Table 1 Classification of the local topological parameters.

Group Topological parameter Abbreviation

1 Degree centrality DC

2 Betweenness centrality BC

3 Bridging centrality BRC

4 Closeness centrality, eccentricity centrality CC, EC

5 Clustering coefficient, brokering coefficient,

local average connectivity

CLC, BROC, LAC
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Ross et al., 2001b). Common pathways or signal transduction networks, such as PI3k/Akt,

can mediate several functional and morphological alterations of VSMC after being

activated to develop vascular diseases (Jung et al., 2000), as well as affect the growth,

apoptosis and cell cycle regulation of various cell types to induce cancer progression

(Arcaro & Guerreiro, 2007). It is also known that the MAPK pathway, involved in VSMC

proliferation, hypertrophy, and migration, central to the pathogenesis of vascular

diseases (Jacob et al., 2005), possessed the same effects similar to PI3k/Akt in cancer

occurrence (Sebolt-Leopold & Herrera, 2004).

Based on the above observations, we put forward the hypothesis for further

investigation. It is conjectured that a drug molecule may potentially reverse the CVDs

signature if the molecule induced signature is significantly negatively correlated with

the disease-induced signature found in the cMap.

Since the time-course expression profile of DEG may exhibit an oscillatory pattern,

therefore, we filtered out up- and down-regulated DEGs with at least two consecutive

time points are up and down regulated respectively.

This set of DEGs were used to query the cMap database, where potential drugs with

adjusted pcMAP-value less than 0.05 are retained. The adjusted pcMAP-value (named

permutation p-value) is an estimate of the likelihood that the enrichment of a set of

potential drugs in the list of all cMap drugs in given result/prediction would be observed

by chance. This permutation p-value is determined by computing the enrichment of

100,000 sets of potential drugs selected at random from the set of all cMap drugs in

the result/prediction.

There may be concern that the times points 0, 2, 4, 24 h are not consecutive. As

Qiu et al. (2014a) noted in their review, mechanical stress regulates the functions of

VSMC within 24 h in most of the studies (for details of the study, see the Table 1

(12 studies) and Table 2 (21 studies) of the review article by (Qiu et al., 2014a). For

instance, Feng et al. (1999) reported that the gene expression fold changes of mechanically

induced genes at 12 and 24 h were remarkably similar except only for three genes out

of 3,160 DEGs.

We further noted that the use of non-consecutive time points for gene expression

measurements are rather common; for example, Morrow et al. (2005) examined the

effect of strain at the 6, 10 and 24 h, whereas Schad et al. (2011) investigated the strain

effect at the 1, 6, 18 and 48 h.

Cell viability was determined using the MTT and clonogenic assay. Cancer cell lines,

A549 and H460 were used in both experiments. The protocols were described in our

previous works (Huang et al., 2014; Lan et al., 2010). Furthermore, we also submitted

the predicted DEGs to NCBI PubChem database and the DrugBank databases (Wishart

et al., 2008) to identify potential drugs for VSMC proliferation associated diseases.

The results of the potential drugs identified by cMap are reported in the following

‘Results’ section.

IC50 is the drug concentration inducing 50% inhibition of the cell viability. Cell

viability was determined using the MTT and clonogenic assay. Non-small cell lung

cancer cell lines were used in both experiments. In this paper we retrieved two IC50
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Table 2 The 23 DEGs, their functional description and supporting study.

Gene Full gene name Functional description Study

CCL2 Chemokine ligand 2 Aged VSMC exhibited upregulation of

CCL2 gene

Mascall et al. (2012) and

Song et al. (2012)

CDC Cell division cycle proteins Involved in controlling cell cycle phase

transition, such G2/M transition in

VSMC

Su et al. (2007)

CDH6 Cadherin 6 A VSM cell-cell adhesion molecule, it is

important for tissue integrity and cell

proliferation

Sun et al. (2014)

CDK Cyclin-dependent kinase Differential effects on VSMC proliferation Tanner et al. (2000)

CEBPD/GADD Growth arrest and DNA

damage-inducible gene

Cyclic stretch enhanced GADD153

expression in cultured rat VSMC

Oyadomari & Mori (2004) and

Cheng et al. (2008)

COL Collagen Is expressed by VSMC in response to

vascular injury

Sibinga et al. (1997)

CTGF Connective tissue growth factor Stimulates VSMC growth and migration Fan & Karnovsky (2002) and

Fan, Pech & Karnovsky (2000)

CXCL2 Chemokine (C-X-C Motif) ligand 2 Aged VSMC exhibited upregulation of

CXCL2 gene

Song et al. (2012)

HSP Heat shock protein Cyclic strain-induced expression of HSP in

human endothelial cells

Hurley et al. (2010)

IGF1R Insulin-like growth factor

type 1 receptor

Mechanical stretch simulates proliferation

through activation of IGF1R

Cheng & Du (2007), Li et al. (2008),

Okura et al. (2001) and

Qiu et al. (2014b)

IL Interleukin-1 Plays a role in the migration of VSMC into

the neointima following acute injury

Dardik et al. (2005),

Wójtowicz et al. (2010)

and Zampetaki et al. (2005)

JUNB/AP-1 Jun B proto-oncogene Is rapidly activated in a balloon-injured

artery in rat

Yasumoto et al. (2001)

MAPK Mitogen-activated protein kinase Mechanical stress-initiated MAPK signal

transduction in VSMC

Li et al. (2000) and Li & Xu (2000)

MCM3AP Minichromosome maintenance

complex component 3

Expression of minichromosome

maintenance proteins in VSMC

Bruemmer et al. (2003a) and

Bruemmer et al. (2003b)

MMP Matrix metalloproteinase Upregulation of MMP-1 plays a critical role

in the flow-enhanced motility in VSMC

Asanuma et al. (2003), Chung et al.

(2005), Feng et al. (1999),

Pascarella et al. (2008) and

Shi et al. (2009)

PCNA Proliferating cell nuclear antigen Cyclic strain-induced expression of PCNA

in human endothelial cells

Hurley et al. (2010) and

Richard et al. (2007)

PDGF Platelet-derived growth factor Plays a role in the migration of VSMC into

the neointima following acute injury

Dardik et al. (2005) and

Raines (2004)

SGK1 Serum-glucocorticoid-regulated

kinase1

Mechanical stress-activated SGK1

contributes to neointima formation

in vein graft

Cheng et al. (2010)

TENM Tenascin Mechanically induced genes in human

VSMC

Feng et al. (1999)

TGF Transforming growth factor Involved in controlling cell cycle phase

transition, such G2/M transition

in VSMC

Su et al. (2007), Mata-Greenwood

et al. (2005), Reddy & Howe (1993)

and Ueba, Kawakami & Yaginuma

(1997)
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measurements from two different resources to validate our predictions, for clarity, “IC50”

and “ICdb50” represent experimentally determined IC50 activities obtained from

in-house measurement (MTT and clonogenic assay) and the NCBI PubChem database,

respectively.

RESULTS
To determine the DEGs, we made use of the “Linear Models for Microarray Data” (limma)

package, which is available from the Bioconductor service. Details are described in the

following sections.

Differentially expressed gene identification
In this study, the Robust Multi-array Average (RMA) was used for gene expression

normalization. After that, a model matrix (use the function, model.matrix) was created

with rows and columns denoting the replicates (with the four time points information)

and the time points respectively. Then, we seek a linear model to describe each probe/gene

using the lmFit function provided by the limma package (Smyth, 2004; Smyth, 2005).

DEGs are determined by first constructing the contrast matrix (use the function, cont.

matrix), which made a pairwise comparison of two consecutive time points between the

two replicates (use the function contrast.fit). EBayes analysis was subsequently conducted

on the previous results, and the DEGs were selected by setting a pEBAYES-value threshold of

0.01 corresponding to the moderated F-statistics.

Through a manual literature search, we have collected a list of genes that are involved in

VSMC phenotypic modification. Among the 473 DEGs, there are at least 23 DEGs

are found in the literature. Table 2 summarized the results of those 23 genes, their

biological functions, and references. These results of the DEGs can be accessed at

http://ppi.bioinfo.asia.edu.tw/vsmc, which provides several important types of genetic

information, such as the chromosomal locations, PubMed IDs, GO annotations,

pathways, and pEBAYES-values.

The results of gene set enrichment analysis
A total of 473 DEGs were submitted to DAVID for clustering, and thus enriched BPs

related gene groups were obtained, included KEGG, BioCarta and REACTOME, in

which not only the most often found enriched BPs are cell cycle-related processes, but also

the enriched pathways are associated with cancer- or cell cycle-related events. These results

Table 2 (continued).

Gene Full gene name Functional description Study

TIMP TIMP metallopeptidase inhibitor 3 Mechanical strain induces TIMP-1 and

TIMP-2 synthesis. Inhibition of

angiogenesis in human artery endothelial

cells is mediated by TIMP-2 from VSMC

Chung et al. (2005) andMascall et al.

(2012)

TNF Tumor necrosis factor Induction of MMP-14 and 2 by cyclical

mechanical stretch is mediated by TNF

Wang et al. (2003)

TP53 p53 protein Plays a role in VSMC proliferation and

atherosclerosis

Mercer & Bennett (2006) and

Yonemitsu et al. (1998)
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show that many DEGs might involve in the cell proliferation or apoptosis regulatory

pathways to induce cell proliferation or apoptosis which lead to cardiovascular disease

or cancer.

Details of the top three clusters (with enrichment scores 13.84, 8.59, and 5.93 given by

DAVID) of enriched BPs information were presented in Table 3. Obviously, the most

often found enriched BPs are cell-cycle-related processes, such as, M phase, regulation

of mitotic cell cycle and cytoskeleton organization. For the cluster with the highest

enrichment score, 64 genes were included in the cell cycle process.

Many studies have noted that hemodynamic factors, including shear stress, cyclic

strain, and hydrostatic pressure, can (i) regulate the proliferation rate of VSMC (Boehm &

Nabel, 2001; Sterpetti et al., 1993; Sterpetti et al., 1992), (ii) and thus trigger many

cell-cycle-related molecules (Qiu et al., 2014a; Shi & Tarbell, 2011), and then (iii) decrease

proliferation and increase apoptosis, mediated by the Akt pathway (Fitzgerald et al., 2008).

For the cluster with the highest enrichment scores, 64 genes were included in the

cell cycle process. It has been reported that cell cycle and cell migration proteins regulate

multiple biological functions in the cardiovascular systems (Boehm & Nabel, 2001).

For the M phase process, there are 41 genes. A number of studies have shown that the

transition of VSMC from G2 phase into the M (mitosis) phase of the cell cycle is a

tightly controlled process (Grainger et al., 1993; Somoza et al., 2004; Su et al., 2007).

Furthermore, much evidence (de la Cuesta et al., 2013; Hellstrand & Albinsson, 2005;

Martinez-Lemus, 2014; Sarkar et al., 2005; Zheng et al., 2010) also suggested that

cytoskeleton deregulation may explain how VSMC switch from a contractile to a

synthetic phenotype.

Table 3 The Results of the top three clusters’ enriched BPs.

Enrichment score: 13.84 Count pDAVID-value Benjamini

Cell cycle 64 6.90E-17 2.60E-13

M phase 41 9.30E-17 1.30E-13

Organelle organization 86 4.00E-16 3.40E-13

Cell cycle process 52 1.60E-15 9.70E-13

Cell cycle phase 44 2.40E-15 1.10E-12

Enrichment score: 8.59 Count pDAVID-value Benjamini

Regulation of cell cycle 36 6.80E-13 1.60E-10

Regulation of mitotic cell cycle 19 5.50E-08 7.10E-06

Cell cycle checkpoint 14 4.50E-07 5.50E-05

Enrichment score: 5.93 Count pDAVID-value Benjamini

Cytoskeleton organization 31 6.90E-07 7.60E-05

Microtubule cytoskeleton organization 17 9.60E-07 1.00E-04

Spindle organization 10 1.50E-06 1.50E-04

Microtubule-based process 22 1.90E-06 1.80E-04

Note:
The ‘Count’ denotes the number of DEGs found in the BPs. The ‘pDAVID-value’ and ‘Benjamini’ columns denote the
p-value and Benjamini p-value given by DAVID, respectively.
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Topological analysis of the gene association network (GAN)
Using the 473 DEGs as input, we performed the GGM analysis, and ranked the partial

correlation coefficients according to their absolute values, i.e. both activation and

suppression events were kept. After ranking the results obtained from GGM, only the

top 1% correlation events were selected to construct the GAN. GGM analysis reduced the

total number of DEGs from 473 to 243. This network consists of the 1,442 significant

links (adjusted pGGM-value < 0.01) among the 243 genes. Among those 243 genes,

17 genes are the DEGs listed in Table 2, while the corresponding GAN is shown in Fig. 1

using Cytoscape (http://www.cytoscape.org/), a useful tool for visualizing a molecular

interaction network. The 17 genes were highlighted and their linked genes (each link has

an adjusted pGGM-value < 0.01) were shown. The R package, network.test.edges, was

used for assessing the significance of edges in the GGM. A mixture model is fitted to the

partial correlations using the R language false discover rate tool, fdrtool. This results in

two-sided p-values for the test of non-zero correlation.

Figure 1 The stress-induced GAN for the 17 DEGs are shown by the yellow circles. Blue circles

denoted DEGs, which were predicted by EBayes analysis.

Huang et al. (2016), PeerJ, DOI 10.7717/peerj.2478 11/34

http://www.cytoscape.org/
http://dx.doi.org/10.7717/peerj.2478
https://peerj.com/


The top 1% correlation events obtained from the GGM analysis has a modest

percentage of overlapping genes, i.e. 73.9% (17/23), where the rest of the 226 genes are

DEGs but not included in Table 2.

Given the GAN (1,442 links among 243 genes), we analyzed the network by using the

topological graph theory approach. The results of the 11 parameters of the GAN were

summarized in Table 4.

In Table 4, it was found that the GAN had an average node graph distance of 2.68, and a

network diameter of 6. A small average node graph distance value means that any two

genes may have indirect interactions via less successive gene-gene interaction.

Using 0.05 as a threshold, the VSMC GAN had a relatively small DC value, i.e. 0.05.

This means that nodes of GAN were much less interaction directly with each other. Here

‘direct’ refers to the fact that DC characterized a node’s neighborhood connections.

However, the GAN had a rather small BC (0.007) and BRC (0.0002) values. A higher BC

value indicated that nodes of the GAN were in between many other nodes. Also, a higher

BRC value suggested that nodes of GAN can reach a higher portion of nodes, which is

termed ‘reachability’ in some literature. In addition, it is noted that the GAN had a

negative BROC which means the GAN inclined to form a cluster.

In order to further our understanding of the GAN network property, we sorted the

eight local parameters’ values in descending order, and counted the number of genes

ranked in the top 10, 15 and 20%. Table 5 summarized the results of the rank statistics

of the GAN. As seen in Table 5, there is no gene with an SV of five ranked in the top

10 and 15%. However, there are three/eight genes which have an SV of five/four at the

top 20/10%, respectively.

As shown in Table 5, at the 10 and 15% thresholds, the highest score is four, while

a closer examination revealed that most of the nodes’ group 3 values, i.e. BRC, were

ranked beyond the top 20% threshold. This means information flow or node connecting

densely connected components was less likely.

For an SV of four and 10% threshold, the eight genes are: AURKA, CYR61, DUSP10,

HSPA1A, MED20, NFIB, NR1D1 and TCF4, their roles and related studies were depicted

Table 4 The results of global and local topological parameters of the GAN.

Average Standard deviation

Graph distance 2.68 –

Graph diameter 6.00 –

Network efficiency 0.41 –

Degree centrality 0.05 0.049

Betweenness centrality 0.007 0.015

Bridging centrality 0.0002 0.00027

Closeness centrality 0.38 0.054

Eccentricity centrality 0.23 0.0285

Clustering coefficient 0.50 0.331

Local average connectivity 0.372 0.281

Brokering coefficient -0.33 0.241

Huang et al. (2016), PeerJ, DOI 10.7717/peerj.2478 12/34

http://dx.doi.org/10.7717/peerj.2478
https://peerj.com/


in Table 6. These results provide substantial evidence that top ranked nodes play a role

during the stress-inducing process.

Among the eight genes, only HSPA1A belongs to the HSP protein family and is also

identified as a DEGs, whereas the other seven genes are not DEGs.

If we relaxed the threshold to the 20% level, there is a gene with a SV of five, i.e.

IGF1-receptor (IGF1R), which plays an important role in migration, cell cycle progression

and survival of VSMC (Cheng & Du, 2007; Li et al., 2008; Okura et al., 2001;

Qiu et al., 2014b).

Thus, the above results suggested a useful scenario to identify stress-induced genes by

using time series data, and elaborate the network structure by using graphical and

cluster analysis. Also, the findings support our suggestion that if the genes have higher

degree, betweenness, centrality and densely connected, they may play important roles

in VSMC under mechanical stress.

The results of cluster analysis
For a given k, CFinder may return more than one cluster; therefore, we selected the

largest k-community for cluster analysis. Table 7 summarized the results of the sizes

and numbers of clusters for the k-communities identified by CFinder. For example,

CFinder identified two largest clusters with a size of 56 for the 6-communities.

Enriched biological pathways’ annotations of communities were given by

implementing DAVID. According to the REACTOME (Croft et al., 2011) and KEGG

(Kanehisa et al., 2004), pathways with their pDAVID-values less than 0.05 and ranked

among the top ten were reported.

Table 5 The number of top-ranked genes by using graph topological analysis.

%\score 5 4 3 2 1

10% 0 8 18 38 99

15% 0 19 23 43 81

20% 3 30 25 41 76

Table 6 Top-ranked genes, their functional description and supporting study.

Gene Functional description Study

AURKA Cell cycle-related genes induced by PDGF-DD in VSMC Alexander et al. (2012)

CYR61 Supports VSMC adhesion and induces VSMC chemotaxis associated with post-angioplasty

restenosis

Grzeszkiewicz et al. (2002) and

Lee et al. (2007)

DUSP10 DUSP10 encodes a dual-specificity MAPK phosphatase that has a principal function in both

innate and adaptive immune responses

Weinsheimer et al. (2007)

HSPA1A In VSMC, low-density lipoproteins (LDL) modulate HSP phosphorylation and subcellular

localization, affecting action polymerization and cytoskeleton dynamics in rats, increases heart

tissue hsp70i expression results in protection of the heart against inadequate blood supply injury

Garcı́a-Arguinzonis et al. (2010)

and Marber et al. (1995)

MED20 A repressor of smooth muscle cell differentiation Beyer et al. (2007)

NFIB A transcriptional inhibitor of p21(CIP), and CDC25A Dellago et al. (2013)

NR1D1 NR1D1 also known as Rev-ErbA, upregulates NF-�B-responsive genes in VSMC Migita, Morser & Kawai (2004)

TCF4 Plays a dual role in vascular remodeling by inhibiting VSMC apoptosis and promoting

proliferation

Wang et al. (2002)
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Table 8 summarized the results of the pathway (pDAVID-value less than 0.05) or disease

information and references for the k-communities with k equals to 7–10. As we noted

from Table 8, cluster analysis allowed us to infer more VSMC-related genes (denoted by

bold-faced letters) that were not identified by differential expression or topological

analysis. We performed the gene set enrichment analysis for communities with higher

connectivity only, the same analysis can be applied for k equals to 3–6 if necessary.

The present approach suggested that a combination of the DEGs, topological and

cluster analyses may be more beneficial in terms of identifying VSMC-related genes,

i.e. narrowed down to a total of 43 (not for a specific k-community). In Table 2, there

are 23 DEGs obtained from literature. Through topological analysis of the GGM result

(with a SVof four and listed in the top 10%) there are eight genes found (listed in Table 6,

but one gene is the same in Table 2), so seven genes were counted. Using the same

network from GGM analysis, through the Cfinder calculation and followed by enrichment

analysis (DAVID), 13 more genes are found to be relevant to VSMC based on the

pathway or disease annotations given by DAVID. Therefore, when we added up 23, 7 and

13, 43 DEGs were found.

A possible explanation for this lies in the fact that different methods of analysis

obtained different aspects of the microarray data. For instance, the DEG analysis is based

on the fold changes of gene expression, the GGM is rested on partial correlation

calculation, whereas the cluster analysis made of PPI and biological functional analysis.

The results of drug repositioning for VSMC proliferation
associated diseases
Using a pEBAYES-value < 0.01, 473 DEGs were identified. The use of these genes to query

against cMAP did not return any potential drugs. Therefore, we used a less stringent

p-value to estimate the association of the DEGs with drugs. A total of 208 and 394

up- and down-regulated DEGs respectively (pEBAYES-value < 0.05 and cMap enrichment

score < 0, which is shown in Section 2 of the Supplemental Information), with at least

two consecutive up- and down-regulated time points, were submitted to cMap, where

30 drugs were returned as shown in Table 9. Among these drugs, three of them,

Table 7 Sizes and number of clusters for the k-communities identified by CFinder.

k Size (number of clusters)

3 204, 3

4 176, 5, 4

5 136, 7, 5

6 56(2), 11, 7(2), 6(5)

7 43, 42, 9

8 16(2), 12(2), 10, 9, 8

9 14, 11, 10(3)

10 11, 10

Note:
The parenthesis denotes the number of clusters identified by CFinder, else only one cluster was found.
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i.e. thioridazine, niclosamide, and pyrvinium have in-house experimental determined

IC50 activities.

For thioridazine, its association with CVD is its deadly adverse effect (Eder et al., 2014),

namely, torsades des pointes arrhythmia, a very severe type of irregular heart beating.

One research proposed that there was a significant dose–response relationship for

increasing heart rate and increasing drug-induced long Q-T syndrome but not other

Table 8 Enriched pathway or disease returned by DAVID.

k Gene name Pathway or disease

10 DUSP10 MAPK (Mascall et al., 2012)

SH2D4A Angiogenesis, VEGF (Mascall et al., 2012; Qiu et al., 2014b)

8, 9 BCL2L1 Ras (Lan et al., 2010)

CTGF Cardiovascular disease

HSPA1A Restenosis

PLAU Blood coagulation

7 BCL2L1 Ras (Lan et al., 2010; Mascall et al., 2012)

BDKRB1 Cardiovascular disease

CCL2 Cardiovascular disease

CTGF Cardiovascular disease

CDKN1B Cardiovascular disease

DDB2 p53 (Dardik et al., 2005; Wójtowicz et al., 2010)

DLC1 PDGF (Hurley et al., 2010; Smyth, 2005)

FAM13A Angiogenesis

HSPA1A Restenosis

IGF1R IGF1R (Arcaro & Guerreiro, 2007; Huang et al., 2014;

Jacob et al., 2005; Sebolt-Leopold & Herrera, 2004)

MED20 Gene expression (Boehm & Nabel, 2001)

NFIB Cellular process (Qiu et al., 2014a)

NR1D1 NFkB (Qiu et al., 2014a)

NR4A1 MAPK (Hinze et al., 2013)

PMAIP1 p53 (Dardik et al., 2005; Wójtowicz et al., 2010)

PLAU Blood coagulation

TCF4 Cellular process (Fitzgerald et al., 2008)

Note:
Bold-faced gene name denote new putative genes identified by cluster analysis; they were not found by differential
expression or topological analysis.

Table 9 The potential drugs returned by cMap under pcMAP-value < 0.05 and cMap enrichment

score < 0.

5224221 5707885 Alimemazine Arachidonic acid Ascorbic acid

Benzamil Bromopride Bucladesine Calmidazolium Cicloheximide

Clomifene Fluspirilene Gossypol LM-1685 Loperamide

Lovastatin LY-294002 Maprotiline Methylbenzethonium chloride Niclosamide

Pentamidine Pimozide Puromycin Pyrvinium Rottlerin

Syrosingopine Thioridazine Trolox C Valinomycin Wortmannin
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cardiovascular changes (Strachan, Kelly & Bateman, 2004). Although it took a relatively

high dose of thioridazine to cause adverse cardiovascular effects, thioridazine is less likely

to be a potential drug for VSMC proliferation associated diseases.

Niclosamide has been found to inhibit rapidly mTORC1 signaling which is required

for embryonic cardiovascular development and for postnatal maintenance of cardiac

structure and function. Also, mTORC1 is necessary for cardiac adaptation to pressure

overload and development of compensatory hypertrophy (Balgi et al., 2009; Sciarretta,

Volpe & Sadoshima, 2014). Therefore, it may be less possible to be beneficial for

VSMC proliferation associated diseases. Another study suggested niclosamide and L-4F

co-administered orally in a mouse model would reduce the atherosclerotic lesion, but

not niclosamide alone. Thus, niclosamide may interact with L-4F to protect the effective

peptide from trypsin digestion; therefore, allowing its absorption (Navab et al., 2009).

For pyrvinium, multiple ex vivo experiments have suggested it can heal a scarring heart

(Murakoshi et al., 2013; Saraswati et al., 2010). Moreover, pyrvinium reduced adverse

cardiac remodeling (Saraswati et al., 2010).

By use of the NCBI PubChem database, we found that among the 442 DEGs (after

excluding genes which do not have identifiable GeneID) there are 31 DEGs, targeted by

73 drugs. Among the 31 DEGs, seven of them, i.e. CCL, CDK, CDKN1B, IGF1R, MMP,

PLAU and TP53, matched with our 43 DEGs list, i.e. 16.3%.

Among these six families of genes (CDK and CDKN1B belong to the same family),

the ICdb50 information for five of them, except IGF1R, are given in Table 10. We noted

that all the drugs in Table 10 had ICdb50 values, in particular, the ICdb50 records are

available for two families of DEGs, i.e. the CDK and MMP families. Given the fact that

the NCBI PubChem resource is not designed specifically for recording CVD drugs; hence,

this may limit the number of matching events. For the moment, the findings listed in

Table 10 should be important in VSMC proliferation associated disease treatments.

In summary, given the 30 potential drugs, we had identified the drug targets which are

also the DEGs input in cMAP. With the drug target’s ICdb50 also found in NCBI, the

results imply “very” specific drug action mechanism.

Acetylsalicylic acid (ASA) is under clinical trials (clinical trial NCT00501059) for

cardiovascular disease treatment and has been demonstrated to inhibit VSMC

proliferation (Redondo et al., 2003).

For amiloride, this drug may reduce the increased VMSC hypertrophy by mediating

ion transport mechanism which is induced by angiotensin II. Besides, it has been

shown that pre-treatment with 5-N,N-hexamethylene amiloride attenuates angiotensin

II-induced VSMC proliferation (Liu et al., 2014). Also, the amiloride derivative phenamil

attenuates pulmonary vascular remodeling by activating NFAT and the Bone

Morphogenetic Protein signaling pathway (Chan et al., 2011). Amiloride is also under

clinical trials (clinical trial NCT01195805) for cardiovascular disease treatment.

AT7519, a novel small-molecule multi-cyclin dependent kinase inhibitor, has been

evaluated in clinical trials for the treatment of cancers (Dolman et al., 2015; Wyatt

et al., 2008).

Huang et al. (2016), PeerJ, DOI 10.7717/peerj.2478 16/34

http://dx.doi.org/10.7717/peerj.2478
https://peerj.com/


For AT7519 and flavopiridol, the corresponding clinical trials (clinical trials

NCT01183949 and NCT00112723) for myeloma are ongoing. Furthermore, for

flavopiridol, it has been reported that it inhibits VSMC growth in vitro and in vivo. Its

oral availability and selectivity for CDKs make it a potential therapeutic tool in the

treatment of vascular lesions (Andres, 2004; Dzau, Braun-Dullaeus & Sedding, 2002;

Ruef et al., 1999).

For marimastat, the clinical trial (clinical trial NCT00261391) for vascular anomalies

has completed, and it has been reported that marimastat (a selective but non-specific

MMP inhibitor) can prevent intimal hyperplasia in a cultured human internal mammary

artery (Peterson et al., 2000). Interestingly, it is known that MMP inhibitors (MMPIs)

could suppress the effects of MMPs on VSMC proliferation, perhaps it is the most

promising clinical application of MMPIs in vascular medicine.

Taken together, with our finding and the literature support, these above-mentioned

five drugs might have chances to be potential drugs for CVDs.

Targeted genes for VSMC proliferation
Drug-target relationships have been used for drug repositioning. For example, Huang

et al. (2015) constructed a weighted and integrated drug-target interactome (WinDTome)

in drug repurposing for schizophrenia. Wu, Wang & Chen (2013) merged disease-gene

and drug-target relations for drug repositioning. We are motivated to derive the targeted

genes for the potential drugs.

The potential drugs in Table 9 were submitted to NCBI to search for their

corresponding targeted genes. Finally yielding a total of 38 targeted genes for diseases

associated with VSMC proliferation, as shown in Table 11, which are the potential

therapeutic targets for future VSMC proliferation diseases clinical trials. For each targeted

gene in Table 11, the number in parentheses is the number of associated cMap drugs,

and could be regarded as a metric for prioritizing the genes in the list. The TP53 and

ADRB2 genes ranked top of the lists.

Whether a particular gene is related to most of the targeted genes in Table 11 is of

interest. Therefore, networks of the targeted genes and their adjacent genes in CVDs PPI

Table 10 The ICdb50 information for CCL, CDK, MMP, PLAU and TP53.

Drug name DEG ICdb50 (mM) Study

Acetylsalicylic acid TP53 Redondo et al. (2003)

Amiloride PLAU Chan et al. (2011) and Liu et al. (2014)

AT7519 CDK family 3 ICdb50 records

were found

Wyatt et al. (2008)

Danazol CCL3 –

Flavopiridol CDK family 31 ICdb50 records

were found

Andres (2004),

Dzau, Braun-Dullaeus & Sedding (2002)

and Ruef et al. (1999)

Marimastat MMP family 28 ICdb50 records

were found

Peterson et al. (2000)

Note:
‘-’ denotes not available.
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were constructed. Figure 2 displays the top four genes that exhibit the largest, the second

largest, the third largest and the fourth largest degree in CVDs networks. The UBC

gene directly interacts with 7(23) targeted genes in up(down) regulated CVDs networks,

while the other genes, such as ELAVL1, connect to no more than 4(9) targeted genes.

We noted that the ubiquitin-conjugating gene (UBC) is not a DEG. However, as early

as 1997, it has been reported by Adam et al. (1997) that UBC is involved in the

function or maintenance of the contractile phenotype of VMSC. UBC is responsible

for catalyzing the transfer of ubiquitin to substrate proteins is a component of the

ubiquitin–proteasome system (UPS).

Table 11 The genes targeted by the 30 potential drugs.

NPC1 (20) U IL1B (14) U PPP3CA (10) U HSPA1A (4) U PTBP1 (3) U

CYP51A1 (2) U RNASEH1 (1) U CDK19 (1) U AKT3 (1) U INSR (1) U

TP53 (23) D ADRB2 (23) D RGS4 (22) D SMPD1 (17) D POLI (17) D

BAZ2B (15) D MMP14 (15) D BCL2L1 (15) D NR2F2 (14) D SUMO1 (14) D

VIPR1 (10) D EGFR (10) D ID4 (9) D RXRA (7) D PLEC (5) D

NLRP1 (5) D STAT1 (4) D WEE1 (4) D STK3 (3) D SRPK1 (3) D

SGK1 (3) D MKNK2 (3) D DUSP1 (2) D PLAU (1) D CDC42BPA (1) D

CDK2 (1) D KDR (1) D SIK1 (1) D

Note:
The parentheses represent the number of associated cMap drugs, U and D represent up and down-regulated respectively.

Figure 2 The top four genes (squares) which connect to the largest, the second largest, the third largest and the fourth largest degree of

targeted genes (circles) for (A) up-regulated and (B) down-regulated CVDs network.
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It was known that the UPS, regulates the degradation of oxidized, misfolded or

damaged proteins, plays a significant role in the control of VSMC phenotype and

survival signaling (Demasi & Laurindo, 2012). It has been suggested that the UPS may

be a therapeutic target in vascular diseases (Willis et al., 2010). Pagan et al. (2013)

also postulated that the UPS is a promising potential therapeutic target in ischemia-

reperfusion injury. We expect the development of novel therapeutic drugs are capable

of modulating the UPS for CVD treatments.

Improving drug prediction accuracy by using
clustering approach
In the above analysis, a total of 208 and 394 up- and down-regulated DEGs were used

to identify 30 potential drugs (as listed in Table 9) for CVDs, and three of them,

i.e. thioridazine, niclosamide and pyrvinium have in-house experimental determined

IC50 activities. In an attempt to improve the drug prediction accuracy according to

IC50 measurements, we further applied graph clustering to extract densely connected

clusters of DEGs. A well-known algorithm–ClusterONE (Nepusz, Yu & Paccanaro, 2012)

was used for clustering, and the top two largest up- (down-) regulated clusters with

sizes 7 and 6 (22 and 8) were selected for analysis (listed in Section 3 of the Supplemental

Information). There are four options formed by combining the two up-regulated clusters

and the two down-regulated clusters. After submitted to cMap, among the four

combinations, we found that by combining the up-regulated cluster of size 6 with the

down-regulated cluster with size 22 achieve the highest prediction accuracy according to

IC50 measurements, 30.0% (15/50). That is, it predicts 50 drugs, of which 15 drugs were

validated as effective by IC50 experiments. Furthermore, combining the up-regulated

cluster of size 6 with the down-regulated cluster with size 8 achieve the second highest

prediction accuracy according to IC50 measurements, 21.5% (11/51). In contrast,

combining the up-regulated cluster of size 7 with the down-regulated cluster with sizes

22 and 8 achieves none and one drug (thapsigargin) is verified by IC50 experiments,

respectively.

Out of the 15 predicted potential CVD compounds mentioned in above, 11 of them

(73% success rate) have been found to act on the cardiovascular system in the literature.

Among them are compounds from various notable class of mechanism including

peroxisome-proliferator-activated receptors gamma (PPAR-) agonist (15-delta

prostaglandin J2), heat shock protein 90 (HSP90) inhibitors (monorden, also known

as radicicol; and tanespimycin (17AAG)), histone deacetylase (HDAC) inhibitor

(trichostatin A) and anti-fibrotic agent (withaferin a). 15-delta prostaglandin J2 acts as

a PPAR agonist which has been shown to elicit protection against myocardial injury

through the remote ischemic preconditioning in an in vivo model (Lotz et al., 2011).

Mefloquine, an anti-malarial drug, has been demonstrated in multiple studies to possess

cardiotoxicity exerting a negative inotropic effect on the heart and certain cardiac

arrhythmia (Coker et al., 2000). The HSP90 inhibitor, monorden, was shown to induce

heat shock protein expression in neonatal rat cardiomyocytes which ultimately conferred

cardioprotection to these cardiomyocytes (Griffin, Valdez & Mestril, 2004).
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Tanespimycin (17AAG), another HSP90 inhibitor, may also possess similar

cardioprotective effects. Parthenolide, isolated from a herb extract, has recently been

demonstrated to be able to inhibit the VSMC proliferation by inducing G0/G1 phase cell

cycle arrest (Weng et al., 2009). Phenoxybenzamine has been used in open heart

surgery, coronary artery bypass grafting (CABG) with a radial artery, and in one study,

treatment of the radial artery grafts with phenoxybenzamine was associated with a

reduction in perioperative myocardial injury (Kulik et al., 2007). Piperlongumine is an

alkaloid extracted from the long pepper, Piper Longum L., which was found to have

anti-atherosclerotic action suppressing atherosclerosis plaque formation in vivo

(Son et al., 2012). Trichostatin A, an HDAC inhibitor, has been shown to be able to confer

cardioprotection against myocardial ischemia/reperfusion injury in vivo in one animal

study (Yu et al., 2012). Trifluoperazine is a calmodulin inhibitor which ranks high in the

order of effectiveness amongst its same class compounds in protecting the calcium-

overloaded myocardium (Hong et al., 2014). Zhao et al. (2012) has reported the use of

vorinostat in pulmonary arterial hypertension. Finally in the list is withaferin A, an

anti-fibrotic compound against diseases such as cardiac interstitial fibrosis (Challa

et al., 2012).

We found two drug-targeted genes, TP53, and SUMO1, which are appeared in our

prediction with and without the use of the clustering algorithm, ClusterONE. The

networks of targeted genes and their adjacent genes in CVDs PPI were shown in Fig. 3.

If drugs could indirectly affect down-stream PPI of the TP53 and SUMO1 genes, the

therapeutic role of these two genes is worth further exploration.

Figure 3 The top two genes (squares) which connect to the largest and the second largest degree of

targeted genes (circles) in the down-regulated CVDs PPI after cluster analysis.

Huang et al. (2016), PeerJ, DOI 10.7717/peerj.2478 20/34

http://dx.doi.org/10.7717/peerj.2478
https://peerj.com/


The small ubiquitin-related modifier (SUMO) family of proteins play an important

role in post-translational modification (Mahajan et al., 1997). There are four SUMO genes

(SUMO1-4), which encode proteins that are similar to ubiquitin. SUMO plays an

important role in PPARgamma Peroxisome proliferator-activated receptor gamma

(PPARgamma) activity. PPARgamma is a nuclear receptor regulating inflammation,

atherosclerosis, insulin sensitivity and adipogenesis (Lim et al., 2009).

In Table 12, we provided the references for potential cardiovascular-acting

mechanisms, which do not have any clinical trial IDs, those are new potential drugs which

were not studied in themes of CVD. In other words, our approach is able to identify

potential drugs for the treatment of stress-induced CVD. Table 12 lists the drug names, the

IC50 values, the drugs’ target genes, i.e. SUMO1 (Gene ID: 7341) and TP53 (Gene ID:

7157), their ICdb50 values and the supporting studies. In addition, because TP53 is

frequently found in liver cancer patients, we further analyzed the ICliver50 of these

prioritized drugs in three different liver cancer cell lines, including Mahlavu, Huh7, and

PLC5 cells. In Section 4 of the Supplemental Information, Table S4 summarized the

ICliver50 values of those prioritized drugs.

In total, there are ten common drugs inferred by both the highest and the second

highest predictions. Four drugs are specific to the highest prediction, and one drug is

specific to the second highest prediction.

For the rest of the 35 drugs (without IC50), only 21 drugs have identifiable targeted

DEGs, in which 11 drugs, i.e. 52%, have potential cardiovascular-acting mechanisms,

where seven of them have the ICdb50 values (see Section 5 of the Supplemental

Information).

Table 12 The MTT and clonogenic assay values (IC50), target gene (DEG) and ICdb50 information

for the cMAP drugs.

Drug name MTT/Clonogenic

IC50 (mM)

DEG ICdb50 (mM) Study*

Lomustine -/< 10 SUMO1 – –

Parthenolide > 5/- TP53 15.5 Kurdi & Booz (2007) and

Weng et al. (2009)

Phenoxybenzamine > 5/- SUMO1 – Corvera et al. (2003) and

Kulik et al. (2007)

Piperlongumine > 5/- TP53 3.16 Son et al. (2012)

SUMO1 –

Securinine > 5/- TP53 29.8 –

Sulconazole -/< 10 SUMO1 – –

Tanespimycin < 1/- SUMO1 – Kim et al. (2014)

Thiostrepton < 5/- TP53 7.38 –

Trifluoperazine < 10/- TP53 19.95 Hong et al. (2014)

SUMO1 –

Vorinostat < 1/- TP53 0.708 Zhao et al. (2012)

SUMO1 –

Note:
* Denotes studies shown evidence related to CVDs.
‘-’ denotes not determined.
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DISCUSSION
Abnormal expression of VSMC is a major cause of CVDs. To examine how VSMC react in

response to mechanical stress, a three-phase study was proposed to examine this

problem by employing time-course microarray data. First, the DEGs were identified by

using the moderated t-statistics test package, EBayes. Second, the GAN for VSMC was

inferred by using GGM. Finally, graph theory and cluster analysis were employed to

predict the last batch of DEGs by analyzing the GAN.

A total of 23 genes are found relevant to VSMC phenotypic modification, which is

summarized in Table 2. Those genes are differential expressed. Then, by constructing

the GAN, one obtained the dependence among the DEGs, in which this approach allows

us to infer more DEGs based on their topological properties of the interaction network.

To further explore stress-induced DEGs, we made use of the assumption that highly

interact DEGs are assumed playing an important role in VSMC phenotype changes, in

which dense interaction regions were identified by using the clustering approach.

Our research has suggested that nodes with top-ranked local topological values and

densely interacting regions (modulus) represent stress-induced genes in VSMC, where the

results were well supported by the literature. The three phases, complement each other

well, each phase emphasizes a different aspect of the GAN.

To identify the potential drugs for vascular diseases involve VSMC proliferation, we

made use of the drug-gene interaction databases, cMap. Use of up- and down-regulated

DEGs query predict 30 drugs, where three of them have in-house IC50 activities. In

other words, the success of the predictions was determined using in-vitro data, i.e. MTT

and clonogenic assay. We note that more IC50 hits are expected.

The overall drug prediction can be improved if one applies cluster analysis for the input

gene sets before making a query against the cMap database. We performed a gene set

enrichment analysis on the input sets, and found that the up-regulated cluster of size 6

and down-regulated clusters of size 22 and 8 are enriched in apoptosis and cellular

metabolism processes, where the up-regulated cluster of size 7 is enriched in both

non-coding RNA and RNA metabolic process. In other words, using up- and down-

regulated gene sets involve with similar BPs result in identifying more IC50 hits; hence,

provide more potential therapeutic drugs for treating VSMC related diseases.

As we stated in the ‘Drug repositioning’ section, both cancers and the VSMC

proliferation process involved the same signal transduction pathways; therefore, it is

hypotheized that cancer drug molecules may be repositioned for treating VSMC-

associated CVDs. Table 12 summarized the IC50 (lung cancer cells) activities for the

ten prioritized drugs. We further analyzed the ICliver50 of the prioritized drugs in three

different liver cancer cell lines and found that eight drugs shown IC50 assay activity

(Table S5). Although the present study has yielded promising findings, we note that

further experiments should be pursued for VSMC before the hypothesis is accepted.

CONCLUSIONS
In conclusion, biological networks are composed of functional related modules,

which play an essential role in many BPs. This research proposed a computational
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framework; i.e. use of GGM, multiple topological parameters and cluster analysis,

to dissect network structures, which may shed light on the mechanism of CVDs.

Furthermore, potential drugs and their targeted genes were identified from cMap and

NCBI PubChem, and certain potential drugs have been tested for effectiveness by in vitro

anti-tumor effects and clinical trials. Interestingly, the UBC gene dominates most of

the targeted genes associated with CVDs network, so its role in the cancer pathway

warrants further investigation. Finally, by applying cluster algorithm to the GAN, we

achieved a substantial increase in the number of predicted potential drugs for CVDs

according to the IC50 measurements. Consequently, we have been able to assess the

potential existing drugs to identify novel indications, which may be helpful in drug

repositioning discovery for CVDs.
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