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ARTICLE

How well can morphology assess cell death modality?

A proteomics study

Alexey L Chernobrovkin and Roman A Zubarev

While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological
characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under
severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the
abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both
semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by
analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a
multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200-500 most abundant
proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than
any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with
the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked.

This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment.
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INTRODUCTION

Since the first descriptions of programmed cell death mechanisms
in 1960s'~” and until 2000s, most attempts to classify cell death
programs were based on morphological characteristics. In 1973,
Schweichel and Merker proposed a classification of several cell
death modalities, including ‘type | cell death’ associated with
heterophagy, ‘type Il cell death’ associated with autophagy and
‘type lIl cell death’ not associated with any digestion.® According
to modern terminology, these types correspond to apoptosis,
autophagy and necrosis, respectively.’'" The Nomenclature
Committee on Cell Death (NCCD) has formulated in 2005 and
2009 recommendations for the definition of cell death
morphotypes.'>'® At the same time, numerous attempts have
been ongoing to classify cell death mechanisms according to
biochemical assays rather than morphological characteristics.®'*'*
In 2012, NCCD has expressed the belief that the time has become
appropriate for a novel systematic classification of cell death
based on measurable biochemical features.'”

This shift from morphology to biochemistry was intended to
signify the relentlessly increasing knowledge of the biochemical
features of distinct cell death subroutines. For a long time it has
been assumed that morphologically similar states represent the
activation of identical or at least similar lethal signaling cascades.'?
The underlying assumption was the presence of a 'tight' link
between the biochemical cascades and morphological changes.
But later it has become clear that apparently similar cell death
morphological patterns, as assessed by microscopy, can hide a
great deal of biochemical heterogeneity. The NCCD has stated
that the presence of specific morphological features is not
sufficient to establish a causal link between a given process and
cellular demise.’™® This statement effectively postulates a 'loose'
link between the biochemistry and morphology in cellular death.

Figure 1 illustrates the difference between the tight and loose link
models. The tight model assumes a bijective link (one-to-one
correspondence) between the cause and the effect, that is, between
the drug applied and morphological changes in dying cell. Knowing
the cell mechanics, this model permits one, at least in principle, to
'reverse-engineer' the death pathway based on the observed
morphology. This, in turn, would allow one to identify the upstream
area in the protein network that has triggered the corresponding
biochemical processes, thus locating the drug target. The loose
model makes such a possibility much less probable.

The question whether the cell death mechanics is loose or tight
is significant, as the tight mechanics may greatly simplify drug
target discovery, for example, by a combination of dynamics
proteomics and pathway analysis.'” So far, direct comparison of
these models has remained challenging, not least because it
implies quantitative comparison between the morphology and
biochemistry. While biochemistry can be quantitatively assessed
by assays employing standards (although single-reaction bio-
chemical readouts are deemed by NCCD to be poor indicators of a
precise death modality),’>'® morphology assessment has been
mostly qualitative and notoriously prone to operator-dependent
(mis)interpretations.

A significant challenge for the model comparison is the ever-
expanding list of recognized distinct regulated cell death modes.
While the 2005 NCCD report listed four main cell death types,
2012 NCCD classification included 13 entries: anoikis, autophagic
cell death, caspase-dependent and caspase-independent intrinsic
apoptosis, cornification, entosis, extrinsic apoptosis by death
receptors and dependence receptors, mitotic catastrophe, necrop-
tosis, netosis, parthanatos and pyroptosis.'> These modalities are
not mutually exclusive: it was said that a specific cell death-related
pathway may progress simultaneously with another cell death
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Tight or loose models of cell death regulation. Signal processing analogy can be used - stimulus as an input signal, cellular mechanisms

as a black box, top proteome changes as an output signal. Left (a): In the tight model, different stimuli cause significantly different states of the
dying cell, and such a state can be traced back to the actual cause of death. Right (b): In the alternative loose model, different lethal stimuli result
in @ common, or very similar, state of the dying cell, and based on that state, it is hard to decipher death’s primary cause.

mode.'® In a 2015 report, NCCD chose not to expand the ever-
growing list of cell death modalities and the corresponding
recommended assays to characterize them, noting that 'the best
biochemical marker of cell death is death itself'."

Such an abrupt conclusion may simply reflect the fact that the
plurality of the discovered cell death modalities exceeded the
specificity of the methods used for their assessments. A possible
solution to this problem could be to increase the analytical
specificity of the cell-death probing assay. Here we test whether
proteomics can be such an enhanced assay. Indeed, modern
proteomics can easily measure the relative abundance of
3000-5000 proteins simultaneously'®2' or even of >10000
proteins when larger sample volume and more instrumental time
are available>>* The first few thousands of most abundant
proteins constitute more than 90% of proteome mass, thus
defining cellular structure and core functions, while the targets of
common anticancer drugs are frequently found among the
proteins in the low and middle abundance range.*>?® Therefore,
a conventional 'top proteomics' analysis that takes 1-2h of
instrument time and probes <5000 most abundant proteins
encompasses both morphology-related proteins as well as drug-
interacting molecules.?’?’

To evaluate the potential of top proteomics in differentiating
between similar death modes, and possibly between the loose
and tight cell death regulation models, we analyzed the
proteomes of three human cancer cell lines after they were
treated with five anticancer drugs - 5-fluorouracil (5-FU),
methotrexate (MTX), tomudex (TDX), paclitaxel (PCTL) and
doxorubicin (DOX0).?® These five drugs are widely used world-
wide in anticancer therapy and their mechanisms have been
studied extensively in last decades. For instance, there are 123 613
papers indexed in Web Of Science (WoS) for 5-FU, 138 613 for
MTX, 87 262 for PCTL, 144 278 for DOXO and 915 for TDX. For
comparison, for paracetamol and ibuprofen there are 29 619 and
38692 items indexed in WoS, respectively. The panel of drugs
encompasses such diverse (from the mechanism'’s standpoint)
molecules as DNA and/or RNA synthesis inhibitors (5-FU and
TDX),?*32 antifolate agent (MTX),*® tubulin-active antimitotic
agent (PCTL),>**** and free radical formation and DNA damage
agent (DOX0).%° Here we assess by means of proteomics whether
or not the similarity in the formally assigned mechanism of action
leads to the similarity in the death/survival pathways.

The protein abundance changes in dying cells were analyzed to
reveal the proteins intimately involved in drug action, including
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the probable drug targets (set S). The 'causal' set S represents the
upstream part of the cellular death mechanics, affection of which
ultimately leads to cellular demise. Using the GO terms for
various biochemical processes, proteins were also grouped into
sets B;, representing the proteins mediating the death cascades
(i represented different GO terms). In parallel, the sets of N most
abundant proteins (sets Ay) were analyzed. These proteins, which
are downstream of all death-related cascades, were taken to
reflect the cellular morphological changes in the process of dying.

The two central questions of this study were: (i) which of the
'biochemical' sets B; reflects best the changes in the 'causal’ set S
and (ii) how well is the 'morphological' set A reflects the behavior
of set S? The hope was that, by answering the first question, we
could evaluate the potential of proteomics for cell death modality
discrimination. The second question would allow us to distinguish
between the loose and tight models of cell death regulation, and
simultaneously to verify the ability of 'quantitative morphology"'
(represented by the top proteome) to reflect the cell death
mechanisms. In particular, the loose model predicts that at least
some of the drugs would lead to practically indistinguishable
morphological states of the cell, while the tight model suggests
that all final cellular states will be well separated, and could
potentially be traced back to the specific drug.

RESULTS
Verification of the approach

To verify that the S-set model for the three cell lines represents a
good reference object, the protein 'loadings' of its OPLS-DA
components were investigated (Figure 2). For the first (most
significant) component that separates DOXO and PCTL on the one
side from 5-FU, MTX and TDX on the other site (Figure 2a), the
most typical DOXO representative was found to be ATP synthase
ATP5A1, while the 5-FU champion was the RNA-binding motif
protein RBM28. Furthermore, among the DOXO/PCTL-specific
proteins, there is also a group of tubulins (PCTL targets), while
TYMS (5-FU target) is found among the eight most 5-FU/TDX/MTX-
specific proteins. The second OPLS-DA component separates the
5-FU and TDX/MTX treatments. Here, upregulation of eukaryotic
translation initiation factor EIF4B and eukaryotic translation
elongation factor EEF1B2, as well as downregulation of ribosomal
protein RPL23A, were found to be most specific for 5-FU, while
upregulation of DHFR (primary target for MTX and secondary
target for TDX), TK1, CDK1 and PRIM1 were specific for TDX/MTX.
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Figure 2.

Comparison of two sets of proteins in terms of produced OPLS-DA models. (a) OPLS-DA model (first two dimensions are shown)

separating different drug treatments for the A;oo set encompassing 100 most abundant proteins. (b) The same for the S-set encompassing 100
most specific proteins, including all primary and secondary drug targets. (c-f) Correlations between the first four coordinates of the OPLS-DA

models of the A;qp set and S sets.

Interestingly, TYMS was found in the middle group in this
component, indicating that this protein is engaged in both 5-
FU- and TDX/MTX-induced pathways. The third component
(Figure 2e) separates PCTL from DOXO; upregulated tubulins
and downregulated BPTF were specific for PCTL, while the DOXO-
related proteins were CDK2 and SEC14L2. The fourth component
(Figure 2f) differentiates TDX (the specific group of proteins
includes CDK2, PRIM1, TK1 and TYMS) from MTX (SYNJ2, SEC14L2
and DHFR). These findings are in a broad agreement with existing
knowledge on the targets and the mechanism of action of these
drugs,?#2732343537 \which supports the validity of the S-set-
based model.

As an example of the representativity estimate, the topologies
of the OPLS-DA models for the sets S and Ao, were compared
(Figures 2c—f). The coordinates in all four orthogonal OPLS
components correlate well with each other, with Pearson’s
correlation ranging from 0.81 to 0.93. The representativity factor
for this comparison was calculated to be 0.86 (0.7 after scaling).

H1299 cell line

Figure 3a depicts the quality and representativity of various
models based on the proteome changes in this cell line, while the
model parameters are provided in Supplementary Table S2. All
B-sets and A-sets for N>2400 fell into the shaded area
representing random sets distribution (95% confidence). This fact
indicates that even a randomly chosen proteomic set contains
enough information to generate a good model separating the
chosen treatments (mean Q® for random sets was 0.77). This, in
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turn, means that the information on the drug-induced effects is
largely spread over the whole proteome. Yet the A-sets up to a
moderate size (N < 2400) give better-quality models than any
S-set.

Better performance of A-sets in terms of models’ quality (Q?)
can at least partially be explained by that fact that more abundant
proteins are usually more accurately measured. In the Figure 3b
models’ Q? are plotted against median CV of protein abundances
in the data set. One can clearly see that the quality of the OPLS
model decreases for the sets with higher median CVs. The good
quality of A-sets in line with their relatively low representativity
shows that morphological changes of cells under treatment are
both drug-specific (good quality means that different treatments
can be easily separated in the OPLS space) and cell-specific
(upstream drug-specific perturbance of the proteome differs in
terms of the OPLS topology from the downstream morphological
changes). Thus, combining data on different cell lines could be
away to separate drug-specific changes in morphology from cell-
line-specific proteome responses.

Three cell lines

Combining the data for all three cell lines minimized the cell-line-
specific variations and thus highlighted the drug-specific protein
abundance changes. In Figure 4a, only very few B-sets were found
to behave better than the random sets (see also Supplementary
Table S3). Among the significant GO terms are the regulation of
cell death, regulation of apoptosis, RNA processing and transla-
tion, while the protein transport and protein localization sets

Cell Death Discovery (2016) 16068
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Figure 4. The same as in Figure 3 but for the combined data set on three cell lines (HCT116, A375 and H1299). (a) Normalized quality and
representativity of different sets of proteins. The 95% confidence area for random sets is shown in gray. The circle sizes are proportional to the
sizes of the protein sets. (b) Scatter plot of the OPLS-DA models’ Q* values versus the median CV of protein abundances used in the model.

provided models with better quality but worse representativity. At
the same time, all A-sets but one were found to be significant
(better than random), while any A-set with N>200 produced a
better-quality model than any B-set.

As expected, the CVs for both single- and triple-cell data
increased with N. However, unlike the single cell line data, the
quality of OPLS models increased with N for A-sets from 100 to
600 proteins and then decayed slowly (Figure 4b). There can be
two reasons for this. First, combining data from three cell lines
makes models more tolerant (to some extent) to experimental
variations. Second, more proteins are needed for a combined data
set to build a good model to separate drug-specific morphological
changes from cell-line-specific changes.

DISCUSSION

To answer the first central question of this study, the set B,
encompassing the GO term 'Transcription' reflected best the
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abundance changes of the set S, followed by B; and Bg (death-
related GO terms) as well as B, (RNA processing). While the
presence of the death-related terms among the significant B-sets
was anticipated, the prominence of the transcription and RNA
processing B-sets was a bit surprising, though it could be
explained by the fact that both transcription and RNA processing
proteins are found in the highly abundant part of the cellular
proteome.?® A larger panel of drugs, and perhaps of the cell lines,
would allow one to identify which biochemically active protein
sets most faithfully reflect the drug action mechanism.

The most striking finding in this study is the exceptionally good
performance of the 'morphological' A-sets for combined data,
which superseded the B-sets both in terms of the model quality as
well as the representation of the drug action mechanism. Taken at
the face value, this finding means that the regulation pattern of
the abundant, household proteins faithfully reflects that of the
proteins interacting with the drug, in a broad agreement with the
rigid cell death model predictions. However, the final verdict on

Official journal of the Cell Death Differentiation Association



the rigid versus loose death mechanism can only be given when
the number of tested drugs will greatly exceed that of the possible
death pathways, that is, at least a few dozen.

If further research validates the rigid regulation model, top
proteome analysis may become a valuable tool in drug develop-
ment. Given that the quantitative analysis of the top proteome
(>1000 proteins) can take as little as 10 min of instrumental time
in a modern LC-MS/MS analysis, large-scale screening of drug
action mechanisms may become possible.

MATERIALS AND METHODS

The data set for this study was taken from Chernobrovkin et al?® In short,
three cancer cell lines (melanoma A375, lung cancer H1299 and colon
cancer HCT116) were treated in three biological replicates with five
common anticancer agents, each one associated in literature with
apoptosis: 5-FU,2939383% methotrexate (MTX)>° paclitaxel (PCTL)3**
doxorubicin (DOX0)*”*° and tomudex (TDX).3° After 72 h treatment, most
cells were dead (floating), with remaining cells dying but still attached. The
attached dying cells were collected and lysed. Subsequent label-free
proteomics analysis of cell lysates identified and reliably quantified 4168
proteins across all the treatments and cell lines.®® Most of the further
analysis was done twice, first for the representative cell line (H1299) and
then for the combined data on all three cell lines.

Selection of set S

For each drug molecule, proteins were ranked according to the relation to
the drug’s mechanism of action and the corresponding P-values were
calculated for each protein and drug as in ref. 28. For each individual
protein, the P-values were multiplied, and the proteins were sorted in
ascending order of the product. Top 100 proteins with the lowest products
were selected as set S (Supplementary Table S1). The set S encompasses all
known protein targets for the drugs used, for example, TYMS for 5-FU and
TDX, DHFR for MTX, B-tubulins for PCTL.?®

Selection of sets B

Fourteen representative 'biochemical' sets (Table 1) were built using GO
annotations (biological process) of groups encompassing 105-344
identified proteins. Protein identities in each B-set are given in
Supplementary Table S1.

Selection of sets A

All quantified proteins were sorted according to the reference abundance
(geometric mean of integrated ion current of all unique peptides for all
cell types and treatments)*' in descending order. Subsets encompassing
N=100, 200, ..., 4168 proteins were created and subjected to further
analysis.

Table 1. Selected B-sets

Set GO term Description Number of proteins
B;  GO:0006281 DNA repair 105
B, GO:0006974 Response to DNA damage 138
B;  GO:0000278 Mitotic cell cycle 165
B, GO:0016310 Phosphorylation 210
Bs  GO:0006928 Cell motion 122
Bs GO:0007010 Cytoskeleton organization 148
B, GO:0007049 Cell cycle 288
Bg  GO:0008283 Cell proliferation 138
Bs  GO:0010941 Regulation of cell death 251
Bio GO:0015031 Protein transport 344
B;; GO:0006412 Translation 231
B;, GO:0006350 Transcription 340
Bz GO:0008219 Cell death 224
Bi4 GO:0006915 Apoptosis 185
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Random sets

Sets of 100 proteins randomly chosen out of all quantified proteins were
used to estimate the 'background level' of statistical significance of
findings.

GO annotation

DAVID tool*® was used to extract gene ontology annotation for each
quantified protein.

Data sets comparison

Multivariate approach was applied to reveal how different sets of
proteins reflect cell behavior upon different treatments. The normalized
and scaled protein abundances in each set were projected on latent
structures using OPLS-DA*® method realized in SIMCA software (v. 13.5;
Umetrics, San José, CA, USA). ‘UV scaling’ of variables was used leading
to zero mean and unit variance for each protein across all samples.
Classes were assigned to each sample according to drug treatment
applied, namely 5-FU, DOXO, PCTL, MTX and TDX. Sevenfold cross-
validation was used to determine Q? of the model for each number of
orthogonal components.** The model based on the S-set was selected as
a reference. All other models were compared with it in terms of the
model quality (cross-validated Q% and 'representativity' of the drug
action mechanism. The latter parameter was estimated as topology
similarity with the set S model, and determined as follows. Projection
coordinates (scores) for each component of the model were correlated
with the corresponding coordinates of the S-set model. The mean value
of the correlation coefficient between the two sets of components was
chosen to be the 'representativity’' estimate. Finally, quality and
representativity values were normalized so as to provide zero means
and unit variances for the models built upon random sets each
comprising 100 randomly chosen proteins.

ACKNOWLEDGEMENTS

This work was supported by the Knut and Alice Wallenberg Foundation and Swedish
Research Council.

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-

ranging implications in human disease. J Intern Med 2005; 258: 479-517.

Lockshin RA, Williams CM. Programmed cell death—I. Cytology of degeneration

in the intersegmental muscles of the Pernyi silkmoth. J Insect Physiol 1965; 11:

123-133.

Lockshin RA, Williams CM. Programmed cell death—II. Endocrine potentiation of

the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 1964;

10: 643-649.

Lockshin RA, Williams CM. Programmed cell death—IIl. Neural control of the

breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 1965; 11:

601-610.

Lockshin RA, Williams CM. Programmed cell death. IV. The influence of drugs on

the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 1965;

11: 803-809.

Lockshin RA, Williams CM. Programmed cell death. V. Cytolytic enzymes in rela-

tion to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol

1965; 11: 831-844.

Lockshin RA, Beaulaton J. Programmed cell death. Life Sci 1974; 15: 1549-1565.

Schweichel JU, Merker HJ. The morphology of various types of cell death in

prenatal tissues. Teratology 1973; 7: 253-266.

Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol

2004; 36: 2405-2419.

10 Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy.
Curr Opin Cell Biol 2004; 16: 663-669.

11 Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P. Major cell death path-
ways at a glance. Microbes Infect 2009; 11: 1050-1062.

12 Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al.

Classification of cell death: recommendations of the Nomenclature Committee on

Cell Death. Cell Death Differ 2005; 12(Suppl 2): 1463-1467.

—_

N

w

iS

w

(e}

~N

[o2)

el

Cell Death Discovery (2016) 16068



Cell death mechanics is rigid
AL Chernobrovkin and RA Zubarev

14

15

19

20

2

22

23

24

25

26

27

28

29

30

Galluzzi L, Aaronson Sa, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al.
Guidelines for the use and interpretation of assays for monitoring cell death in
higher eukaryotes. Cell Death Differ 2009; 16: 1093-1107.

Van Cruchten S, Van den Broeck W. Morphological and biochemical aspects of
apoptosis, oncosis and necrosis. Anat Histol Embryol 2002; 31: 214-223.

Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al.
Molecular definitions of cell death subroutines: recommendations of the
Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:
107-120.

Galluzzi L, Bravo-San Pedro JM, Vitale |, Aaronson Sa, Abrams JM, Adam D et al.
Essential versus accessory aspects of cell death: recommendations of the
NCCD 2015. Cell Death Differ 2014; 22: 58-73.

Good DM, Zubarev Ra. Drug target identification from protein dynamics using
quantitative pathway analysis. J Proteome Res 2011; 10: 2679-2683.

Cristobal A, Hennrich ML, Giansanti P, Goerdayal SS, Heck AJR, Mohammed S.
In-house construction of a UHPLC system enabling the identification of over 4000
protein groups in a single analysis. Analyst 2012; 137: 3541.

Thakur SS, Geiger T, Chatterjee B, Bandilla P, Frohlich F, Cox J et al. Deep and
highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol
Cell Proteomics 2011; 10: M110.003699.

Nagaraj N, Alexander Kulak N, Cox J, Neuhauser N, Mayr K, Hoerning O et al.
System-wide perturbation analysis with nearly complete coverage of the yeast
proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell
Proteomics 2012; 11: M111.013722.

Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev Ra.
Rapid and deep human proteome analysis by single-dimension shotgun pro-
teomics. Mol Cell Proteomics 2013; 12: 3330-3338.

Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM et al.
Mass-spectrometry-based draft of the human proteome. Nature 2014; 509:
582-587.

Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative proteomic analysis of
eleven common cell lines reveals ubiquitous but varying expression of most
proteins. Mol Cell Proteomics 2012; 11: M111.014050.

Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R et al. A draft
map of the human proteome. Nature 2014; 509: 575-581.

Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J et al. Deep proteome
and transcriptome mapping of a human cancer cell line. Mol Syst Biol 2011;
7: 548.

Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A et al. The
quantitative proteome of a human cell line. Mol Syst Biol 2011; 7: 1-8.
Marin-Vicente C, Lyutvinskiy Y, Romans Fuertes P, Zubarev RA, Visa N. The effects
of 5-fluorouracil on the proteome of colon cancer cells. J Proteome Res 2013; 12:
1969-1979.

Chernobrovkin A, Marin-Vicente C, Visa N, Zubarev RA. Functional Identification of
Target by Expression Proteomics (FITExP) reveals protein targets and highlights
mechanisms of action of small molecule drugs. Sci Rep 2015; 5: 11176.

Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and
clinical strategies. Nat Rev Cancer 2003; 3: 330-338.

Van Triest B, Pinedo HM, Giaccone G, Peters GJ. Downstream molecular deter-
minants of response to 5-fluorouracil and antifolate thymidylate synthase inhi-
bitors. Ann Oncol 2000; 11: 385-391.

3

=

32

3

w

34
35
36

37

38

39

40

4

=

2

4

w

a4

Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al. Che-
motherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem
2010; 285: 12416-12425.

Peters GJ, Smitskamp-Wilms E, Smid K, Pinedo HM, Jansen G. Determinants of
activity of the antifolate thymidylate synthase inhibitors Tomudex (ZD1694) and
GW1843u89 against mono- and multilayered colon cancer cell lines under folate-
restricted conditions. Cancer Res 1999; 59: 5529-5535.

Gorlick R, Bertino JR. Clinical pharmacology and resistance to dihydrofolate
reductase inhibitors. In: Jackman AL (ed.). Antifolate Drugs in Cancer Therapy.
Humana Press: Totowa, NJ, 1999, pp 37-57.

Horwitz SB. Mechanism of action of taxol. Trends Pharmacol Sci 1992; 13: 134-136.
Fan W. Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol
1999; 57: 1215-1221.

Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the
antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin.
Biochem Pharmacol 1999; 57: 727-741.

Eom Y-W, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S et al. Two distinct modes of
cell death induced by doxorubicin: apoptosis and cell death through mitotic
catastrophe accompanied by senescence-like phenotype. Oncogene 2005; 24:
4765-4777.

Nita ME, Nagawa H, Tominaga O, Tsuno N, Fujii S, Sasaki S et al. 5-Fluorouracil
induces apoptosis in human colon cancer cell lines with modulation of Bcl-2
family proteins. Br J Cancer 1998; 78: 986-992.

Herr |. Cellular stress response and apoptosis in cancer therapy. Blood 2001; 98:
2603-2614.

Gamen S, Anel a, Pérez-Galén P, Lasierra P, Johnson D, Pifieiro a et al. Doxor-
ubicin treatment activates a Z-VAD-sensitive caspase, which causes deltapsim
loss, caspase-9 activity, and apoptosis in Jurkat cells. Exp Cell Res 2000; 258:
223-235.

Lyutvinskiy Y, Yang H, Rutishauser D, Zubarev R. In silico instrumental response
correction improves precision of label-free proteomics and accuracy of
proteomics-based predictive models. Mol Cell Proteomics 2013, 1-26.

Huang DW, Lempicki RA, Sherman BT. Systematic and integrative analysis of large
gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS
discriminant analysis: combining the strengths of PLS-DA and SIMCA classifica-
tion. J Chemom 2006; 20: 341-351.

Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJ et al.
Assessment of PLSDA cross validation. Metabolomics 2008; 4: 81-89.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2016

Supplemental Information accompanies the paper on the Cell Death and Discovery website (http://www.nature.com/cddiscovery)

Cell Death Discovery (2016) 16068

Official journal of the Cell Death Differentiation Association


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	How well can morphology assess cell death modality? A proteomics�study
	Introduction
	Results
	Verification of the approach

	Figure 1 Tight or loose models of cell death regulation.
	H1299 cell line
	Three cell lines

	Figure 2 Comparison of two sets of proteins in terms of produced OPLS-DA models.
	Discussion
	Figure 4 The same as in Figure�3 but for the combined data set on three cell lines (HCT116, A375 and H1299).
	Figure 3 Quality and representativity of OPLS-DA models for different sets of proteins trained on proteomics data from H1299 cells treated with five drugs.
	Materials and Methods
	Selection of set S
	Selection of sets B
	Selection of sets A
	Random sets
	GO annotation
	Data sets comparison

	This work was supported by the Knut and Alice Wallenberg Foundation and Swedish Research Council.Supplemental Information accompanies the paper on the Cell Death and Discovery website (http://www.nature.com/cddiscovery)Edited by R AqeilanFadeel B, Orreniu
	ACKNOWLEDGEMENTS
	Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 2005; 258: 479&#x02013;517.Lockshin RA, Williams CM. Programmed cell death&#x02014;I. Cytology of degeneration in the intersegment
	REFERENCES
	Table 1 Selected B-�sets



 
    
       
          application/pdf
          
             
                How well can morphology assess cell death modality? A proteomics study
            
         
          
             
                Cell Death Discovery ,  (2016). doi:10.1038/cddiscovery.2016.68
            
         
          
             
                Alexey Chernobrovkin
                Roman A Zubarev
            
         
          doi:10.1038/cddiscovery.2016.68
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Official journal of the Cell Death Differentiation Association
          10.1038/cddiscovery.2016.68
          2058-7716
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/cddiscovery.2016.68
            
         
      
       
          
          
          
             
                doi:10.1038/cddiscovery.2016.68
            
         
          
             
                cddiscovery ,  (2016). doi:10.1038/cddiscovery.2016.68
            
         
          
          
      
       
       
          True
      
   




