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Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple
preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote
renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of
paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment
of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based
therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC
infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic
lupus erythematosus, and kidney transplantation.The data obtained from these clinical trials will provide further insight into safety,
feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose.

1. Characteristics and Properties of MSC in
the Context of Clinical Use

The mesenchymal stem cells (MSC), also called mesenchy-
mal stromal cells, are adherent, fibroblast-like cells capable
of self-renewal and multilineage differentiation. They were
identified nearly half a century ago from cell cultures of
murine bone marrow by Friedstein, who defined them as
colony-forming unit fibroblasts [1]. In the bone marrow,
MSC constitute 0.01% of all cells and contribute to regulating
self-renewal, maturation, and recruitment of hematopoietic
stem cells to the vascular compartment through cell-to-cell
interaction or secretion of soluble factors such as cytokines,
chemokines, and growth factors [2–4]. MSC cultured in vitro
lack specific and unique markers. Conventionally, they are
characterized by (1) the expression of several surface markers
such as CD44, CD73, CD90, CD105, CD166, CD271, and
Stro-1 together with the absence of CD14, CD34, CD45, and
HLA-DR; (2) the capacity to adhere to plastic [2, 3, 5, 6];

(3) the ability to differentiate in vitro into mesodermal cell
types like osteoblasts, adipocytes, and chondrocytes [6, 7].
Some studies suggest that MSC could transdifferentiate into
ectodermal and endodermal lineages, but emerging evidence
oppose this view [8–10]. An important aspect to consider for
the clinical use of MSC is the fact that the methods used
for MSC isolation (enzymatic or nonenzymatic), selection
(adherence to plastic, cell sorting, etc.), expansion (culture
media, oxygen tension, etc.), and assessment are not yet fully
standardized. The ISCT (International Society for Cellular
Therapy) proposed in 2006 a series of minimal criteria for
isolation and cultivation of the MSC. Further attempts to
uniformize the characteristics of MSC used in the clinic have
been made since [11–13].

Interestingly, the MSC currently used for patient therapy
are nonclonal MSC, a more heterogeneous population of
cells. In effect, clonal cultures would be more homogeneous
and therefore preferable but cannot be expanded into a
sufficient number of daughter cells.Therefore, the percentage
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Figure 1: Sources of MSC used in experimental models of renal injury. Preclinical studies have shown that MSC used to treat renal diseases
can be isolated from the following tissues: (A) tooth pulp, (B) kidney, (C) adipose tissue, (D) umbilical cord, (E) amniotic fluid, and (F) bone
marrow.

of stem cells contained in every nonclonal population can
vary and must be evaluated independently before clinical
use through, for example, colony-forming unit (CFU) assays
and the evaluation of the multipotential capacity of CFU
[14]. In vitro expansion is a necessary procedure to obtain
a sufficient number of MSC, but the maximum number of
in vitro passages is mostly nonstandardized. A major risk
is that through multiple cycles of replications (25 to 30
population doublings) MSC would give rise to a population
of senescent cells [15]. These cells could not only loose
MSC properties but also release harmful factors that could
damage the surrounding healthy cells. A phase II clinical
trial conducted by Le Blanc et al. showed that earlier passage
MSC infused into patients with GVHD led to a better disease
outcome [16]. Monitoring of senescence, by, for example,
in situ senescence associated beta galactosidase tests, would
allow a better control of the MSC population composition
and therefore reduce adverse effects [14, 17].

MSC form a heterogeneous cell population likely to
have a pericytic origin [6]. They can be isolated from
several organs besides the bone marrow (bmMSC), such
as peripheral blood, connective tissue, skeletal muscle, adi-
pose tissue (adipose-derived MSC, adMSC), dental pulp
(dpMSC), umbilical cordwall (ucMSC), umbilical cord blood
(cbMSC), amniotic fluid (afMSC), and kidney (kMSC) [18–
32]. bmMSC, dpMSC, ucMSC, kMSC, adMSC, and afMSC
have all been used in experimental settings to treat various
types of renal diseases (Figure 1). While most clinical trials

use bmMSC, an increasing number of recent studies have
shown that they are difficult to obtain, have ethical issues, and
are easily contaminated [33]. Moreover, autologous bmMSC
are functionally abnormal in some disorders such as lupus
[34, 35], rheumatoid arthritis [36], and systemic sclerosis [37],
which may limit their clinical application. As an alternative,
ucMSC have been proposed. Umbilical cords fall off after
delivery and therefore constitute an easy access to cells,
provide less possibilities of contamination, have no ethical
concern, and are rich in MSC. Additionally, ucMSC, unlike
bmMSC, do not express tumor-associated fibroblast phe-
notypes and therefore have no opportunity to grow solid
tumors [38]. Consequently, several clinical trials on SLE
prefer the use of ucMSC (Table 1). Some trials on kidney
transplant recipients as well as the one on FSGS and 2 on
CKD patients include in their protocol the utilization of
adMSC. Adipose tissue is an important source of MSC, with
a frequency 100 to 1000 times higher than bmMSC. They
also seem to possess a higher potential for angiogenesis or
vasculogenesis [39]. Interestingly, a recent study by Bortolotti
et al. shows that the therapeutic potential ofMSC depends on
the source and isolation procedure [40]. In an in vivomouse
model of hindlimb ischemia, clinical and histological anal-
ysis revealed that bmMSC and adMSC presented different
properties.Therefore, whileMSC isolated from various tissue
have similar characteristics, further characterization would
be beneficial for clinical use. Finally, preclinical studies by
Melissa Little’s group describe the existence of MSC-like cells
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Figure 2: Properties of MSC in kidney diseases. MSC, soluble factors, or microvesicles can be delivered to the kidney via the intraperitoneal,
intra-arterial, intravenous, intraparenchymal, or intraosseous route. They exert a series of renoprotective and regenerative actions on
the injured tissues through various paracrine mechanisms: antifibrotic and antiapoptotic, proangiogenic, proliferative and differentiative,
antioxidative stress, and immunosuppression and immunomodulation of the immune system. ROS: reactive oxygen species. Arrow:
enhancement; T-bar: reduction.

in the kidney that could support local tissue turnover and/or
repair [29]. Their data on variations in the level of epitope
presentation and distinct phenotypic signatures between
populations provide supporting evidence for a “memory of
tissue origin” and suggest the existence of distinct functional
roles for MSC-like cells isolated from different tissues. Fur-
ther investigation will be crucial to the development of future
cell therapy approaches to tissue repair as these results hint
that finding the best MSC for a particular clinical application
will be of paramount importance. In the past few years,
MSC have stirred the interest of researchers and clinicians
worldwide due to their noteworthy properties (Figure 2).

MSC possess the ability to migrate into damaged tissues
in response to combinational signals [17]. This process is
called homing and was first reported in leukocyte traffick-
ing [54, 55]. Following injury, MSC preferentially home to
inflammatory sites where they migrate across the endothe-
lium and enter the injured tissue bed [56]. Homing occurs
through the interaction between signalingmolecules released
from the damaged tissue, such as chemokines, adhesion
molecules and matrix metalloproteinases, and receptors
expressed on the MSC surface [57–67].

While initial findings on the therapeutic properties of
MSC indicated an important role for homing, engrafting,
and differentiation of the cells at the site of injury, numerous
additional studies demonstrate a very limited replacement of
damaged tissues by transdifferentiation ability and replace-
ment potential [56, 68]. In particular, mechanisms of renal
repair observed following ischemia-reperfusion injury do not
involve replacement of tubular cells by infusedMSC [69–72].

From the first published article in 2000 by Liechty et al.,
numerous studies have demonstrated the ability of MSC to
modulate the immune system [17, 57, 73–75]. MSC express
intermediate levels of MHC class I and are negative for the
expression of MHC class II and the costimulatory molecules
CD40, CD80, and CD86 [76]. While on one hand MSC are
protected by the action of natural killer cells and escape
recognition of alloreactive T-cells, on the other hand they
have a strong immunomodulatory effect and can modulate
innate and adaptive compartment through various mecha-
nisms [43, 77–95].

Recent evidence emphasizes the importance of the
interactions between the MSC and their environment, as
other immunomodulatory properties come into effect in a
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paracrine/endocrine manner. MSC are able to release dozens
of active biological factors that act on local cell dynamics,
by decreasing apoptosis, reducing inflammation and fibrosis
formation, promoting angiogenesis and recruiting resident
progenitor cells, and stimulating mitosis and/or differentia-
tion process [96, 97]. MSC mediate these effects through the
secretion of the following.

(i) Soluble factors are involved in different processes: (1)
immune system signaling like IL-6, IL-8, monocyte chemoat-
tractant protein-1 (MCP-1/CCL2), and TGF-𝛽; (2) extracellu-
lar matrix remodelers like tissue inhibitor of metalloprotein-
ases 2 (TIMP-2), fibronectin, periostin, collagen, and met-
alloproteinase inhibitors; (3) growth factor and regulators
such as insulin-like factor 1 (IGF-1), hepatocyte growth factor
(HGF), and vascular endothelial growth factor (VEGF) [96,
98–104]. These factors can accelerate cellular repair and
epithelial proliferation in renal ischemia-reperfusion injury
models.

(ii)Microvesicles are divisible in shedding vesicles released
by membrane budding (particles of 50–200 nm) and exo-
somes released from intracytoplasmic multivesicular bodies
(bilipid membrane vesicles of 50 nm or less). Regardless
of their origin, microvesicles are perfect vehicles to deliver
mRNA, miRNA, surface receptors, and biologically active
molecules like lipids or proteins. These molecules can mod-
ulate or reprogram functions of other cells, like enhancing
survival and blocking the programmed death system [105–
109]. Recently, Ju et al. demonstrated that administration of
microvesicles obtained from cultures of human ucMSC in a
model of AKI in rat leads to kidney recovery mediated by
RNA transfer and synthesis of human HGF [110].

Additionally, recent studies showed positive effect on
the kidney structure through fibrosis reduction mediated by
MSC. This effect occurs independently of the source of MSC
(adMSC, ucMSC, and bmMSC) and injury model (ischemia-
reperfusion, IgAnephropathy, andunilateral ureteral obstruc-
tion) [111–113].

An additional important property of the MSC is to
decrease the severity of organ injury through the reduction
of the oxidative stress [114]. Exosomes released by MSC can
prevent the accumulation of reactive oxygen species (ROS)
or enhance the scavenger activity, and this mechanism was
demonstrated in in vitro and in vivo experiments [41, 105, 115].

2. MSC-Based Clinical Trials in
Kidney Diseases

Thepromising results obtained fromnumerous in vitro and in
vivo experiments using MSC created great enthusiasm in the
scientific community, offering new possibilities of cell-based
therapies for a wide range of diseases. To date, more than
600 clinical trials conducted worldwide, either completed
or ongoing, involve the use of MSC as reported in the US
National Institute of Health database (ClinicalTrials.gov). As
many as 30 of them use MSC to treat kidney-related diseases,
out of which 9 started within the last year (Table 1) [17].

They span a wide range of renal pathologies: acute
kidney injury (3 trials), chronic kidney injury (4 trials),

focal segmental glomerulosclerosis (1 trial), diabetic kidney
disease (1 trial), autoimmune disease (5 trials), and kidney
transplantation (16 trials).

2.1. Acute Kidney Injury. AKI—previously called acute renal
failure—is characterized by the rapid loss of kidney excretory
function. Its causes are numerous and can be divided into
three categories: prerenal disease such as renal ischemia
(from low blood pressure, crush injury, etc.), intrinsic renal
disease such as exposure to nephrotoxic substances (antibi-
otics or contrast agents, e.g.), and systemic disease, or
postrenal-like obstruction of the urinary tract. It is typically
diagnosed on the basis of characteristic laboratory findings,
that is, elevated blood urea nitrogen and creatinine, or
decreased urine output, or both [42].

Interesting preclinical results obtained in various mouse
models paved the way for the development of novel therapies
involving the use of MSC in AKI patients. In fact, no drug is
presently available to treat this condition, and the treatment
is essentially supportive, including renal replacement therapy
whenever necessary. Around 50% of critically ill patients
die from AKI, and while most surviving patients completely
recover their renal function within weeks, some develop
chronic kidney disease (CKD) requiring kidney transplant
[116]. However, only three clinical trials have been proposed
and their main goal is to investigate the safety and efficacy of
allogeneic MSC injection. The first one, (NCT00733876) an
exploratory study (phase I), was completed in October 2013
and involved 16 patients. Its aim was to determine the safety
and efficacy of bmMSC administration in patients at high
risk of developing AKI following on-pump cardiac surgery.
The administration route of allogeneic MSC was through
the distal thoracic aorta, to avoid cell entrapment in the
lungs, which might induce respiratory distress. Study results
indicate the absence of specific or serious adverse events
during a 6-month follow-up period. Preliminary analysis
showed that MSC administration is safe at all tested doses,
confers early and late protection of kidney function, and
lowers both length of hospital stay and need for readmission
[117, 118]. A recently completed phase II trial by Remuzzi’s
group in oncology patients with cisplatin-induced AKI
(NCT01275612) proposes to test the feasibility and safety
of systemic infusion of donor ex vivo expanded MSC to
repair the kidney and improve renal function. A third, larger
phase II study (NCT01602328) evaluates kidney recovery
following allogenic bmMSC infusion in patients with AKI
after undergoing cardiac surgery. No results have been
reported so far for these two trials [56, 119].

2.2. Chronic Kidney Disease. The number of individuals
affected with chronic kidney disease (CKD) is rising world-
wide, mainly due to a remarkable increase in atherosclerosis
and type 2 diabetes. An estimated 8–16% of the general popu-
lation has CKD, and its prevalence increases with age to about
30% in people aged over 70 years [120]. CKD is a progressive
condition causing significant morbidity and mortality, as
patients often develop end-stage renal disease (ESRD) and
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present an increased risk of cardiovascular disease. It consti-
tutes a significant socioeconomic burden, in particular con-
sidering the high cost of renal replacement therapy. Slowing
CKD progression is therefore a major health priority [120].

CKD is characterized by reduced renal regenerative
capacity. Several in vivo studies suggest beneficial regen-
erative effects of cell-based therapies in animal models of
CKD [121]. Administration of both bmMSC and adMSC
has demonstrated significant renoprotective effects including
reduction of intrarenal inflammatory infiltrate, decreased
fibrosis, and glomerulosclerosis. Currently, four phase I clini-
cal trials have been uploaded in the NIH database; all aim to
test mainly the safety of usingMSC and their efficacy in treat-
ing CKD. Two of them propose the use of autologous
bmMSC (NCT02166489 and NCT02195323) and two adMSC
(NCT02266394 and NCT01840540). These explorative stud-
ies are either ongoing or only just completed, and no prelim-
inary result has been provided so far.

2.3. Diabetic Kidney Disease. Diabetic kidney disease
(DKD)—also called diabetic nephropathy—is a clinical
syndrome associated with kidney damage, which can
progress to chronic kidney disease. It is the leading cause of
ESRD in the industrialized world, accounting for about 40%
of new cases in the US and EU. The five-year mortality rate
is 39%—a rate comparable to many cancers. The economic
cost of DKD and its progression to ESRD represents an
astounding 13% of the US healthcare budget. In spite of
this enormous social and economic cost, there have been
no specific therapies successfully developed for DKD in
the past 25 years. The current treatment paradigm relies on
early detection, glycemic control, and tight blood pressure
management with preferential use of renin-angiotensin
system blockade [122]. To address the critical need for a
novel therapy for DKD, a controlled phase I/II clinical trial
was deposited in October 2015 (NCT02585622), based on the
successful preclinical experiments in diabetic mice treated
with bmMSC [123]. This study will investigate, primarily,
the safety, feasibility, and tolerability and, secondarily, the
preliminary efficacy of an allogeneic bmMSC therapy.

2.4. Focal Segmental Glomerulosclerosis. Focal segmental
glomerulosclerosis (FSGS) is a rare but major cause of ESRD.
The rate of recurrence is higher in children compared with
adults and in patients submitted to a subsequent kidney trans-
plant. Furthermore, after kidney transplantation, approxi-
mately 30–40% of patients with FSGS develop recurrent
FSGS. Its incidence is increasing worldwide [124].

In FSGS, glomerular lesions caused by various insults
directed to or inherent within the podocyte lead to foot pro-
cess effacement.The resulting loss of integrity of the glomeru-
lar filtration barrier, which regulates permselectivity, causes
in turn proteinuria. Traditional pharmacological approaches,
consisting of corticosteroids and calcineurin inhibitors, fail
to achieve a sustained remission in most patients. Therefore,
there is a pressing need to develop alternative therapies
for this glomerulopathy [124]. Very few preclinical studies
assessing the beneficial effects of MSC infusion in in vivo
models of FSGS can be found in literature, but all presented

promising results, leading to a translation to the clinic [125].
An article by Belingheri et al. from 2013 reports the first
allogenic bmMSC treatment in a pediatric recipient of kidney
transplantation with a form of FSGS not responding to any
conventional and unconventional treatments [126]. Seven,
10, and 14 months following transplant, the patient received
bmMSC infusions, divided in three cycles of two infusions
(1 × 106 cells/kg/dose) according to the dose most commonly
used for graft-versus-host disease (GVHD) treatment. No
adverse event was observed, and the patient presented a
stable renal function and stabilized proteinuria without the
need of further plasmapheresis. In addition, some circulating
inflammatory factors decreased and their levels were still low
after one year. Recently, a clinical trial (NCT02382874) was
opened to evaluate safety and efficacy of intravenous infusion
of allogeneic adMSC in 5 refractory FSGS patients. They will
be followed up for a year following injection.

2.5. Autoimmune Disease: Systemic Lupus Erythematosus.
SLE is a chronic autoimmune disease characterized by a
wide range of clinical manifestations that can affect many
organs in the body, with significant morbidity and mortality.
Nephritis remains the most significant manifestation of SLE
and standard treatments include high doses of corticos-
teroids, cyclophosphamides, and other immunosuppressive
and biological agents. Most patient outcome improves greatly
following therapy, but strong side effects including infection,
ovarian failure, and secondary malignancy can worsen the
prognosis and lead to patient death [44, 45]. SLE continues to
be a therapeutic challenge, and new, more effective, less toxic
treatments are needed. While the efficacy of MSC therapy in
preclinical models varies and appears to be dependent on the
model and the MSC population used, several studies showed
that the anti-inflammatory immunomodulatory effects of
MSC can be beneficial for SLE patients [46]. Five phase
I/II clinical trials can be found on https://clinicaltrials.gov/,
examining the safety and therapeutic benefit of MSC therapy
in patients with primary or treatment-refractory SLE. Three
studies favor the use of ucBMC and two bmMSC. A small
pilot study (NCT00698191) involving only four patients with
treatment-refractory SLE showed that systemic administra-
tion of allogeneic ex vivo expanded bmMSC improved renal
function and reduced SLE disease activity, such that patients
were in disease remission for up to 12 months after treatment
[47]. A follow-up study also demonstrated improvement in
disease index score, proteinuria, and serological markers in
11 of the 13 patients assessed at 12 months, with the remaining
two patients going into relapse [47, 127]. A similar study
using ucMSC showed a significant improvement in disease
index scoring [51]. None of these trials reported any adverse
effects one year from treatment, and therefore potential
long-term effects in these studies would require further
investigation. A Chinese multicenter study (NCT01741857)
involved 40 patients with active and refractory SLE that
were injected intravenously with allogenic ucMSC on days
0 and 7 [33]. Safety and remission or relapse were assessed.
The overall survival rate was 92.5%, and no transplantation-
related adverse events were observed. During the one-year
follow-up, 32.5% of patients went into full remission while
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27.5% recovered only partially. Additionally, 12.5% went into
relapse at 9 months and 16.7% at 12 months. The authors
propose to develop a new protocol in which the patients
would undergo a second regimen of ucMSC injection after 6
months. Wang et al. then unveiled the putative mechanisms
mediating the therapeutic benefit of allogeneicMSC in lupus.
In an elegant study, they determined that high levels of
interferon-𝛾, produced predominantly by CD8+ T-cells in
SLE patients, are a key factor involved in the stimulation of
allogeneic ucMSC to produce indolamine 2,3-dioxygenase,
which can then inhibit the proliferation of T-cells from SLE
patients [128]. Interestingly, a new large-scale clinical trial
(NCT02633163) has been uploaded in December 2015 and
proposes the injection of either low or high dose of ucMSC or
a placebo. This prospective, double-blind, multicenter, con-
trolled study will enroll an estimated 81 treatment-refractory
LSE patients andwill follow the disease outcome for 1 year. Of
note, another two concluded studies have an unknown status
(NCT01539902 and NCT00659217).

2.6. Kidney Transplantation. Kidney transplant in ESRD
patients offers the best chance of survival and improves
health-related quality of life compared to remaining on
dialysis. Better and more potent immunosuppressive drugs
have improved significantly the short-term outcome of the
surgery in the last two decades. However, the long-term
graft survival rate beyond the first year showed only a small
increase [49]. Clinical interest is now focused on reduction
of alloimmune injury and immune-suppression-related side
effects to optimize preservation of renal function [50, 74,
75]. Given their low immunogenicity and immunoregulatory
properties, MSC could potentially be proven beneficial in the
context of kidney transplantation. Numerous in vivo studies
showed thatMSC can successfully regulate immune response
and support kidney repair [17]. There are currently 16 trials
registered on theNIHdatabase, both ongoing and completed,
that evaluate the safety and efficacy of MSC infusion follow-
ing renal transplantation, not in the context of acute clinical
rejection [48]. An exploratory study by Perico et al. proposes
to test the safety and feasibility of autologous bmMSC
injection into two patients with ESRDandundergoing kidney
transplant (NCT00752479) [48, 129]. In their experimental
protocol, bmMSC were infused intravenously 1 week follow-
ing surgery and contemporaneously with immunosuppres-
sive drugs. The patients presented a temporary decrease in
graft renal function, probably due to the timing of the MSC
injection, but displayed a good graft function at one-year
follow-up. Additionally, they showed an increased frequency
of Treg cells and decreased number of memory CD8+ T-
cells. A follow-up study of two patients evaluated the timing
of the injection and the necessity of CD25 blockade in
the immunosuppressive drug treatment [53, 75]. Therefore,
bmMSC were infused one day before kidney transplant. One
patient developed acute cellular rejection (ACR) 2weeks later,
due to higherHLAhaplotypemismatch, andwas treatedwith
steroid pulses. Both patients had excellent graft function dur-
ing 1-year follow-up. Circulating memory CD8+ T-cells and
donor-specific CD8+ T-cell cytolytic response were reduced
in MSC-treated patients. CD25 blockade did not affect Treg

expansion in MSC-treated patients. In the largest completed
study so far (NCT00658073), Tan et al. assessed the benefits
of autologous bmMSC injection versus anti-CD25 antibody
in ESRD patients that underwent kidney transplant [48, 52].
In patients treated with MSC, they tested a regular dose
of calcineurin inhibitors as well as a reduced dose (80%
of standard), to prevent organ toxicity. Patient observation
at one-year follow-up showed that replacement of CD25
blockade did not affect graft survival. Additionally, MSC
treatment conferred faster recovery of renal function, fewer
and less severe ACR (7.5% and 7.7% in the MSC group with
standard or lower dose of calcineurin inhibitor, versus 21.6%
in the CD25 antibody inhibitor group), fewer opportunistic
infections, and fewer adverse effects. One-year graft function
was comparable in all groups. In a study by Reinders et al. [48,
130], the authors used autologous bmMSC to treat ACR and
renal interstitial fibrosis and tubular atrophy in six patients
of fully HLA mismatched kidney transplant with subclinical
rejection following protocol renal biopsy and/or an increase
in interstitial fibrosis/tubular atrophy (NCT00734396). The
treatment included full immunosuppressive regiment and
intravenous bmMSC injection 6 months after transplant. No
adverse effects were noted and two patients showed resolu-
tion of tubulitis, while five patients had less donor-specific
mononuclear cells, indicating a possible immunomodulatory
effect of the MSC. In an ongoing phase II clinical trial by
the same group (NCT02057965), 70 renal allograft recipients
will receive autologous bmMSC injections or control [131].
Patients in the bmMSC-treated group will receive two doses
of bmMSC 7 days apart, 6 and 7 weeks after transplantation
in combination with mTOR inhibitors everolimus and glu-
cocorticoid. At the time of the second bmMSC infusion, the
calcineurin inhibitor will be reduced to 50% and completely
withdrawn 1 week later. Patients in the control group will
receive standard immunosuppressive regimen.The end point
is the level of fibrosis as well as graft function, occurrence of
adverse events, and eventual presence of opportunistic infec-
tions in a 6-month follow-up. This study will assert whether
bmMSC can be used for tacrolimus withdrawal and whether
this strategy leads to preservation of renal structure and
function in renal recipients. In a third study, Reinders et al.
will assess the safety and feasibility of using allogenic bmMSC
in 10 renal transplant recipients (NCT02387151) [132]. Indeed,
allogenic bmMSC offer the advantage of immediate availabil-
ity for clinical use.This is of major importance for indications
where instant treatment is needed, for example, allograft
rejection or calcineurin inhibitor toxicity. Although rare
previously published studies showed no adverse reactions,
allogeneic MSC could possibly elicit an antidonor immune
response, which may increase the incidence of rejection
and affect the allograft survival in the long term. Patients
will receive two doses of bmMSC intravenously, at 25 and
26 weeks after transplantation, when immune suppression
levels are reduced. The primary end point of this study
is graft loss, while the secondary includes comparison of
fibrosis in renal biopsy, de novo HLA antibody develop-
ment and extensive immune monitoring, renal function, and
opportunistic infections. An unregistered small clinical trial
already assessed the safety and efficacy of autologous bmMSC
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transplantation in four patients that underwent living-donor
renal transplantation and the effect on the immunophenotype
and functionality of peripheral T lymphocytes following
transplantation [133]. All patients developed no immediate
or delayed adverse effects at the 6-month follow-up. Graft
function was good and protocol biopsies at 1 and 3 months
did not reveal any abnormality. Compared to baseline, there
was an increase in Treg cells and reduction in CD4+ T-cell
proliferation which led to the conclusion that autologous
bmMSC are beneficial in renal transplantation. However,
larger randomized trials studies are needed to confirm these
findings and evaluate whether this will have any impact
on immunosuppressive therapy. Another four studies not
registered on https://clinicaltrials.gov/ reported interesting
result. In the first one, Vanikar et al. [48, 134] evaluated, in
100 renal allograft recipients for ESRD, the donor hypore-
sponsiveness to donor adMSC combined with hematopoietic
stem cell transplantation (HSCT) versus HSCT alone, under
nonmyeloablative conditioning. The adMSC group showed
improved graft survival and sustained chimerism levels com-
pared to the control group in the 18-month follow-up period.
In a subsequent large-scale trial [135] involving 916 patients
undergoing living-donor kidney transplantation, the authors
tested the induction of hyporesponsiveness protocol with
donor-specific adMSCversus controls receiving conventional
triple immunosuppression regimen.The preliminary analysis
of the results obtained in this study shows that adMSC
transplantation is effective in minimization of immuno-
suppression in kidney transplant, resulting in good graft
function and patient and graft survival at 4 years [135].
However, this study lacks a control group of patients receiving
nonmyeloablative conditioning with no adMSC injection.
In a small clinical trial, seven HLA cross-matched living-
donor kidney transplant recipientswere given simultaneously
donor bmMSC injection into the iliac bone [48, 136]. Neither
adverse event nor graft failure was observed, but biopsy-
proven ACR were detected in three recipients during the
follow-up period and required steroid pulse therapy. Donor-
specific lymphocyte or T-cell proliferation and Treg priming
responses were occasionally observed. This study supports
the feasibility of the treatment, but additional studies should
ascertain the impact of allogenic bmMSC injection on graft
outcome on a larger cohort of patients with control groups
[48]. Peng et al. tested the safety and efficacy of donor
bmMSC infusion through the renal artery combined with
reduced calcineurin inhibitor treatment in living-donor kid-
ney transplant recipients compared with control patients that
received the standard immunosuppressive regimen [48, 137].
Patients in the experimental group maintained a stable graft
function during the one-year follow-up period and displayed
higher number of peripheral B-memory cells at 3 months.
No chimerism was detectable at 3 months.These preliminary
data suggest that the use of bmMSC could reveal itself
beneficial in renal transplantation by reducing the dosage
of conventional immunosuppressive drug that is required
to maintain long-term graft survival and function. Another
10 phase I/II clinical trials are currently ongoing and have
not reported any results yet. Only one completed study
(NCT00659620) has an unknown status and did not present

any publication. It is clear that MSC-based therapy in kidney
transplantation is in its infancy, and no real evidence of its
benefits for the patient has been shown so far.

It is noteworthy that one registered clinical trial aims
to compare the use of autologous and allogenic bmMSC
treatment in kidney transplantation patients and will help to
elucidate the effect of the bmMSC on the T-cell repertoire
of the recipients (NCT02409940). Presently, both autologous
and allogenic MSC are used in cell therapy, and some
questions remain regarding which cell type leads to the best
disease outcome. The use of autologous MSC is not always
preferred nor possible because patients can present cells with
reduced qualities or quantities [138]. For example, diabetes
negatively impacts MSC, as it lowers the angiogenic capacity
of the cells and therefore their therapeutic potential [139].
Autologous bmMSC in patients with certain immunologic
disorders are abnormal and therefore less desirable in clinical
trials [34–37]. Additionally, certain genetic disorder may
impede the use of autologous MSC. In a study on multiple
myeloma patients, the authors have found, based on analysis
of cellular receptors, growth factors, and cytokine expression,
that myeloma bmMSC are phenotypically and functionally
distinguishable from normal donor MSC [140]. In patients
with hematological malignancies, chemotherapeutic treat-
ments damage qualities and lower numbers of MSC [141].
Consequently, allogenic MSC are often used in clinical trials.
As previously stated, an important property of MSC is the
absence of MHC class II molecules as well as costimulatory
molecules on their cell surface, allowing them to evade allo-
geneic rejection. Additionally, they offer several advantages
over autologous MSC: donors can be thoroughly screened
and tested for MSC, and a single donor can serve for multiple
recipient, becoming some kind of “qualified donor,” taking
into consideration all of his characteristics.

Over the past several years, the discrepancy between the
number of wait-listed patients and the number of kidneys
from brain-dead donors has been increasing steadily, leading
to a shortage of organs and resulting in an extension of the cri-
teria for kidney donors, including non-heart-beating donors
(NHBD) [142]. However, kidneys fromNHBD suffer damage
during the period of warm ischemia associated with the car-
diac death [143]. The most common consequence of the use
of these suboptimal kidneys is the increase in delayed graft
function, the clinical pendant of AKI [142]. As previously
discussed in Acute Kidney Injury, a vast body of preclinical
evidence highlights the benefits of using MSC infusion to
protect and enhance the repair process in ischemic kidneys,
and three clinical trials are already ongoing [144]. In fact,
these studies form the rational of usingMSC in the context of
kidney transplantation fromNHBDand should allow extend-
ing even further the use of organs from marginal donors.

3. Conclusions

MSC form a population of well-characterized, easily obtain-
able cells with therapeutic properties effective in numerous
experimental models of kidney diseases. The underlying
mechanisms of action of the MSC have been extensively
described and consist essentially in immunomodulatory and
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paracrine effects. However, the translation of preclinical stud-
ies into robust, effective, and safe patient therapies remains
limited. The many clinical trials that have been conducted
and completed will undoubtedly provide further insight into
safety, feasibility, and efficacy of MSC-based therapy in renal
pathologies. The preliminary results available still lack long-
term follow-up data and the absence of consensus between
therapeutic protocols, in particular in terms of MSC prepa-
ration, donor characteristics, and concomitant immunosup-
pressive treatment in kidney transplant recipients, is note-
worthy. As a broad range of approaches have been developed,
a careful selection of the best one will have to be made in the
future in an effort to reach a certain harmonization in clinical
practices [17, 48, 145]. Recent studies suggest the possibility of
potentiating the intrinsic reparative capacity ofMSC through
preconditioning or geneticmodification [138, 146–148]. Once
fully tested, enhanced MSC could become an important ne
tool for current as well as unexplored therapeutic fields.
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