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Unlike the rather stereotypic image by which it was portrayed until not too many years ago,
p53 is now increasingly emerging as a multifaceted transcription factor that can sometimes
exert opposing effects on biological processes. This includes pro-survival activities that seem
to contradict p53’s canonical proapoptotic features, as well as opposing effects on cell
migration, metabolism, and differentiation. Such antagonistic bifunctionality (balancing
both positive and negative signals) bestows p53 with an ideal attribute to govern homeostasis.
The molecular mechanisms underpinning the paradoxical activities of p53 may be related to
a protein conformational spectrum (from canonical wild-type to “pseudomutant”), diversity
of DNA response elements, and/or higher-order chromatin configuration. Altogether, this
functional flexibility positions p53 as a transcriptional “super hub” that dictates cell homeo-
stasis, and ultimately cell fate, by governing a hierarchy of other functional hubs.
Deciphering the mechanisms by which p53 determines which hubs to engage, and how
one might modulate the preferences of p53, remains a major challenge for both basic science
and translational cancer medicine.

Thirty-five years ago, the arena of cancer biol-
ogy was introduced to a new putative onco-

gene, p53 (Kress et al. 1979; Lane and Crawford
1979; Linzer and Levine 1979; Melero et al.
1979; Smith et al. 1979). However, one decade
later, p53 was reincarnated as an ultimate tumor
suppressor (Wolf and Rotter 1984; Baker et al.
1989; Eliyahu et al. 1989; Finlay et al. 1989; Oren
1992; Berns 1994), widely hailed for its ability
to drive the apoptotic demise of cancer cells
(Yonish-Rouach et al. 1991). Now, rebounding
trends increasingly turn our attention to the fact
that, at least in some biological contexts, p53
can actually unequivocally support cell survival,
even if the beneficiary cell happens to be can-
cerous (Vousden and Prives 2009). Does this
mean that p53 should now, once again, be con-

sidered as an oncogene? Most probably not.
Nevertheless, this tells us that we have to part
with the old stereotypic image of p53 as a sim-
ple-minded tumor suppressor and come up
with more sophisticated understanding of what
exactly p53 does and for what purposes.

Some of the stereotypic perception of p53 is
historically based, originating from the initially
disappointing observation that p53 is seemingly
dispensable for normal development (Done-
hower et al. 1992). Gratifyingly, p53-null mice
were found to be more resilient to radiation-
induced apoptosis (Clarke et al. 1993; Lowe
et al. 1993). Consequently, p53 was studied for
many years primarily in response to DNA dam-
age or other acute “organism-threatening” con-
ditions. This might have masked other, more
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“mundane” attributes of p53. However, the cur-
rent dogma is gradually shifting toward the
concept that p53 may have the choice of regu-
lating a variety of cellular processes either pos-
itively or negatively, thereby actively maintain-
ing homeostasis under less dramatic but much
more frequently encountered conditions. Thus,
the celebrated “guardian of the genome” (Lane
1992) is evolving into the “guardian of homeo-
stasis.”

To realize its homeostatic agenda, p53 may
paradoxically regulate the expression of genes
exerting opposing effects on the same cellular
process. In that regard, p53 can be envisioned as
possessing a dynamic “sliding scale” of func-
tions, ranging from canonical tumor suppressor
attributes (e.g., pro-death, anti-cell migration,
and quenching of reactive oxygen species
[ROS]) to diametrically opposite activities that
are typically associated with oncogenes (e.g.,
pro-survival, pro-migration, and induction of
ROS). The term “antagonistic bifunctionality,”
describing paradoxical activities of a single mol-
ecule that enable more effective responses to
changing conditions and thereby contribute to
biological robustness, has been coined previ-
ously in studies of biological circuits (Hart
and Alon 2013). It now appears that p53 may
also belong to the growing family of regulatory
molecules that qualify for this title. Yet, many
questions still remain: “What” paradoxical cell
processes does p53 regulate? How do the me-
chanics of paradoxical transactivation operate?
And, why has evolution ended up relying seem-
ingly on only one molecule for such crucial
bidirectional choices? In fact, when viewed
through these glasses, much of the literature is
testament to the notion that p53 sometimes im-
plements binary and paradoxical cell processes.

WHAT DO WE MEAN BY “PARADOXICAL
CELL PROCESSES”?

Let us start off with apoptosis, as an example.
p53 is a direct transactivator of a hoard of pro-
apoptotic genes including BAX, the BH3-only
genes PUMA and NOXA, the death receptors
CD95, DR4, and DR5, and many more (Riley
et al. 2008). However, proteins encoded by

several p53 target genes actually can tone
down or even inhibit apoptosis. The canonical
p21 protein is perhaps the best-documented ex-
ample (Polyak et al. 1996; Janicke et al. 2008),
but the list also includes others such as 14-3-3s,
Plk2, Btg2, Btg3, and DDR (Rouault et al. 1996;
Hermeking et al. 1997; Shimizu-Yoshida et al.
2001; Burns et al. 2003; Ongusaha et al. 2003;
Ou et al. 2007). Although some of those genes
serve primarily to elicit cell-cycle arrest and
thereby indirectly spare the cells from death
(Jones et al. 2005), others have overt pro-sur-
vival activities. Even in the formercase, although
cell-cycle arrest and apoptosis are superficially
teleologically equivalent as effectors of tumor
suppression, they differ greatly in that prolifer-
ation arrest may spare also damaged cells from a
death sentence, potentially sowing the dormant
seeds of cancer.

Another setting in which p53 may generate
opposing outcomes is cell migration and wound
healing. These programs underpin vital pro-
cesses in multicellular organisms, ranging from
embryonic development to aging. Cell migra-
tion can also be inappropriately activated dur-
ing tumor progression, in which it serves as a
key step in metastatic spread (Mego et al. 2010).
Thus, it is perhaps no surprise that p53 “takes
an interest” in these processes. Indeed, numer-
ous studies support the notion that p53 inhibits
cell migration, tissue renewal, and wound heal-
ing (Tyner et al. 2002; Schoppy et al. 2010; Mul-
ler et al. 2011). For instance, p53 represses epi-
thelial-to-mesenchymal transition (EMT), an
essential process in wound healing as well as a
major driver of malignant progression in many
types of cancer (Wang et al. 2009) by various
mechanisms, including the transactivation of
microRNAs of the miR-200 family, which target
the EMT transcription factors ZEB1 and ZEB2
(Howe et al. 2011; Kim et al. 2011). Notably, p53
pathway hyperactivation accelerates tissue dete-
rioration and promotes the appearance of age-
associated pathologies in mice (Tyner et al.
2002; Maier et al. 2004). This premature aging,
potentially explainable by augmented attrition
of adult stem cells (SCs), argues that sustained
p53 engagement can present a significant barri-
er to tissue renewal.
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Paradoxically, p53 was also reported to fa-
cilitate tissue renewal and EMT in some settings
(Kane and Greenhalgh 2000; Sablina et al. 2003;
Nakade et al. 2004). For example, loss of p53 was
shown to lead to severe defects in hair follicle
regeneration and accelerated deterioration of
the intestinal epithelium in mice with mosaic
deletion of Atr (Ruzankina et al. 2009). Similar-
ly, in a Pten;K-ras mouse model, p53 showed a
positive role in ovarian cancer cell migration, as
well as in survival (Mullany et al. 2012). This
role for p53 in promoting cell migration, which
appears to be at odds with its canonical percep-
tion, further highlights its antagonistic bifunc-
tionality.

Homeostatic regulation of metabolism is
emerging as a major function of p53. As such,
p53 engages in intricate cross talk with master
regulators of metabolism, such as mTOR and
AMPK (AMP-activated protein kinase). Similar
to apoptosis and migration, the metabolic im-
pact of p53 is also highly context-dependent and
may lead to confounding conclusions if one
takes the facts at face value. For example, during
energetic stress due to nutrient deprivation,
AMPK canphosphorylate and activate p53 (Ima-
mura et al. 2001; Jones et al. 2005). However,
in high-glucose conditions, metformin-activat-
ed AMPK actually inhibits p53 (Nelson et al.
2012). The complexity does not end here, but
extends also to the cross talk between p53 and
mTOR. p53 restrains mTOR by transcriptional-
ly activating the expression of an assortment of
proteins, including the exemplary TOR inhibi-
tor TSC2 (Feng et al. 2007). In some instances,
p53-dependent mTOR inhibition is AMPK-de-
pendent (Budanov et al. 2004; Feng et al. 2005).
In turn, p53 can be inhibited by mTOR (Mun-
gamuri et al. 2006), which makes good sense
intuitively. However, under different conditions,
p53 is actually up-regulated, rather than inhib-
ited, by mTOR (Lee et al. 2007). Together, this
complex regulatory network between mTOR,
AMPK, and p53 modulates numerous aspects
of cellular metabolism, including ROS, autoph-
agy, and lipid metabolism (detailed in the fol-
lowing paragraphs).

Energy metabolism is intricately linked to
production and neutralization of ROS (Sab-

harwal and Schumacker 2014). p53 positive-
ly regulates the expression of antioxidant pro-
teins, such as sestrins (Budanov et al. 2004),
aldehyde dehydrogenase 4 (ALDH4) (Yoon
et al. 2004), and TP53INP1 (Cano et al. 2009).
Concurrently, p53 represses the expression of
pro-oxidant genes such as nitric oxide synthase
(NOS2) (Ambs et al. 1998) and cyclooxygenase
2 (COX2) (Subbaramaiah et al. 1999). Yet, on
the other hand, p53 can augment cellular ROS
by activating genes such as PIG3/TP53IP3, pro-
line oxidase (PIG6/POX), and ferredoxin reduc-
tase (FDXR) (Polyak et al. 1997; Liu and Chen
2002; Rivera and Maxwell 2005) and inhibit-
ing G6PDH, malic enzymes, and manganese
superoxide dismutase (Zhao et al. 2005; Jiang
et al. 2011, 2013). The generally accepted ratio-
nale behind these seeminglyconflicting effects of
p53 is that mild ROS induces a p53-dependent
growth arrest and antioxidant response, whereas
excessive ROS might be conducive to p53-de-
pendent apoptosis (Kruiswijk et al. 2015). That
being said, the question still remains as to the
“design logic” of p53 governing the paradoxical
pivot between these two opposing processes.

Autophagy is a lysosome-dependent cata-
bolic pathway that recycles building blocks
derived from long-lived proteins or damaged
organelles. Like p53, autophagy can also exert
opposing effects on cell fate. While serving as a
survival mechanism under conditions of rela-
tively mild or transient nutrient deprivation, al-
lowing the cell to optimize the use of its limited
resources, autophagy can also lead, in extreme
cases, to cell death. At first glance, autophagy
appears to be a tumor suppressive mechanism,
because mice heterozygous for the autophagy
gene Beclin1 are tumor-prone (Qu et al. 2003;
Yue et al. 2003) and Beclin 1 deletions are as-
sociated with 40%–75% of sporadic human
breast, ovarian, and prostate cancers (Aita et al.
1999). However, autophagy can also benefit
cancer through its ability to protect tumor cells
against metabolic stress, hypoxia, and antineo-
plastic therapies (Rouschop and Wouters 2009).
Not surprisingly, p53 can both promote and in-
hibit autophagy (Morselli et al. 2009; Maiuri
et al. 2010; Maddocks and Vousden 2011). This
may be dependent on cell-type-specific subcel-
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lular distribution of p53 (Tasdemir et al. 2008),
as well as on the cellular metabolic baseline,
which differs greatly between normal and can-
cerous cells. Indeed, nutrient (amino acid) star-
vation has opposing effects on autophagic flux
in p53-depleted mouse embryonic fibroblasts
and in human colon carcinoma cells (Scherz-
Shouval et al. 2010).

Furthermore, the cellular metabolic base-
line itself may be influenced by p53. This is
exemplified by the impact of p53 on lipogenic
status. Thus, p53 regulates genes involved in
lipid transport in the liver (Goldstein and Rot-
ter 2012), and it also facilitates transport of
fatty acids to the mitochondria to undergo ca-
tabolism (Zaugg et al. 2001). Moreover, under
glucose starvation p53 induces LIPIN1, a key
modulator of the fatty acid metabolism tran-
scriptional regulators PGC1-a, PPARa, and
SREBP (Finck et al. 2006; Assaily et al. 2011).
p53 can also directly repress the expression of
SREBP1c and two of its lipogenic target genes,
fatty acid synthase (FASN) and ATP citrate lyase
(ACLY) (Yahagi et al. 2003). Importantly, many
of those transcriptional effects are exerted by
p53 also under basal conditions, in the absence
of notable stress, thereby enabling p53 to fine-
tune the lipid metabolic landscape of the perti-
nent cells and tissues.

Given that p53 keeps a tight rein on lipogen-
esis, it may not be surprising that it has been
implicated in diseases related to lipid metabo-
lism, such as type 2 diabetes, obesity, and hepat-
ic steatosis (fatty liver disease) (Yahagi et al.
2003; Minamino et al. 2009; Liu et al. 2013).
p53 is induced in the livers of mice suffer-
ing from hepatic steatosis (Yahagi et al. 2003,
2004) and chronic alcohol consumption (Der-
dak et al. 2011) and in adipocytes of obese mice
(Yahagi et al. 2003). In these models, attenua-
tion of p53 activity reduces disease by suppress-
ing fat accumulation and liver damage (Derdak
et al. 2013) and improving insulin sensitivity
(Minamino et al. 2009). However, other studies
suggest that p53 plays a protective role against
the development of obesity, diabetes, and liver
steatosis. When fed a high-fat diet, mice lacking
p53 accumulate excessive hepatic lipids and
body mass (Wang et al. 2013b). Moreover, the

inability to properly activate p53 has been
shown to increase metabolic stress. For instance,
mice bearing an ATM-phosphorylation-resis-
tant form of p53 develop insulin resistance
and glucose intolerance (Armata et al. 2010).
Complementary to this notion, “super-p53”
mice, which express an extra copy of the p53
gene, benefit from superior glucose tolerance
(Franck et al. 2012). These opposing effects of
p53 deficiency on metabolic pathologies illus-
trate once more the bipolar nature of p53 and
caution against a stereotypic description of the
relationship between p53 and metabolism. Yet,
they reinforce again the notion that p53 is a key
regulator of metabolic homeostasis, not only at
the cellular but also at the organismal level.

Another area of recent interest is the impact
of p53 on stem cell differentiation. Here again,
p53 facilitates some differentiation programs,
while inhibiting others. Of note, several early
studies have documented decreases in p53 pro-
tein and RNA levels during mouse embryonic
stem cell (mESC) differentiation and mouse
embryonic development in vivo (Chandrase-
karan et al. 1981; Rogel et al. 1985; Sabapathy
et al. 1997; Lin et al. 2005), which is thought to
be coupled with decreased p53 transcriptional
activity (Lin et al. 2005), cytoplasmic localiza-
tion (Grandela et al. 2007; Qin et al. 2007; Han
et al. 2008; Solozobova et al. 2009) and p53 con-
formational alterations (Sabapathy et al. 1997).
Moreover, activation of p53 in mESCs counter-
acts differentiation by inducing various compo-
nents of the WNT signaling pathway (Lee et al.
2010). In apparent contradiction to the above,
several in vitro and in vivo models have shown
that reexpression of p53 in p53-null undifferen-
tiated mESCs drives them toward a more differ-
entiated state (Sabapathy et al. 1997; Komarov
et al. 1999; Lee et al. 2005). One possible mech-
anism that may account for a positive effect of
p53 on differentiation has to do with the impact
of p53 on the expression of Nanog, a protein
essential for embryonic stem cell self-renewal
and maintenance of pluripotency (Silva et al.
2009); in mESCs, direct suppression of Nanog
by p53 is sufficient to drive differentiation (Lin
et al. 2005). A plausible explanation for the
seemingly discrepant effects of p53 on mESC
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differentiation is that differences in the signaling
landscape of mESCs might modulate the ability
of p53 to choose among different noncanonical
transcription programs, with widely varying
consequences for cell fate.

Adult SCs are necessary for normal tissue
homoeostasis and are vital for regeneration after
damage. Analogous to the situation in embry-
onic SCs, the proliferation, self-renewal, and
differentiation status of adult SCs is also tightly
controlled by p53. p53 exerts a positive influ-
ence on B-cell, neural, and myogenic differen-
tiation (Shaulsky et al. 1991; Aloni-Grinstein
et al. 1993; Montano 1997; Tamir and Bengal
1998; Hughes et al. 2000; Porrello et al. 2000;
Cam et al. 2006; Zhang et al. 2006). Similarly,
p53-null mammary glands from adult mice
harbor increased numbers of undifferentiated
SCs both in vivo (Jerry et al. 2000; Cicalese
et al. 2009) and in vitro (Tao et al. 2011). One
appealing mechanism for the p53-dependent
maintenance of a limited pool of adult SCs is
via the role of p53 in promoting asymmetric cell
division (Cicalese et al. 2009); however, this
is not the only way whereby p53 can encourage
differentiation. Other mechanisms have been
proposed to explain the positive effect of p53
on differentiation during the later stages of
brown adipogenesis (Molchadsky et al. 2013)
and in driving terminal differentiation of oste-
ogenic cells (Radinsky et al. 1994).

In other settings, p53 actually appears to
exert a negative effect on differentiation, result-
ing in the augmented differentiation of particu-
lar types of p53-null cells. This is exemplified by
mesenchymal stem cells (MSCs). MSCs reside in
the bone marrow and can differentiate into os-
teoblasts, adipocytes, and chondrocytes. When
the balance of adipogenic or osteogenic factors
is tipped, MSCs normally become committed
toward a single lineage by activating lineage-spe-
cific transcription factors and repressing alter-
native lineage factors (Rosen and MacDougald
2006). Proper p53 function can be likened to
a switchboard operator plugging-in environ-
mental cues to drive and reinforce a suitable dif-
ferentiation state. MSCs that lack p53 get their
“wires crossed” and augment osteoblast differ-
entiation markers Osterix and Runx2 (Lengner

et al. 2006; Wang et al. 2006; Molchadsky et al.
2008; Rodriguez et al. 2009) concomitantly
with inducing Pparg, a driver of adipocyte dif-
ferentiation (Rodriguez et al. 2009). Thus, rather
than simply serving as a positive regulator of
differentiation, as one might expect from the
well-documented inverse correlation between
differentiation and cancer, p53 should be viewed
also here as a moderator of differentiation ho-
meostasis.

HOW DO THE MECHANICS OF DIVERSE
TRANSACTIVATION WORK?

Conceivably, “alternative lifestyle” changes un-
derpinning the paradoxical effects of p53 might
be related to differences in p53 protein confor-
mation. Point mutations in the p53 DNA-bind-
ing domain elicit conformational and func-
tional instability (Joerger and Fersht 2007),
strengthening the notion that correct folding
of p53 is vital for its “proper” canonical func-
tions. Furthermore, p53 that is wild type (WT)
by sequence is not automatically WT by nature,
and actually needs to maintain its WT confor-
mation by binding to a variety of molecular
chaperones, including CCT (chaperonin-con-
taining t-complex polypeptide 1) (Trinidad et
al. 2013; Rivlin et al. 2014) and HSP70 (Wa-
lerych et al. 2009). Conformational mainte-
nance of p53 has been associated with phos-
phorylation within the p53 amino-terminal
domain (Wang and Chen 2003). Interestingly,
transforming growth factor (TGF)-b, a cyto-
kine intimately involved in cell migration, sig-
nals through “noncanonical” mutant p53 in a
manner that depends on p53 phosphorylation
on amino-terminal residues (Cordenonsi et al.
2007).

Moreover, it stands to reason that the exten-
sively studied mutant p53 gain of function
(GOF) (Oren and Rotter 2010; Muller and
Vousden 2014) may be an exaggerated reflection
of transcriptional activities that are normally
explored also by WT-p53 under defined condi-
tions. Embedded within this concept is the no-
tion that, at least in some cases, the WT-p53 that
is retained in a substantial percentage of tumors
may be structurally and functionally altered in
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a manner that converts it into a “pseudomu-
tant” p53. In this way, such tumors may still
reap the potential benefits of mutant p53 GOF
even in the absence of TP53 gene mutations.
Furthermore, some cancer-associated deregu-
lated signaling pathways may force genetically
WT-p53 to adopt “pseudomutant” properties,
bypassing the selective pressure for TP53 muta-
tions (Furth et al. 2015). However, when the
signaling landscape of such cancer cells is pro-
foundly altered (e.g., on exposure to acute
stress), the canonical WT conformation of their
p53 might be restored, reinstating a canonical
p53 transcriptional program. This may explain
why many gene expression studies using WT-
p53-positive cancer cells have repeatedly re-
vealed canonical target genes rather than “al-
tered p53” targets. The experimental design
typically compared cells treated with geno-
toxic agents to their nontreated counterparts,
rather than focusing on the transcriptional ef-
fects of the endogenous WT-p53 under basal
conditions.

An alternative and not necessarily contra-
dicting notion is that target gene divergence is
due not just to altered p53 protein states, but
also to built-in differences in p53 response ele-
ments. Several studies have focused on this issue
in relation to p53 binding to cell cycle versus
apoptotic gene promoters. It has been suggested
that different binding affinities of p53 to the
regulatory DNA elements of proapoptotic ver-
sus cell-cycle inhibitory genes might be crucial
(Weinberg et al. 2005). However, although there
is a tendency for the promoters of many pro-
apoptotic genes to bind p53 less avidly, there are
some that do harbor high-affinity p53 binding
sites (Szak et al. 2001). A complementary no-
tion suggests that regulation of the efficiency
of RNA polymerase II engagement and tran-
scriptional commitment to p53 target gene
transactivation, as dictated by core promoter
architecture, plays an important role in regulat-
ing differential gene expression (Morachis et al.
2010). More recently, a mechanism that com-
bines the complementary impacts of the p53
protein state and the structure of its cognate
DNA response elements has been described
(Timofeev et al. 2013). Specifically, it has been

shown that binding of p53 to proapoptotic tar-
get genes and transcriptional activation of those
genes, both in vitro and in vivo, relies on coop-
erative interactions between adjacent DNA-
binding domains within the p53 tetramer.
Hence, conditions that affect the strength of
those cooperative interactions may modulate
the transcriptional program executed by p53,
providing a possible explanation for opposing
outcomes under different conditions.

Higher-order chromatin architecture is also
an important feature in transcriptional regula-
tion. The preexisting three-dimensional chro-
matin landscape of a particular cellular state is
thought to be a stable structure that may pre-
dispose to induction of distinct sets of target
genes (Jin et al. 2013). Recently, it has been
shown that enhancer regions distant from the
actual p53 target genes interact intrachromoso-
mally with those target genes to convey long-
distance p53-dependent transcriptional regula-
tion (Melo et al. 2013; Allen et al. 2014). In this
scenario, a single distal enhancer may coordi-
nately turn on the expression of multiple target
genes that interact with that enhancer. It is
therefore tempting to speculate that state-spe-
cific changes in the higher-order organization
and accessibility of such distal p53-regulated
enhancers may allow the cell to switch between
different p53 transcriptional programs without
altering the immediate context of each individ-
ual target gene.

The vast majority of studies addressing the
transcriptional roles of p53 have focused on
genes that are transactivated by p53. Neverthe-
less, a comparable number of genes are actually
repressed by p53. For technical reasons, investi-
gation of p53-mediated transactivation is easier
and more straightforward than the study of
p53-mediated transcriptional repression and
consequently has been more rewarding publi-
cation-wise. Yet, p53-mediated transcriptional
repression may be of equal importance and re-
mains an underexplored area that may still hide
many exciting surprises. Unlike transactivation,
transcriptional repression by p53 is often (with
some notable exceptions) not elicited through
direct binding of p53 to recognizable p53-bind-
ing sequences within the DNA. Instead, it typ-
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ically occurs via protein–protein interactions,
which allows p53 to be recruited to specific
genes by “piggybacking” on other transcription
factors and DNA-binding proteins that recog-
nize specific sequences within those genes. In
doing so, p53 may obstruct pro-transcriptional
interactions of its partners or recruit transcrip-
tional corepressors such as Sin3a and histone
deacetylases (Murphy et al. 1999; Ho and
Benchimol 2003; Riley et al. 2008) to their bind-
ing sites. It is thus quite plausible that “altered”
p53 interacts with a different repertoire of bind-
ing partners, which target it to a different panel
of DNA response elements. This is likely to re-
sult in the repression of a different set of genes.
The extent to which such “partner switching”
contributes to the execution of “counterintui-
tive” programs by p53 is presently unknown
and might provide interesting new insights.

For many years, p53 research has focused
exclusively on the full-length (FL) p53, which
has been characterized in great structural and
functional detail. Nevertheless, there is growing
recognition that alternative p53 isoforms (Bour-
don et al. 2005), derived from the TP53 gene
through the usage of multiple promoters, alter-
native translation initiation sites, and alternative
splicing, possess a diverse range of biochemical
and biological activities, including cancer-pro-
moting activities (see Joruiz and Bourdon
2016). Changes in the relative abundance of
p53 isoforms, which either augment or repress
the transcriptional activity of coexpressed FL
p53, have been implicated in cancer as well as
in senescence and aging (Hafsi et al. 2013; Surget
et al. 2013). As one example, the D133p53 iso-
form inhibits senescence in normal human fi-
broblasts, whereas the p53-b isoform promotes
senescence (Fujita et al. 2009). In line with these
observations, it has been proposed that in-
creased D133p53 and decreased p53-b expres-
sion in colon carcinomas may reflect an escape
from the senescence barrier during progression
from adenoma to carcinoma (Fujita et al. 2009).
Recently, a new isoform, p53C, was shown to
promote cell motility and invasion in a tran-
scription-independent manner (Senturk et al.
2014), widening the “noncanonical” repertoire
of p53. These multiple p53 isoforms, which

increase greatly the level of complexity of
p53-mediated transcription, might contribute
significantly to the generation of discordant
p53 programs.

As if matters were not complicated enough,
p53 is only one member of an extended family
of transcription factors, which includes also p63
and p73. Although superficially binding to the
same consensus sites (Dotsch et al. 2010), each
member of the family has its unique gene pref-
erences, as illustrated also by the distinct phe-
notypes of p53, p63, and p73 knockout mice
(Murray-Zmijewski et al. 2006).

Together, the combination of these many
regulatory variables may have more impact
than previously appreciated and may provide
a logical mechanistic framework for the appar-
ent antagonistic bifunctionality (and probably
multifunctionality) of p53.

WHY RELY ON ONLY ONE
MOLECULE FOR BIDIRECTIONAL
PROCESSES?

Cells continuously adapt to changing condi-
tions to maintain homeostasis by altering gene
expression. By analogy to architectural blue-
prints, gene expression patterns can be envis-
aged as networks in which transcription fac-
tors and their target genes are pictured as
nodes, connected to each other via hubs. This
is thought to confer a hierarchical structure,
whereby hubs play a central role in directing
the cellular response to a given stimulus. Impor-
tantly, the number of extensively connected
central hubs is far below that of hubs with few
connections. The fact that most nodes make
only a small number of significant connections
renders a biological network more robust and
less sensitive to noise (Shoval and Alon 2010).
Another characteristic of transcriptional net-
works is that they facilitate efficient propagation
and integration of signals by creating pathways
in which very few “steps” are necessary to join
any two nodes (Blais and Dynlacht 2005).

Within this framework, p53 might be
viewed as a “super hub,” modulating the expres-
sion of numerous and varied secondary hubs
and thus commanding a profound impact on
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cell fate (Vogelstein et al. 2000). The p53 iso-
forms and p53 family members, p73 and
p63, are all players in the same regulatory net-
work. So, indeed, p53 is connected to (almost)
everything. This network architecture, which
positions p53 as a critical “input sensor” that
safeguards against perturbations and equips
p53 with an exceptionally powerful toolbox to
fine-tune its own activities, is highly advanta-
geous for maintaining homeostasis.

Of note, the concept of transcriptional hubs
is not at odds with the aforementioned molec-
ular mechanisms proposed for differential acti-
vation of distinct transcriptional programs by
p53. Altered states of WT-p53 with a “sliding
scale” of functions might be capable of differ-
entially engaging specific hubs, distinct p53-
binding DNA response elements might define
functional hubs, and higher-order chromatin
architecture might physically confine a subset
of functional hubs.

Opposing transcriptional outputs of p53
might be defined by the distinct number of
steps that signals need to travel to generate a
particular output. Moreover, in stress condi-
tions there may be a reordering of hub hierarchy,
bringing certain hubs more closely to p53 and
thus decreasing the number of necessary steps.
This setup most likely has implications for the
kinetics of differential gene transcription. Un-
der regular physiological conditions, associated
with manageable mild and transient stress, p53
may engage proximal and immediate hubs.
Manageable stresses include, for example, repa-
rable transient DNA damage or fluctuations in
oxygen or nutrient availability. These represent
a potential challenge to homeostasis, and p53
appropriately responds by inducing a transient
cell-cycle arrest (proliferation hubs). Alterna-
tively, p53 might induce antioxidant responses,
metabolic remodeling or promotion of catabo-
lism (metabolic hubs). These adaptive respons-
es allow cells to survive safely until the challenge
to homeostasis has been satisfactorily resolved.
In contrast, p53 might be situated more distant-
ly from apoptotic hubs, which might take longer
to fully engage. This is in line with the kinetics of
p53 transactivation in vivo. Although p53 can
bind promoters of both cell-cycle and pro-

apoptotic genes very rapidly, transcription of
proapoptotic targets is impeded for hours after
p53 binding, suggesting slow kinetics of engage-
ment of rate-limiting factors needed to trans-
activate those genes (Szak et al. 2001). This sug-
gests that resolution of the stress within an
acceptable time window, before all apoptotic
factors are fully in place, may dampen the pro-
death signal and reinstate homeostasis without
risking the irreversible consequences of avoid-
able cell death.

Similar mechanisms of staggered kinetics
might be built also into other p53-regulated dis-
cordant processes. For instance, it is conceivable
that in wound healing p53 might initially engage
pro-migratory, pro-EMT hubs while orchestrat-
ing a subsequent wave of more distal anti-EMT
hubs to complete the resolution phase of the
wound healing process. This is in line with the
explicit need to precisely regulate the EMT re-
sponse temporally in normal cells, because
dampening of the delayed or “distant” hub
might be exploited by cancer to generate “a
wound that does not heal” (Dvorak 1986).

Protracted p53 activation, and perhaps the
resulting imbalance between immediate and de-
layed discordant transcriptional programs, ap-
pears to have a negative impact on homeostasis.
For instance, whereas basal levels of p53 facili-
tate the maintenance of glucose tolerance and
protect from metabolic disease, chronic activa-
tion of p53 (similar to that which occurs in
response to sustained metabolic stress due to
excess glucose or obesity) has been shown to
contribute to glucose intolerance (Hinault et
al. 2011). Likewise, signal-independent persis-
tent p53 activation can promote the aging pro-
cess (Tyner et al. 2002; Maier et al. 2004; Dumble
et al. 2007).

Another implication of the p53 “super hub”
conjecture is that cells lacking p53 may be par-
ticularly unable to tolerate perturbations to ho-
meostasis. This is exemplified by the observation
that individuals with Li–Fraumeni familial can-
cer syndrome (LFS), harboring a heterozygous
TP53 germline mutation, suffer from metabolic
disorders in addition to their high risk of devel-
oping cancer (Wang et al. 2013a). Indeed, per-
turbation of homeostasis is an inherent and
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defining feature of cancer. The centrality of p53
for tumor suppression is dramatically illustrated
by the fact that it is the most frequently mutated
gene in human cancer (Petitjean et al. 2007).
Thus, the disadvantage of “super hubs” is the
hypersensitivity of the system to inactivation of
the decisive indispensible hub, as occurs upon
TP53 mutation. The fact that this potentially
vulnerable network architecture has neverthe-
less persisted through evolution implies that
the benefit of relying on a single bifunctional
molecule must somehow outweigh the above
disadvantage, with its associated increased can-
cer risk.

What other architectural benefits are built
into the p53 module? Specifically, what func-
tional benefit might be achieved by maintaining
p53 as a single paradoxical component rather
than splitting the two opposing functions into
distinct components? In bacteria, maintaining
enzymes with bifunctionality (e.g., enzymes
that can act both as kinases and as phosphatases
[Capra and Laub 2012]) has been shown to en-
able robustness within a regulatory circuit (Shi-
nar et al. 2007). In other words, for bacteria,
changes in the concentration of any of the com-
ponents will not change the phosphorylation–
dephosphorylation ratio (Hart and Alon 2013).
Analogously, p53 bifunctionality might ensure
that the balance between pro-survival and anti-
survival outputs would remain robust despite
minor perturbations within the circuit. This
would allow accurate control of homeostasis
in the face of naturally occurring fluctuations
in upstream signals or in the concentrations of
metabolites and oxygen.

An additional benefit of such network de-
sign might be exerted during more severe stress,
when energy conservation, speed of response,
and coherence of response are essential. Using
a multifunctional single component is energy-
efficient in times of genotoxic or excessive nu-
trient stress, averting the need to consume valu-
able resources that otherwise would be needed
to synthesize new proteins. Reusing resources
also ensures a more rapid response than synthe-
sizing and assembling fresh transcriptional
transactivators. Last, relying on a single mole-
cule for two paradoxical programs has the dual

benefit of inducing the desired output while
simultaneously diverting stimulation from un-
desired transcriptional targets.

Interestingly, the bifunctionality of p53
seems to have gone through selective pressure
in the course of evolution. Thus, p53 has co-
evolved functions in maintaining genomic in-
tegrity in the face of genotoxic stress (Levine
et al. 2011) together with its pro-survival activ-
ities (Rutkowski et al. 2011). As a further illus-
tration, the p53 homologs in Caenorhabditis
elegans and Drosophila dually regulate apoptosis
and glucose metabolism (Mandal et al. 2005;
Belyi et al. 2010).

Of note, evolutionary selection for bifunc-
tionality is not limited to p53 and appears to be
a common feature of many apoptosis-related
molecules, For example, c-IAP1 is most widely
known as an antiapoptotic factor; however, the
cleaved carboxy-terminal domain of c-IAP1
actually has proapoptotic activity (Clem et al.
2001). Similarly, full-length BID has a pro-
proliferation activity (Bai et al. 2005) and can
serve as a DNA damage sensor to participate in
protective cell-cycle arrest (Kamer et al. 2005;
Zinkel et al. 2005), but the cleaved form of BID
(t-BID) acts as a potent pro-death molecule
(Gross et al. 1999).

More than 35 years after its discovery, and
despite close to 80,000 pertinent scientific pub-
lications, the “paradox” of p53 is still far from
being resolved. Can we develop the computa-
tional, technological, and biological tools to
tackle this “super hub” challenge? Can we
work together to overcome our current scien-
tific biases and identify true patterns in the
huge piles of data? Only the next 35 years will
tell. But be ready for new surprises!
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