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Recombination is an important source of metabolic innovation, especially in

prokaryotes, which have evolved the ability to survive on many different

sources of chemical elements and energy. Metabolic systems have a well-

understood genotype–phenotype relationship, which permits a quantitative

and biochemically principled understanding of how recombination creates

novel phenotypes. Here, we investigate the power of recombination to create

genome-scale metabolic reaction networks that enable an organism to survive

in new chemical environments. To this end, we use flux balance analysis, an

experimentally validated computational method that can predict metabolic

phenotypes from metabolic genotypes. We show that recombination is much

more likely to create novel metabolic abilities than random changes in chemical

reactions of a metabolic network. We also find that phenotypic innovation is

more likely when recombination occurs between parents that are genetically

closely related, phenotypically highly diverse, and viable on few rather than

many carbon sources. Survival on a new carbon source preferentially involves

reactions that are superessential, that is, essential in many metabolic networks.

We validate our observations with data from 61 reconstructed prokaryotic

metabolic networks. Our systematic and quantitative analysis of metabolic

systems helps understand how recombination creates innovation.
1. Introduction
Organisms that reproduce sexually and recombine their DNA bear high evol-

utionary costs, among them the disruption of well-adapted phenotypes

caused by recombination. Nonetheless, recombination is common in nature.

This paradox has spurred many efforts to resolve it [1–3].

From a genetic perspective, the major benefit and costs of recombination are

similar in kind, because recombination can create well-adapted phenotypes just

as it can destroy them. Recombination has the ability to join beneficial mutations

from two organisms or molecules [4,5], and thus speed up adaptive evolution [6].

In recent years, experimental evidence obtained through DNA shuffling exper-

iments has made clear how great this benefit of recombination can be in

creating proteins with novel phenotypes [7]. Many experimental studies have con-

firmed the power of recombination in generating genes, pathways, and genomes

with novel features [8–11].

Because recombination can involve large-scale genotypic change, its power

to disrupt existing well-adapted phenotypes may also be large. However,

recent directed evolution experiments and computational studies based on

model transcriptional gene regulatory circuits and lattice proteins suggest

that random mutations are more likely to disrupt existing phenotypes than

recombination [12–14].
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To understand the relative costs and benefits of recombi-

nation, one needs to understand how genotypic change

causes phenotypic change, but this is difficult even for

well-studied systems like proteins. For example, measuring

the phenotypic effects of genetic changes engineered into pro-

teins is laborious, and our ability to predict altered protein

functions from altered amino acid sequences computationally

is very limited. However, in one class of biological systems,

the complex and genetically encoded chemical reaction net-

work of metabolism, we understand genotype–phenotype

relationships better [15–18]. The reason is that computational

tools such as flux balance analysis (FBA) provide a means to

predict metabolic phenotypes—the ability of an organism to

survive on specific nutrients—from information about meta-

bolic genotypes, i.e. the collection of chemical reactions that a

metabolic reaction network is able to catalyse [19]. What is

more, FBA-based qualitative predictions of metabolic pheno-

types are in good agreement with experimental data [20].

We here use FBA to quantify and understand the disruptive

and creative effects of recombination on the biochemistry of

metabolic systems. We will focus especially on metabolic inno-

vation, the ability of recombination to create metabolic

networks that are able to survive on new sources of carbon

and energy. In doing so, we represent metabolic genotypes

not as DNA sequences but as sets of metabolic reactions that

can be altered through recombination, a common approach

in metabolic systems biology [15–18,21–25].

Metabolism is an ideal system to study innovation,

especially for microorganisms, because the prokaryotic world

is rife with examples of metabolic innovations. For instance,

microorganisms have acquired the capability to extract

energy from a bewildering variety of non-natural and even

toxic substances [26–29]. Microbial isolates from pristine soils

have not only acquired resistance to a wide range of antibiotics,

but they can even use some of these molecules as food [30].

And halophilic bacteria can tolerate high salt concentration

by synthesizing novel molecules such as ectoine or glycine

betaine [31].

In eukaryotes, recombination occurs during meiosis and is

thus linked to reproduction. It involves parents that are usually

genetically similar and belong to the same population and

species. By contrast, prokaryotic recombination is not usually

linked to reproduction. It occurs via horizontal gene transfer

[32], whose incidence is large and greater than that of point

mutations [33–35]. It changes the organization and gene con-

tent of genomes on short evolutionary time scales [32,36,37],

and can involve very distantly related organisms [38,39].

Although horizontal gene transfer adds genes from a donor

to a recipient, incorporating such genes into the recipient

genome relies on DNA rearrangements that can also delete

resident genes [40]. More generally, the majority of newly

acquired genes obtained via horizontal gene transfer reside

in the genome only for short amounts of time [41], and pro-

karyotic genomes show a bias towards DNA deletions [42].

Motivated by these observations, we here model prokaryotic

recombination as a process where the transfer of biochemi-

cal reactions from a donor to a recipient is accompanied by

concurrent deletion of reactions from the recipient.

Our work builds on an approach that we developed pre-

viously to study typical properties of a metabolic network

with a given phenotype—the ability to survive on a given

set of carbon and energy sources. These are properties that

are independent of any one organism such as Escherichia
coli [18,23–25,43,44]. The method explores a vast space of

possible metabolic genotypes to create a random sample of

metabolic networks that are viable on specific carbon sources

such as glucose. We here use this approach to create pairs of

‘parental’ metabolic networks with well-defined genotypes

and phenotypes. We ask how likely it is that recombination

between these parents (i) disrupts their metabolic phenotypes

and (ii) creates novel, innovative metabolic networks that can

survive on at least one novel source of carbon and energy,

among 50 different such sources we consider. We validate

our observations with data from 61 prokaryotic genome-scale

metabolic networks.

Our observations show that recombination creates more

metabolic innovations than an equivalent amount of random

change in a metabolic network’s reaction complement—our

model’s representation of random mutation. At the same

time, recombination is no more disruptive than random

change. Importantly, the innovative power of recombination

increases with the phenotypic diversity of the parents. By con-

trast, it decreases with their genotypic diversity and with their

phenotypic complexity (the number of carbon sources on

which they are viable). Moreover, we find that a class of meta-

bolic reactions that we refer to as superessential plays an

important role in metabolic innovation [45].
2. Material and methods
(a) Genome-scale metabolic networks and their

phenotypic representations
Metabolism is a network of enzyme-catalysed biochemical reac-

tions. Each such metabolic network contains a subset of the

‘reaction universe’ of all biochemical reactions that take place in

the biosphere. We have curated a representation of this universe,

which comprises 5 906 reactions and is based on current metabolic

knowledge (for more details, see electronic supplementary

material, text S1a and S1b) [18,46–49]. We represent an organism’s

metabolic genotype as a binary vector of length 5 906. Each entry of

this vector corresponds to a given reaction in the universe, and is

equal to one if the corresponding reaction is present in the network

and zero otherwise. Thus, each genotype can be thought of as a

single member of a vast space of all possible metabolic networks,

which contains 25 906 distinct genotypes. We define the phenotype

of a given metabolic genotype based on its viability on 50 distinct

minimal environments that differ only in the carbon source (elec-

tronic supplementary material, text S1c). We consider a genotype

viable on a given carbon source, if it can produce all the essential

biomass precursors from the given carbon source, and we use

FBA (see electronic supplementary material, text S1d) to determine

viability [19].

(b) Generation of random metabolic networks
We here employ a previously described in silico process which

relies on Markov Chain Monte Carlo (MCMC) random walks

to generate metabolic networks comprising random sets of

reactions that are viable on a given carbon source (electronic sup-

plementary material, text S1e) [18,23]. This procedure can

produce metabolic networks that are sampled uniformly from

the set of all metabolic networks viable on a given carbon source.

(c) Generation of parental metabolic network pairs
Our analyses required us to recombine pairs of ‘parental’ metabolic

networks with particular features, such as (i) their genotypic dis-

tance (D), defined as the number of reactions differing between



0.25

recombination
random mutation

0.4

0.3

0.2

0.1

0

0.20

0.15

0.10

0.05

0
10 20 30

fr
ac

tio
n 

of
 in

no
va

tiv
e 

of
fs

pr
in

g

ro
bu

st
ne

ss

40
no. recombined/mutated reactions (n)

50 60 10 20 30 40
no. recombined/mutated reactions (n)

50

(a) (b)

Figure 1. Cost – benefit relationship of recombination as compared with random reaction change (mutation). (a) Mean (bars) and standard error (vertical lines) of
the fraction of innovative offspring (finnov) among all offspring retaining viability on glucose that are generated by recombination (red) and random reaction change
(black), as a function of the number of reaction changes (n, x-axis). (b) Recombinational robustness (red), that is, the fraction of recombinant offspring retaining
viablity on glucose, and mutational robustness (black), that is, the fraction of mutant offspring that can retain viability on glucose, as a function of the number of
reaction changes (n, x-axis). Boxes span the 25% to 75% percentile, and whiskers indicate maxima and minima.
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the parents, (ii) their phenotypic complexity (jjPjj), that is, the

number of carbon sources on which they are viable, (iii) their phe-

notypic distance (DP), that is, the number of carbon sources on

which only one but not the other member of a parental pair is

viable, and (iv) their genotypic complexity (jjGjj, or metabolic net-

work size), defined as the number of reactions in each metabolic

network. We used simultaneous genotype-converging MCMC

random walks to generate pairs of metabolic networks with the

features described above (see electronic supplementary material,

texts S1f and S2).

(d) Modelling recombination and mutation in
metabolic networks

To implement recombination for each parental metabolic network

pair, we generated 1 000 recombiant offspring by (i) adding to the

recipient metabolic network a given number n/2 of randomly

chosen reactions that were present in the donor and absent in the

recipient, followed by (ii) deleting n/2 reactions randomly

chosen from the recipient. Thus, the total number of reactions

changed by a recombination event in the recipient is equal to n
(for more details, see electronic supplementary material texts

S1g, S3, and figures S1, S2, and S3). We then quantify the incidence

of metabolic innovation as the fraction ( finnov) of offspring retain-

ing viability on parental carbon sources that also gain viability

on at least one additional carbon source.

To implement an amount of random change—our model’s

equivalent of ‘mutation’— in a metabolic network comparable

with the same amount of recombinational change for a given

n, we created a network’s ‘mutational’ offspring by adding n/2

randomly chosen reactions from the reaction universe, and delet-

ing n/2 randomly chosen reactions from the network. Note that

the n/2 reactions added to recombinant offspring are chosen ran-

domly from another viable network (the donor), whereas in

mutation they are taken from the whole reaction universe.

To validate our model’s results, we also analysed the metabolic

networks of 61 prokaryotes obtained from the Biochemical Genetic

and Genomic (BiGG) database [50], using the R package Sybil [51].

In these networks, we incorporated information about the linkage

of the genes encoding metabolic reactions. To this end, we used the

gene–reaction association rules defined in the BiGG database for

each organism (in .mat files, grRules) [50], and ordered the genes
in each organism based on their genomic position, as obtained

from the RefSeq microbial genome database [52] (for more details,

see electronic supplementary material, text S1h).
3. Results
(a) Recombination causes more metabolic innovations

than random change
To quantify the power of recombination to create novel

phenotypes in metabolic systems, we created 1 000 donor–

recipient pairs of random viable metabolic networks with a

fixed metabolic genotypic distance of D ¼ 100 reactions.

(Genomic data show that bacteria at this or greater metabolic

divergence often recombine successfully; see electronic sup-

plementary material, text S4 and figure S4.) For each of

these pairs, we generated 1 000 recombinant offspring by

recombining a given number n of reactions (see Material and

methods). We quantified the incidence of metabolic innovation

as the fraction ( finnov) of offspring retaining viability on glucose

that also gain viability on at least one additional carbon source.

Moreover, we compared the effects of recombination on inno-

vation with those of an equivalent amount of random change

(‘mutation’, Material and methods). That is, we computed

the fraction of innovative offspring ( finnov) for metabolic

networks with a number of random reaction deletions or

additions equivalent to that caused by recombination.

Figure 1a shows the mean and standard error of finnov as a

function of n. Two patterns are germane. First, the fraction of

innovative offspring ( finnov) is consistently greater for recombi-

nation (figure 1a, red) than for random change (black). For

example, for recombination events involving n ¼ 10 reactions,

5% of the viable recombinant offspring gain viability on at least

one novel carbon source on average. By contrast, for random

change involving n ¼ 10 reactions, this fraction is more than

four times smaller and below 1.3%. Second, finnov increases

with the number of reactions exchanged through recombina-

tion. Our observations are robust to an alternative approach
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to generating metabolic network pairs with a fixed D ¼ 100,

and to the choice of an alternative primary carbon source

(see Material and methods; electronic supplementary material,

figures S3a–c). In sum, recombination produces a higher inci-

dence of innovation. The diversity of metabolic innovations it

produces is similar to those produced by random change (elec-

tronic supplementary material, figure S5).

Next, we quantified the cost of recombination, i.e. its

power to disrupt existing phenotypes. To this end, we

measured recombinational robustness, the fraction of a par-

ental pair’s recombinant offspring that retains viability on

glucose. Figure 1b (red) shows the recombinational robust-

ness of the 1 000 donor–recipient pairs as a function of the

number n of exchanged reactions. We also wanted to com-

pare this recombinational robustness with our model’s

equivalent of mutational robustness, i.e. robustness to a com-

parable amount of random additions and deletions of

reactions from a metabolic network. Figure 1b shows that

recombinational robustness is not lower than robustness to

random reaction change, regardless of the number (n) of

altered reactions. Again, an alternative approach to generat-

ing metabolic network pairs with a fixed D ¼ 100, or an

alternative primary carbon source yield similar observations

(see Material and methods; electronic supplementary

material, figures S3d– f ). We also note that innovative off-

spring grow even faster than parental metabolic networks

on the parental carbon source (electronic supplementary

material, figure S6).

Therefore, recombination can cause more innovation than

random change, but it does not incur higher costs.

(b) Superessential reactions play an important role in
metabolic innovation

To understand the specific reaction changes associated

with metabolic innovation, we next analysed all 8 171 recom-

binant offspring with metabolic innovations that our analysis

had identified. In most of them, only one of the multiple

reactions added in a recombination event was responsible

for gaining viability on a novel carbon source. For example,

among three recombinant offspring that had indepen-

dently gained viability on acetate, all three had gained the

phosphoglycerate kinase reaction. Likewise, the five recombi-

nant offspring that had independently gained viability

on pyruvate achieved this gain through addition of the ribu-

lose 5-phosphate 3-epimerase reaction in the pentose

phosphate pathway. More generally in 98.91% of innovative

offspring, a single reaction accounted for the innovation.

An example of the 89 instances (1.09%) where multiple

reaction additions are responsible for an innovation is

the newly acquired viability on the carbon source trehalose.

It was caused by the simultaneous addition of reactions

catalysed by trehalose 6-phosphate phosphorylase and

2-dehydro-3-deoxy-phosphogluconate aldolase.

The reactions that cause viability on new carbon sources

come from a relatively small subset of the ‘universe’ of

5 906 reactions (see Material and methods). Specifically,

only 19 reactions among the 5 906 reactions are responsible

for gaining viability on new carbon sources in the majority

(53%, 4 430) of the 8 171 innovative offspring. The remaining

47% of innovations are caused by only 147 other reactions.

What is more, these reactions tend to share a property that

we refer to as their superessentiality [45]. The
superessentiality index (ISE) of a metabolic reaction denotes

the fraction of metabolic networks in which this reaction is

essential for viability on carbon source C [45]. It can be com-

puted from randomly sampled metabolic networks viable on

that carbon source. The greater a reaction’s ISE, the larger is

also the number of bacterial genomes encoding this reaction

[45]. Reactions with ISE . 0.5 are essential for viability in

the majority of metabolic networks where they occur.

Reactions that cause viability on a new carbon source tend

to have a higher ISE than those which rarely or never cause via-

bility on new carbon sources (electronic supplementary

material, figure S7a). Examples include the ribulose-5-phos-

phate 3-epimerase reaction, which causes viability on new

carbon sources in 731 innovative offspring, and has a superes-

sentiality index of ISE ¼ 0.9714. They also include ribose-5-

phosphate isomerase (ISE ¼ 0.9530), which causes metabolic

innovation in 677 offspring. More generally, we observed (i)

a significant correlation between the ISE and the number of

innovations a reaction causes (electronic supplementary

material, figure S7b) and (ii) that the fraction of innovative off-

spring ( finnov) of metabolic network pairs increases with fsuper,

i.e. with the fraction of reactions with ISE . 0.5 (electronic sup-

plementary material, figure S7c; Pearson’s r ¼ 0.18, p , 1028).
(c) Genotypically more similar parental metabolic
networks are more likely to generate metabolically
innovative offspring

Thus far, we have examined the effects of recombination on

metabolic innovation and robustness among parental meta-

bolic networks with a fixed genotypic distance D. This

distance, however, could have an influence on the effect of

recombination. For example, recombination among more dis-

tant parents could lead to a smaller incidence of metabolic

innovation, because fewer reactions ‘imported’ from a distant

metabolic network may integrate productively into the resi-

dent metabolic network. To find out whether this is the

case, we varied the distance among recombining parents

between D ¼ 100 and D ¼ 1 500. We did not examine greater

distances, because according to available data on the rate of

successful recombination among prokaryotic species, this

rate becomes negligible at such large distances (electronic

supplementary material, text S4). However, as a reference

point for including parents with the maximal genotype dis-

tance (Dmax), we analysed random metabolic changes,

where new reactions are added not from another parental

metabolic network but from the (maximally diverse) reaction

universe. Specifically, for each value of D, we created 1 000

random pairs of parental metabolic networks, and from

each pair we formed 1 000 recombinant offspring by recom-

bining a fixed number n of randomly chosen reactions (see

Material and methods).

Figure 2a shows that for any given number n of recombin-

ing reactions, the fraction of innovative offspring ( finnov)

decreases with increasing parental genotype distance.

In other words, the more distant two recombining parents

are, the smaller the likelihood that their offspring can survive

on novel carbon sources. Although this relationship could be

the result of an increasing fraction of inviable offspring when

distantly related parents recombine, electronic supple-

mentary material, figure S8 shows that this is not the case.

These observations still hold if we require parental metabolic
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networks to be viable on acetate instead of glucose (electronic

supplementary material, figures S9a,b).

We also examined how the fraction of reactions with ISE .

0.5 ( fsuper) that can potentially be transferred from the donor

to the recipient metabolic network changes with genotypic dis-

tance. Both the median and the variance of fsuper decreases with

increasing D (figure 2b; electronic supplementary material,

figure S9c). This observation further supports the importance

of highly superessential reactions for metabolic innovation.

Moreover, we showed that parental metabolic networks

with higher phenotypic diversity have greater potential to

create innovative offspring (electronic supplementary material,

texts S5 and S6 and figures S10 and S11; figure 2c,d ). In

addition, we also found that parental metabolic networks

with more reactions (higher genotypic complexity), and those

viable on fewer carbon sources (lower phenotypic complexity)

are more likely to generate innovative offspring (electronic

supplementary material, texts S7 and S8, S12–S14; figure 2e,f ).
(d) Recombination in prokaryotic metabolic networks
has similar innovation potential as in randomly
sampled metabolic networks

While sampling viable metabolic networks from a metabolic

genotype space permitted us to control parameters such as phe-

notypic and genotypic diversity, this analysis also has

limitations. For example, it neglects the potential influence of

gene linkage on metabolic innovation by recombination

because it is based on the exchange of biochemical reactions

rather than genes. We thus wanted to validate our observations
with genome-scale metabolic networks of prokaryotic organ-

isms. To this end, we used genome-scale metabolic networks

of 61 bacterial species from the BiGG database [50], which

differ in both their genotypes and phenotypes, i.e. their viability

on 137 different carbon sources (see Material and methods). We

first determined the innovation potential of each of the 3 660

possible pairs that can be formed from these metabolic net-

works, by asking whether the union of a pair’s reaction sets

confers viability on a carbon source on which neither member

of the pair is viable. This was the case for 1 126 pairs (30.77%).

For each of these 1 126 metabolic network pairs, we gen-

erated 1 000 recombinant offspring through a procedure we

refer to as ‘linkage-based’ recombination, which maps reac-

tions onto genes, and recombines random stretches of DNA

whose length is chosen such that a given number of n reac-

tions is altered in the offspring’s metabolic network (see

Material and methods). For the purpose of comparison, we

also used a complementary ‘free recombination’ procedure,

which disregards linkage and creates recombinant offspring

by altering a given number n of reactions in the recipient,

just as we had done for randomly sampled viable networks.

When analysing robustness to recombination, we found that

linkage-based recombination is much more likely to preserve

viability than free recombination (figures 3a; electronic sup-

plementary material, figure S15a). In other words, the linear

organization of metabolic genes in the genome facilitates

robustness to recombination.

The fraction of innovative offspring is somewhat lower

under linkage-based recombination (electronic supplementary

material, figure S15b). However, a higher overall fraction of

viable offspring (figure 3a) results in a substantially higher
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(D . 40), high phenotypic distance (DP . 40) and low phenotypic complex-
ity (jjPjj,40) (yellow, N ¼ 12 parental pairs), and (iv) low genotypic distance
(D , 30), high phenotypic distance (DP . 40) and low phenotypic complex-
ity (jjPjj,40) (red, N ¼ 64 parental pairs).
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total number of innovative offspring under linkage-based

recombination than free recombination, (especially for higher

numbers of recombined reactions (n), (figure 3b)). Therefore,

higher robustness to recombination in prokaryotic metabolic

networks results in a higher potential for metabolic innovation.

In a majority of the 1 126 prokaryotic metabolic network

pairs where metabolic innovation is possible (854 of 1 126, or

75.84%), the addition of a single reaction from the donor to

the recipient was sufficient to gain viability on a new carbon

source, just as we had observed for randomly sampled meta-

bolic networks. Also, only a small fraction (106) of the 3 404

reactions that occurred in these 61 metabolic networks

caused metabolic innovation. And just as in randomly sampled

metabolic networks, reactions that cause innovation are more

often essential (higher ISE [45]) than those that do not cause

innovation (electronic supplementary material, figure S15c).

In addition, the fraction of innovative offspring ( finnov)

increases with the fraction of reactions with superessentiality

index ISE larger than 0.5 (electronic supplementary material,

figure S15d; Pearson’s r ¼ 0.13, p , 1025).

Finally, we showed that parental prokaryotic metabolic

networks with low genotypic distance, high phenotypic dis-

tance, and low phenotypic complexity are more likely to

generate innovative offspring (figure 3c, and electronic sup-

plementary material, text S9 and figures S16 and S17a), just

as they did in randomly sampled viable metabolic networks.

Moreover, genotypic distance, phenotypic complexity, and

phenotypic diversity do not strongly influence recombina-

tional robustness, just as they did not for randomly sampled

metabolic networks (electronic supplementary material,

text S9 and figures S16, S17b,c).

In sum, our observations show that recombination in pro-

karyotic metabolic networks resembles those in randomly

sampled metabolic networks in its innovation potential, and

in the mechanisms by which it causes metabolic innovation.
3. Discussion
Recombination is a major force behind many innovations in

biological systems [12–14,53,54]. Here, we studied its inno-

vation potential in metabolic systems, where innovations

enable organisms to survive on novel sources of energy and

chemical elements. To do so, we computationally recombined

biochemical reactions among thousands of metabolic net-

work pairs that are viable on specific carbon sources. We

sampled most of these from a vast space of such networks

with a MCMC technique, but also validated our observations

by analysing 61 prokaryotic metabolic networks.

We found that recombination provides greater benefit—a

greater number of new metabolic abilities—at no greater cost

in terms of viability loss than an equivalent amount of

random mutation, modelled as random alterations in a meta-

bolic network’s complement of chemical reactions. Metabolic

innovation is more likely when recombination occurs between

parents that are genetically closely related, phenotypically

highly diverse, and viable on few rather than many carbon

sources. Survival on a new carbon source preferentially involves

reactions that are highly superessential, that is, they are required

in most metabolic networks viable on this carbon source.

One well-studied facilitator of evolutionary adaptation and

innovation is the robustness of a biological system to genetic

change [55,56]. Robustness can facilitate a population’s
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exploration of a genotype space, and thus accelerate the origin of

novel phenotypes [57]. Our observations support this positive

role of robustness. Specifically, the frequently higher robustness

of prokaryotic metabolic networks under linkage-based recom-

bination results in a higher total number of innovative offspring

(figure 3a,b). Moreover, larger metabolic networks are more

robust to recombination, and they are more likely to create meta-

bolic innovations (electronic supplementary material, figure

S14). We also showed, however, that robustness is not the

only factor affecting innovation by recombination. For example,

parental genotypic distance, phenotypic diversity and complex-

ity impact innovation without influencing robustness, so they

modulate the incidence of innovation independently of robust-

ness. The ability to study these factors in isolation is a key

advantage of our computational approach.

Systemic properties like robustness and parental diversity

are not the only factors influencing innovation by recombination.

One property of individual reactions—superessentiality—is at

least as important. Multiple reactions may be transferred in a

recombination event, but in the vast majority of such events,

only the addition of a single reaction causes innovation, and

this reaction is often highly superessential. What is more, reac-

tion superessentiality can help explain multiple systemic

patterns in our data, e.g. that phenotypically diverse parents

have greater innovation potential (electronic supplementary

material, text S10 and figure S18). That being said, exceptions

to the importance of superessentiality exist, where innovations

are caused by reactions that are rarely essential. An extreme

example is adenyl cyclase, which catalyses the conversion of

adenosine triphosphate (ATP) to 30,50-cyclic adenosine mono-

phosphate (AMP) and diphosphate. It is not essential for

viability on any of the 10 000 randomly sampled metabolic net-

works (ISE¼ 0), yet it is responsible for metabolic innovation in

10 out of 81 71 innovative offspring. Relatedly, we found three

examples of reactions that were blocked (i.e. inactive, with zero

flux) in the donor metabolic network that caused innovation

after being added to a recipient metabolic network. However,

the innovation potential of such inactive reactions is small com-

pared with active or highly superessential reactions (electronic

supplementary material, figure S2).

Our approach of using randomly sampled viable metabolic

networks has several advantages, most notably that we can

arrive at general conclusions that go beyond any one organism,

and that we can control important quantities such as parental

genotypic diversity. However, it also has several limitations.

First, our computational analysis is based on FBA, which

neglects regulatory constraints that can arise through sub-

optimal enzyme expression. However, as discussed in

more detail in the electronic supplementary material, text

S1d, this limitation is not likely to affect our main observations.

Second, our approach ignores the linkage of related meta-

bolic genes on chromosomes, for example, in operons [58].

Although on long evolutionary time scales operons often
break up and reform [59,60], functionally related genes tend

to be linked. Randomly sampled metabolic networks may

contain combinations of reactions that are not found in any

known organism, so that we cannot meaningfully assign link-

age patterns to them. Third, our specification of a metabolic

genotype represents this genotype on the level of the reaction

rather than that of a gene and considers only the presence or

absence of metabolic reactions. Although widely used

[15–18,21–25], this representation neglects potentially impor-

tant pieces of information, among them a myriad of

mechanistic details of DNA recombination. Perhaps even

more importantly, it also neglects that some reactions are cat-

alysed by multiple enzymes [61], and that some enzymes

catalyse multiple reactions [62–64].

We were able to mitigate the last two limitations by com-

paring our observations with those obtained from 61 curated

prokaryotic metabolic networks, where gene–reaction maps

and linkage information is available for metabolic genes. The

incidence of metabolic innovation among hundreds of pairs

of these prokaryotic metabolic networks shows the same pat-

terns as our randomly sampled viable metabolic networks. In

addition, these metabolic networks revealed an additional

intriguing pattern, their increased metabolic robustness to

recombination. Essential genes in general are known to be clus-

tered in prokaryotic genomes [65,66], which may increase a

genome’s robustness to large-scale gene deletions. However,

the evolutionary forces shaping the organization of metabolic

genes are not well known, and call for further research.

Recombination and DNA mutations, such as point

mutations and gene duplications, play complementary roles

in creating metabolic innovation. In an evolving population,

recombination cannot be effective unless mutation has created

diversity beforehand. Mutations introduce novel parts

(enzymes, reactions), and recombination creates novel combi-

nations of these parts (metabolic pathways). Our results

demonstrate the power of this combinatorial principle for

metabolic innovation. One source of this power is that recom-

bination shuffles system parts that have been ‘pre-tested’ in

evolution, because they form part of a viable metabolic net-

work. This is also why superessential reactions are important

for innovation, and why robustness facilitates innovation.
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