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Host-associated microbiomes perform many beneficial functions including

resisting pathogens and training the immune system. Here, we show that

amphibians developing in captivity lose substantial skin bacterial diversity,

primarily due to reduced ongoing input from environmental sources. We com-

bined studies of wild and captive amphibians with a database of over 1 000

strains that allows us to examine antifungal function of the skin microbiome.

We tracked skin bacterial communities of 62 endangered boreal toads,

Anaxyrus boreas, across 18 time points, four probiotic treatments, and two

exposures to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in

captivity, and compared these to 33 samples collected from wild populations

at the same life stage. As the amphibians in captivity lost the Bd-inhibitory

bacteria through time, the proportion of individuals exposed to Bd that

became infected rose from 33% to 100% in subsequent exposures. Inoculations

of the Bd-inhibitory probiotic Janthinobacterium lividum resulted in a 40%

increase in survival during the second Bd challenge, indicating that

the effect of microbiome depletion was reversible by restoring Bd-inhibitory

bacteria. Taken together, this study highlights the functional role of ongoing

environmental inputs of skin-associated bacteria in mitigating a devastat-

ing amphibian pathogen, and that long-term captivity decreases this

defensive function.
1. Introduction
The symbiotic microbiome is increasingly recognized as important to host health.

Host-associated microbiomes confer diverse benefits ranging from digestive to

immunological functions, including mediation of pathogens [1–3]. Whether

loss of symbiont diversity in turn leads to a reduced functional capacity of the

microbiome is not well understood. The skin microbiome of amphibians is

increasingly recognized for influencing the disease outcome when amphibians

are infected with Batrachochytrium dendrobatidis (Bd) [4–7]. In susceptible amphi-

bians, Bd infects the skin, reproduces and ruptures cells, causing electrolyte

imbalance and organ failure [8]. Because Bd attacks the external skin surface,

the presence of Bd-inhibitory bacteria in the skin mucosome can mitigate the

establishment and proliferation of Bd [9]. Thus, the community composition of

bacteria is predicted to have a large influence on Bd establishment. Previous

studies have focused on bacterial taxa that are negatively or positively correlated

with Bd [6,7], but did not directly examine the Bd-inhibitory capacity of those bac-

teria. We have developed a database of 1 127 Bd-inhibitory bacterial isolates that

have been cultured from amphibians, tested in co-culture with Bd, Sanger-

sequenced (16S rRNA, 1 600 bp), and identified. This provides a unique resource

to examine which members of a given bacterial community probably have

Bd-inhibitory function based on matches to this culture-tested database [10].
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We compared the skin microbiome of the highly Bd-suscep-

tible [11], Colorado endangered boreal toad (Anaxyrus boreas)
in the wild to individuals collected from the same population

and reared in captive enclosures from the egg stage onwards

without environmental substrates (aquatic sediments and

soil). We also sampled microbes from the natural environment

(wetland water, aquatic sediment) of the wild toads. With

individually housed captive toads, we conducted experimental

manipulations aimed at understanding how captivity affects

the skin microbiome through time, during exposure to

Bd-inhibitory bacterial isolates (‘probiotics’), and during

challenges with Bd. Specifically, we examined shifts in

Bd-inhibitory bacteria through time and across treatments by

filtering the entire bacterial community data (16S rRNA

marker gene sequencing) through our Bd-inhibitory isolates

database, which provides the basis for our functional assay

of the boreal toad microbiome. Our confidence in using this

database was bolstered by an independent study to culture

bacteria from boreal toads, where we found that out of 48

different isolates tested in co-culture with Bd, eight (17%)

were inhibitory (see the electronic supplementary material),

which is on par with the results of matches to the database

presented below.
2. Material and methods
(a) Animal husbandry and sample collection
Boreal toads were obtained as juveniles from the Native Aquatic

Restoration Facility (NASRF), in Alamosa, Colorado. At NASRF,

individual sibling toads were reared from one egg mass that was

collected from the wild, from the Southern Rocky Mountains in

Colorado. Juveniles that were reared at NASRF were transported

to the University of Colorado at Boulder and housed in an exper-

imental chamber from 22 November 2012 to 20 June 2013. All

amphibians were housed individually in Sterilite containers

(5.7 l) on wire racks within a walk-in experimental chamber.

Temperature was held constant at 198C to benefit both the alpine

toads and growth for Bd. An automatic twelve-hour light cycle

was used. Amphibian containers were pre-rinsed with sterile

Holtfreter’s solution. Containers were propped up one inch to

allow each amphibian a wet and dry portion within the enclosure.

Crickets (pinhead size, Fluker Farms) and fresh Holfreter’s sol-

ution were given to all individuals every third day. Water was

removed from each container and 10 crickets were given to each

individual. Any remaining crickets were removed after 2 h. Con-

tainers were given a rinse with Holtfreter’s solution and a new

450 ml was added to each container.

Toads grew during the experiment, averaging 9.52 grams at

the beginning of the experiment and left averaging 17.64 grams.

Manipulation 1 (probiotic and Bd exposure 1) ran from 29 Novem-

ber 2012 to 23 December 2012. Before sampling, all individuals

were allowed one week to acclimate to their new environment.

Bacterial swab samples were collected every 3 days. Manipulation

2 (probiotic and Bd exposure 2) ran from 18 February 2013 to 20

June 2013. Bacterial swab samples were collected once per week

until March 22, and then once per two weeks thereafter. Before

sample collection, amphibians were rinsed twice with 50 ml of

sterile nuclease-free water (Berdick-Jackson Water). A sterile

cotton-tipped swab (BBL, Culture Swab; Becton, Dickinson and

Company) was used to brush along the amphibian’s skin thereby

obtaining a microbial sample. From these microbial swab samples,

DNA was extracted and processed as in [12]. A separate swab was

collected for Bd quantitative real-time polymerase chain reaction

(qPCR) analysis (see below). Samples were tested for Bd, following

standard protocols [13].
(b) Probiotic treatments and Bd exposures
Probiotic selection occurred by identification of Bd-inhibitory

strains using in vitro co-culture assays and 96 well assays [9].

Bacterial isolates were cultured from the skin of wild boreal

toads, captive boreal toads, and wild American bullfrogs, Litho-
bates catesbeiana, from Colorado. The strongest Bd-inhibitory

bacterial strains (strains that demonstrated visually clear zones

of inhibition in co-culture and also significantly reduced optical

density in 96 well assays) were processed for Sanger sequencing

of the 16S rRNA gene (1 500 bp). Three of these strains were

chosen for use in experiments, to diversify the source of the

strain (e.g. captive, wild, and amphibian host species) (electronic

supplementary material, table S1).

During probiotic and Bd treatments, all individuals of

A. boreas were held in individual plastic containers (4 oz) with

50 ml of Holtfreter’s solution, enough to cover a juvenile toad’s

body. Probiotic-treated individuals were given bacterial cells

(1 � 106) suspended in sterile water [4]. We used a Bd strain

recently isolated from bullfrogs in Colorado that was confirmed

as the global pandemic lineage (Bd-GPL) [14], and we used qPCR

for measuring Bd loads [13]. In manipulation 1, Bd exposures

(1 � 105 Bd zoospores) occurred 2 days after the probiotic treat-

ment. In manipulation 2, Bd exposures occurred one week after

two sequential Janthinobacterium lividum inoculations that were

8 days apart. Control individuals were treated with sterile

water only. Their containers were agitated to ensure toadlet

exposure to treatments. After treatments, toads were then

returned to their respective larger enclosures. Subsequent doses

of J. lividum were added starting at week 4 after Bd exposure

to ensure persistence of the probiotic treatment (electronic

supplementary material, figure S7).
(c) Bacterial sample processing and bioinformatics
Microbial swab samples were collected, DNA extracted and pro-

cessed as in [12]. Amplicons were sequenced on one Illumina

MiSeq run at the University of Colorado, Boulder, yielding

150 bp reads of the V4 region of the 16S rRNA gene, using 515f pri-

mers. Sequence data from captive and wild toad samples were

joined together before operational taxonomic unit (OTU) picking

and subsequent filtering. Using QIIME, sequences were filtered

for quality and assigned to their respective sample using default

settings. OTUs were picked with open reference and clustered

into OTUs at 97% similarity according to the subsampling open

reference protocol [15], using the August 2013 version of the Green-

genes reference database [16]. Taxonomy was assigned to de novo

picked OTUs using the Ribosomal Database Project (RDP) classifier

with an 80% confidence threshold. Sequences were aligned to the

Greengenes reference alignment using PyNAST and a tree was con-

structed with FastTree2 according to standard procedures within

QIIME. OTUs with less than 0.005 per cent total abundance were

filtered out of our analysis according to recommendations from

[17]. Remaining samples were rarefied to 12 700 sequences per

sample, to maximize sequence depth and conserve sample abun-

dance in both captive and wild toad samples. For subsequent

analyses, samples with fewer than 12 700 sequences per sample,

including experimental and sequencing controls were removed

from the analysis. The resulting 12 026 900 million sequences yielded

726 unique OTUs. Analyses were performed using QIIME v. 1.9.0

unless otherwise specified. Alpha diversity visualization and

statistics were conducted in R (R Core Team (2013)). Survival curve

statistics and visualization were performed using MedCalc v. 16.2.1.
(d) Bd-inhibitory bacterial database
We used a Bd-inhibitory database that was constructed from

greater than 2 000 isolates of bacteria cultured from the skin of

amphibians from around the globe, including boreal toads and
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Figure 1. (a) Shannon diversity of bacterial OTUs on captive and wild juvenile boreal toads. Data shown for captive toads (n ¼ 62) represent the communities sampled
on day 4 in captivity and wild toads (n ¼ 30) were sampled in a single high elevation wetland habitat in Colorado. Wild toads had a significantly more diverse skin
microbiome compared with captive toads (ANOVA F ¼ 41.47, p , 0.0001). (b) Beta-diversity of captive juveniles toads, wild juveniles, and environmental samples (water
and sediment) from the wild. Bacterial communities on captive toads differ dramatically from wild toads and their environment (ANOSIM R2 ¼ 0.8554, p , 0.001). Wild
toads were rinsed with sterile water to remove transient environmental microbes [18]. Each point represents the bacterial community, by sample type: red ¼ captive
juvenile skin (n ¼ 42), green ¼ wild juvenile skin (n ¼ 42), blue ¼ lake water (n ¼ 13), orange ¼ lake sediment (n ¼ 4). Diversity patterns are visualized using
principal coordinate plots of unweighted UniFrac distances.
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Figure 2. (a) Shannon diversity of Bd-inhibitory taxa found on captive and wild juveniles rarefied to 12 700 sequences per sample. Captive juveniles (n ¼ 62)
sampled at day 4 and wild juveniles (n ¼ 30) sampled in the field; ANOVA F ¼ 157.7, p , 0.001. (b) The heatmap depicts the proportional abundance (mean
number of sequences per taxon divided by total sequences per host group) of only Bd-inhibitory bacterial OTUs across captive boreal toads and wild boreal toads.
Heatmap includes OTUs found with 0.3% or greater of the proportional abundance. Electronic supplementary material, figure S3 includes all inhibitory OTUs found
on wild (n ¼ 30 OTUs) and captive (n ¼ 12) juvenile boreal toads. Heatmap is ordered by decreasing taxonomic abundance in captive juvenile individuals. (Online
version in colour.)
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tested against Bd in co-culture [10]. The bacterial isolates that

exhibited inhibition of Bd in co-culture in vitro were Sanger

sequenced (16S rRNA gene, 1 500 bp), then trimmed and used to

pick OTUs. This was achieved by trimming the Sanger sequence

to the first 150 bp beyond primer 515f, so that the inhibitory

sequence reads would be the same length as the Illumina MiSeq

reads. The sequenced Bd-inhibitory bacteria underwent closed

reference OTU picking with the Greengenes reference database

(August 2013 version), and this resulted in 304 unique inhibitory

OTUs, forming the basis of the Bd-inhibitory database used in

this study. To examine how many matches were in our toad data-

set (MiSeq 16S rRNA marker gene sequence results for wild/

captive toads), we used the closed reference picks from the

MiSeq processed samples to check for exact 150 bp matches to

the 304 Bd-inhibitory OTU dataset. From the 642 unique OTUs

that we observed in our explicitly wild and captive juvenile

boreal toad dataset, 31 (5%) were exact matches to the Bd-

inhibitory set, and these are shown in electronic supplementary

material, figure S3.
3. Results
The effect of captivity on the boreal toad skin microbiome was

large. Both the overall bacterial diversity and the community

variability were far reduced on the captive toads compared

with wild toads (figure 1). Only one bacteria in the genus

Cellulosimicrobium was an abundant member (more than

13%) on both captive and wild juveniles; otherwise, there

was little overlap at finer taxonomic resolution (electronic sup-

plementary material, figures S1 and S2). In comparing wild

toads of various life stages with their environment (wetland

water and sediment), it is clear that wild toads acquire their

diverse microbiome as a subset of the microbes present in

their environment [19,20] (figure 1b).

Wild toads have a significantly higher diversity of Bd-

inhibitory bacteria on their skin than captives (figure 2a;

electronic supplementary material, figure S3). However, captive

toads share some of the same abundant Bd inhibitors with wild
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toads, in particular bacteria in the genus Chryseobacterium
(figure 2b). The key difference is that Chryseobacterium com-

prises less than 5% of the community on wild toads and up

to 26% of the total skin microbiome on captive toads (early in

captivity, figure 3). The most abundant Chryseobacterium
in this study matches sequences that have demonstrated Bd
inhibition in co-culture from independent studies on unrelated

amphibians [21,22]. Considering the broader diversity of

Bd-inhibitory bacteria beyond this dominant group, wild juven-

ile toads have only 1.6% of the skin community composed of

Bd-inhibitory bacteria, while up to 29.1% of the skin community

on captive juvenile toads was Bd inhibitory (figure 2b; electronic

supplementary material, figure S4). We did not determine

whether captive toads were more resistant to Bd than wild

toads, given the obvious difficulty of infecting wild, endangered

boreal toads. Instead, we conducted a time series observation of

the bacterial skin communities on captive toads and challenged

them with Bd, as described below. Furthermore, the marker

gene sequencing approach does not provide information

about the absolute abundance of any of these bacteria, which

precludes a comparison of whether captive or wild toads have

higher protective bacterial cell counts.

Although the proportional abundance of Bd-inhibitory

bacteria on captive toads increased briefly to an exceedingly

high level early in captivity, it then decreased considerably

(figure 3; electronic supplementary material, figure S3).

The dominant Bd-inhibitory bacterium Chryseobacterium
decreased from a maximum of 26% of the total skin bacterial

community on day 17, to a minimum of 0.1% on day 235

(figure 3). Consequently, the toads had a higher proportion

of Bd-inhibitory bacteria at the time of first Bd exposure

(day 16) than at the time of the second Bd exposure (day

127, figure 4a and electronic supplementary material, figure

S7). During the first Bd exposure (when the Bd inhibitors

were high), 13 out of 39 (30%) of the exposed toads became
infected. During the second Bd exposure (when the Bd inhibi-

tors were low), all 31 (100%) of the exposed toads became

infected (figure 4b; electronic supplementary material,

figure S8). Additionally, Bd loads reached fatal levels

15 days faster in the second exposure, when there were

fewer Bd-inhibitory bacteria (figure 4c).

To test whether the addition of further Bd-inhibitory bacteria

could alter the disease outcome when toads were exposed to

Bd, we included ‘probiotic’ treatment groups. We inoculated

toads with cultured strains of Bd-inhibitory bacteria prior to

each of the two sequential pathogen exposures (electronic sup-

plementary material, table S1). Treatment categories included

controls, probiotics only, probiotics and Bd, and Bd only.

Between Bd exposures, probiotic treated toads (excluding the

controls) were randomly divided and re-assigned to treatment

groups in the second probiotic trial to control for an effect of

the previous treatment. All control toads and probiotic-only

treated toads survived and maintained body weight, indicating

adequate husbandry and that the probiotic treatments had no

adverse effects. During the first Bd exposure, when all captive

toads had a high proportion of Bd-inhibitory bacteria already

present, none of the three different strains of probiotic-treated

groups (Chryseobacterium indolgenes and two Pseudomonas iso-

lates) demonstrated an increased survival compared with the

Bd-only group, presumably because Chryseobacterium was

already dominant on all captive toads (figure 3; electronic sup-

plementary material, figure S5). For the second Bd challenge, we

used J. lividum because it demonstrated a protective effect on

other amphibians [4,23]. More than 100 days later, when the pre-

viously abundant Bd-inhibitory bacteria on toads had

diminished (as in figure 3), all toads exposed to Bd became

infected (figure 4b). Toads exposed to only Bd experienced

100% mortality, while toads treated with J. lividum prior to Bd
experienced 60% mortality (figure 5), thus the group treated

with J. lividum and Bd had a significantly higher survival rate
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compared with the Bd-only group (Mantel-Cox, x2 ¼ 6.021, p ¼
0.0141; figure 5). Overall, the J. lividum probiotic-treated group

experienced a trend toward lower Bd loads in addition to
reduced or delayed mortality (figure 5; electronic supplementary

material, figure S8).
4. Discussion
Captivity resulted in a massive loss of diversity of the amphi-

bian skin microbiome (also see [24,25]) and increased

dominance of a few Bd-inhibiting bacteria. While our study

demonstrates that these dominant Bd-inhibitory bacteria pro-

vide a protective effect against the fungal pathogen, it is

likely that the larger loss of microbiome diversity impacts the

broader health of the host. Furthermore, the long-term persist-

ence of only a few Bd-inhibitory bacteria is unlikely, and if they

decrease in abundance, as they did in our study, the protective

effect also diminishes. The J. lividum probiotic-treated group

experienced higher survival and a trend toward decreased Bd
loads. This finding is important because it demonstrates that

after a long time in captivity, when the skin communities of

the toads had lost a large proportion of the Bd-inhibitory micro-

biome, treatment with J. lividum significantly reversed the

disease outcome. Given that we conducted serial Bd exposures

on individual boreal toads (equally re-distributed across treat-

ment groups), there is some concern that the toads could have

developed increased tolerance to Bd (as has been observed in

Cuban treefrogs [26]), and that the role of the skin microbiome

could be confounded by the adaptive immune response. How-

ever, the second Bd exposure yielded 100% infection, after only

30% infection in the first exposure (the opposite of what would

be expected if an effective immune response had occurred).

Taken together, these findings support a very strong role of

the skin microbiome in mediating the fungal pathogen.

Our study demonstrates that when hosts are removed

from native habitats and reared in captive environments with-

out environmental substrates (aquatic sediments and soil),

there is a substantial effect on the microbiome. However,

gaining insight into the resulting consequences of the loss

of microbiome diversity has not been examined in previous

studies. Apparent in this study is the essential role of the

natural environmental substrates in replenishing the diversity

of the amphibian skin microbiome (figure 1; electronic
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supplementary material, figure S4). Only one taxon, an OTU in

the genus Cellulosimicrobium, was an abundant member on

both captive and wild juveniles, when considering the entire

microbiome. Overall, the captive toads retained 30% of the

OTUs found on wild toads (electronic supplementary material,

figure S2), but the large majority of these are very rare on the

captive toads in terms of proportional abundance (electronic

supplementary material, figure S1). Loudon et al. demonstrated

that moving wild salamanders (Plethodon cinereus) into captiv-

ity had a strong effect on the skin microbiome, but that they

maintained a closer to ‘wild-type’ skin microbiome when

housed with soil substrate taken from their site of capture

[25]. Becker et al. demonstrated that Panamanian golden

frogs (Atelopus zeteki) reared in captivity (up to 8 years)

shared 70% of their skin bacteria with wild counterparts [26].

A key difference between these two studies and this study is

that the others examined amphibians in captivity with natural

substrates (e.g. soil, rocks, water, plant material, etc.), whereas

the boreal toads were housed without such substrates. Taken

together, these studies indicate that environmental substrates

do substantially increase the maintenance of a ‘wild-type’

skin microbiome, but whether the protective function of

those skin communities is retained has not previously been

addressed and further study is needed to tease apart how the

type and source of environmental substrates can maximize

the similarity to conditions in the wild.

Evidence suggests that wild boreal toads acquire associ-

ations with antifungal bacteria very early in development

(larval stage) and these communities re-assemble on the skin

of A. boreas upon metamorphosis [19]. While some of the

larval microbiota are retained, metamorphs gain a new com-

munity of skin microbes from terrestrial inocula [19]. Here,

we observed a crash in the abundance of an antifungal taxon,

Chryseobacterium, once dominant on juveniles in captivity,

and other antifungal bacteria typically available to wild toads

from soil or other natural inocula did not replace this deficit.

Thus, in captivity, sources of protective microbiota may be

needed throughout development in order to maintain disease

defences [6]. We underscore the importance of preserving the
natural habitat of such species being raised in captivity as a

unique source of the environmental microbes that species

ultimately require for their health and development.

For many species of conservation concern, captive assur-

ance colonies are needed to preserve biological diversity until

natural environments become more suitable [27], or new con-

servation tools are developed that can mitigate the effects of

pathogens [28,29,30]. The results of this study underscore the

importance of the microbiome in the health of amphibians

and inform how we can improve captive rearing programmes

[26]. We demonstrate that relatively few Bd-inhibitory bacterial

taxa can have a large effect at reducing disease caused by

Bd—as long as they represent a large proportion of the commu-

nity. If animals are removed from the environment and the

potential inocula contained therein, the genetic diversity of

the host microbiome can be lost. Our study suggests that a

microbiome-inclusive strategy to manage animal health in

captivity should include maintaining contact with natural

substrates that contain protective microbial inocula sources.
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