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We exhibit a fundamental relationship between
measures of dynamical and structural stability of
linear dynamical systems—e.g. linearized models in
the vicinity of equilibria. We show that dynamical
stability, quantified via the response to external
perturbations (i.e. perturbation of dynamical
variables), coincides with the minimal internal
perturbation (i.e. perturbations of interactions
between variables) able to render the system unstable.
First, by reformulating a result of control theory,
we explain that harmonic external perturbations
reflect the spectral sensitivity of the Jacobian matrix
at the equilibrium, with respect to constant changes
of its coefficients. However, for this equivalence
to hold, imaginary changes of the Jacobian’s
coefficients have to be allowed. The connection
with dynamical stability is thus lost for real
dynamical systems. We show that this issue can
be avoided, thus recovering the fundamental link
between dynamical and structural stability, by
considering stochastic noise as external and internal
perturbations. More precisely, we demonstrate that a
linear system’s response to white-noise perturbations
directly reflects the intensity of internal white-noise
disturbance that it can accommodate before becoming
stochastically unstable.

1. Prologue
Understanding the stability of dynamical systems is
fundamental in numerous applications, from classical
mechanics, fluid dynamics, engineering, to biology
[1–6]. Stability refers to the ability of a subset of
phase space to attract trajectories from its vicinity. In
other words, a given state is dynamically stable if
trajectories remain close to that state despite small
perturbations. Such sets are called attractors, the
most basic kind being equilibria. Regardless of their
conceptual simplicity, they commonly appear in a large
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variety of models. For instance, their study in ecology is fundamental to understand the
mechanisms that stabilize ecosystems and support their staggering diversity [6]. In fluid
mechanics, the laminar state can be seen as an equilibrium, and the transition to turbulence as
caused by a loss of stability [1]. In the context of dynamics of nodes of electric power grids, the
equilibrium is a desired state where the generator operates in synchrony with the grid [4].

In deterministic dynamical systems, vanishing points of the generating vector field are (if they
exist) the system’s equilibria. Dynamical stability of a given equilibrium is assessed in terms of
the spectrum of the associated Jacobian matrix. The stability criterion is that all its eigenvalues
have negative real parts. Since Lyapunov [7], this approach has been fruitfully applied across
disciplines [6,8,9].

On the other hand, structural stability relates to the robustness of the qualitative dynamical
picture with respect to small changes in the system structure [10,11]. This notion is particularly
important when the system is a simplified model of a more complicated real-world system, which
is virtually always the case in applications. For the model to inform on the real-world system,
it must be robust with respect to small perturbations, uncertainties and so forth [12,13]. There
are broad classes of models that are known to be structurally stable, the most basic ones being
hyperbolic linear systems, a result that justifies the study of linearized models in the vicinity
of equilibria.

The above-described two stability notions are qualitative, yet it is often important to quantify
stability, either dynamical or structural, in order to compare different models or to assess the effect
of parameters on stability. Qualitative notions answer the question is a particular state (or model)
stable? Whereas quantitative measures answer how stable is this state (or model)? Dynamical stability
is typically quantified via the system response to pulse-perturbations, that is, instantaneous
displacements in phase space, but other perturbations are also important. For instance, periodic
forcing can reveal resonances. Although far less common in the literature [14–16], measures of
structural stability are by no means less relevant. They quantify the stability of the model itself,
that is, the intensity of structural perturbations that it can accommodate before its behaviour
qualitatively changes.

In this article, we focus on real, stable, linear dynamical systems, typically derived from a
linearization of an underlying nonlinear model in the vicinity of a stable equilibrium. We do
not address the issue of finding the equilibrium, but rather assume that an equilibrium exists
and is fixed, and that the local dynamics in its vicinity are known. As long as we remain in a
neighbourhood of the equilibrium, our analysis does not depend on the details of the underlying
nonlinear model.

In this linear (or local) setting, we introduce natural measures of dynamical stability,
quantifying a system’s response to persistent forcing. We compare them with natural measures
of structural stability, quantifying the smallest change in the dynamical structure (i.e. of the
interactions between variables) leading to destabilization. We show that these measures coincide,
so that, in the vicinity of an equilibrium, the dynamical response to external perturbations reflects
the system’s sensitivity to changes of its local structure.

In §2, we revisit a result of control theory, showing that responses to harmonic external
perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect
to constant changes of its coefficients. In an elementary example, we illustrate a caveat of this
approach, showing that this relationship does not always hold for real systems.

In §3, in which our main result is stated, we demonstrate that the fundamental link between
dynamical and structural stability of linear systems can be recovered by considering stochastic
noise as external and internal perturbations.

2. Dynamical and structural stability: harmonic perturbations
The standard procedure to assess stability of an equilibrium consists of linearizing the vector field
in its vicinity, effectively reducing the local dynamics to a linear system of the form ẋ = Ax, where
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A is the Jacobian matrix evaluated at the equilibrium, and the vector x denotes multidimensional
displacements from that equilibrium. Defining the spectral abscissa of A as

α(A) = sup{�(λ) | λ ∈ spect(A)}, (2.1)

we say that a matrix with negative spectral abscissa is stable (i.e. the associated equilibrium x = 0
is stable) and unstable otherwise.

A straightforward way to quantify the dynamical stability of a stable equilibrium is to analyse
the system’s local response to harmonic forcing. This amounts to solving

ẋ = Ax + �(eiωtu),

where ω ∈ R is the frequency of a real rotating perturbation. The stationary response is �(eiωtw)
with w = (iω − A)−1u. The norm of the complex vector w is the mean amplitude of the induced
oscillations. The spectral norm of the matrix (iω − A)−1 gives the strongest system response to
harmonic forcing of frequency ω. To define a measure of stability, we take the inverse of the largest
system amplification of harmonic forcing. This translates as

Sh
DYN(A) = 1

/
sup
ω∈R

‖(iω − A)−1‖. (2.2)

The number ω realizing the maximum is called the resonant frequency. It can be shown [17]
that Sh

DYN relates to the maximal power gain over wide-sense stationary signals, indicating that,
although defined with respect to a specific class of forcing, it is a general indicator of the ability
of an equilibrium to absorb external perturbations.

Let us now turn to the problem of quantifying structural stability. For equilibria, we may
consider how close the Jacobian matrix A is from being unstable, that is, the minimal constant
change in its coefficients that can push its dominant eigenvalue into the instability region {z ∈
C | �(z) ≥ 0} of the complex plane. Measuring the distance to instability as the spectral norm of
the smallest matrix P rendering A + P unstable, this yields

Sc
STR(A) = inf{‖P‖ | α(A + P) > 0} ≤ |α(A)|}. (2.3)

This definition of structural stability is also known as the stability radius [18]. The inequality
in (2.3) comes from the fact that the perturbation P = −α(A)I is always sufficient to destabilize
A. In fact, it is the most efficient way to destabilize A when A is normal (i.e. has orthonormal
eigenvectors) in that case the inequality is an equality [8]. The absolute value of the spectral
abscissa |α(A)| is the Euclidian distance to instability measured in the complex plane. Hence, the
two distances, stability radius and spectral abscissa, coincide when the Jacobian matrix is normal.

There is a strong link between Sc
STR and the dynamical measure Sh

DYN introduced in (2.2). To

reveal this link suppose that for some stable matrix A, Sh
DYN(A) = 1/v, where v > 0 is the strongest

response associated with the resonance ω. Pick two normalized vectors: u, spanning the direction
of perturbation and w, spanning the direction of response, both associated with the resonance ω.
We have that

(iω − A)−1u = vw ⇔ Aw + v−1u = iωw.

We can construct a destabilizing matrix from the vectors u and w. This is done by choosing P =
v−1uw∗, so that ‖P‖ = v−1, Pw = v−1u and

(A + P)w = iωw ⇒ α(A + P) ≥ 0.

Hence, P destabilizes A, meaning that Sc
STR(A) ≤ ‖P‖ = v−1 = Sh

DYN(A).
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Conversely, suppose that Sc
STR(A) = p. There exists a matrix P with ‖P‖ = p such that A + P is

unstable: for some ω and normalized vector w,

(A + P)w = iωw ⇔ w = (iω − A)−1u,

with u = Pw. Because ‖u‖ ≤ p, we deduce that ‖(iω − A)−1‖ ≥ p−1. Hence,

Sh
DYN = Sc

STR (2.4)

giving from (2.2) a computable expression for structural stability. Equation (2.4) corresponds to
a well-known result in control theory [18], which we interpret here in terms of dynamical and
structural stability of equilibria.

There is however a caveat. The quantitative measure of structural stability we have considered
allows for complex matrix perturbations, that almost never make sense in applications. In
fact, computing the corresponding real structural stability, which we denote as S�(c)

STR , involves
a complicated global optimization problem [19]. In general, dynamical stability can be much
smaller than its real structural counterpart. This issue is particularly apparent in the following
elementary example. Consider the sequence of Jacobian matrices

A =
(

−1 M2

−1 −1

)
with M = 1, 2, . . . , (2.5)

whose eigenvalues are −1 ± iM, so that α(A) = −1. The associated equilibria are stable for all
values of M. The strongest response to harmonic forcing grows with M. In addition, complex
perturbations have an effect of order M on the real part of the spectrum, so that perturbations of
order M−1 can destabilize the matrix.

This is not true for real perturbations as

1 = S�(c)
STR (A) > Sc

STR(A) = Sh
DYN(A) →M→∞ 0.

Real structural stability can thus be completely disconnected from its dynamical counterpart.

3. Dynamical and structural stability: white-noise perturbations
Let us now transpose the relationship between dynamical and structural stability to white-noise
forcing, often used to model the effect of erratic external perturbations [17,20]. The local effect of
white noise is best expressed using the formalism of stochastic differential equations (SDEs). It
reads as

dXt = AXt dt + T dWt, (3.1)

where Wt is a vector of independent Wiener processes, representing various external factors
acting on the system, with the matrix T describing how these factors affect system variables.
The first moments µt = EXt evolve as µ̇t = Aµt and converge to zero if A is stable. The second
moments, represented as covariance matrices Ct = EXtX�

t , follow the deterministic equation
[21,22]

Ċt = ÂCt + Σ , (3.2)

with ÂC = AC + CA�, called hereafter the lifted operator, and Σ = TT�, a positive semi-definite
matrix, encoding the effective correlations of the noise. If A is stable, any initial covariance matrix
converges to

Π = −Â−1Σ ,

the unique attractor of (3.2).
In analogy with the measure Sh

DYN constructed via the largest local response to normalized
harmonic perturbations, we define a measure of dynamical stability by taking the inverse of the
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strongest system response over normalized white-noise perturbations. This leads us to

Sw
DYN(A) = 1

/
sup

Σ≥0, ‖Σ‖F=1
‖Â−1Σ‖F, (3.3)

where the supremum is taken over covariance matrices of the real external noise. The use of
the Frobenius norm, ‖Σ‖F = Tr(Σ�Σ)1/2, to normalize the correlation matrices allows us to see
them as vectors endowed with the usual scalar product and Euclidean norm. Because −Â−1 is a
completely positive map, the matrix Σ realizing the norm ‖Â−1Σ‖F = ‖Â−1‖ is a positive semi-
definite matrix [23]. We thus get that

Sw
DYN(A) = 1

‖Â−1‖
. (3.4)

Note that the lifted operator Â can be expressed as a larger matrix A ⊗ I + I ⊗ A, giving a simple
way to compute Sw

DYN.
So far, as in control theory, we considered constant changes in the Jacobian matrix to quantify

structural stability. We now embark on a different path, assuming that the coefficients of the
Jacobian matrix fluctuate. In time-series analysis, such variations are called process errors,
whereas those previously considered would correspond to observation errors [24]. To model
the effect of internal perturbations, we pick a set of real matrices Pk and independent Wiener
processes Wk

t , and consider the following homogeneous linear SDE

dXt =
(

A dt +
∑

k

Pk dWk
t

)
Xt, (3.5)

where the matrices Pk describe fluctuations of the matrix entries Aij and their correlations.
For example, independent fluctuations of variance σ 2 of all entries Aij would correspond to
Pk = σeie�

j , where {ei} stands for the standard orthonormal basis of phase space. Note that the
representation of multiplicative noise in (3.5) corresponds to Itô’s interpretation of stochasticity
[22]. We discuss this point further below. In Itô’s interpretation, the first moments µ are
unperturbed, and follow µ̇t = Aµt, converging to equilibrium if A is stable. The effect of allowing
the interactions to fluctuate appears in the second moments—the (co)variances. To see this, we
again lift the SDE (3.5) to act on covariance matrices, giving [21,22]

Ċt = (Â + P)Ct, (3.6)

with P(C) =∑
k PkCP�

k . Let us measure the intensity of the internal perturbation by the spectral
norm ‖P‖. In the case of independent fluctuations of all entries of A, ‖P‖ = n2σ 2, with n the system
dimension. We can then define stochastic structural stability as the minimal internal perturbation
intensity able to destabilize the second moments of (3.5),

Sw
STR(A) = inf{‖P‖ | α(Â + P) > 0}, (3.7)

where the infimum is over perturbations P constructed from an arbitrary sequence of real
matrices Pk.

Theorem 3.1. For real linear systems, measures of structural and dynamical stability coincide, in the
sense that

Sw
STR = Sw

DYN. (3.8)

Dynamical stability is quantified as the inverse of the maximal variance amplification of external white-
noise perturbation. Structural stability is quantified as the minimal internal white-noise perturbation
needed to destabilize the system’s variance. It relates to Sc

STR (resp. S�(c)
STR ) the minimal complex (resp.

real) constant perturbation able to destabilize the equilibrium’s Jacobian matrix, via the following chain of
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Figure 1. Stochastic destabilization by internal white-noise perturbation. The Jacobian matrix is A= ( −1 100
−1 −1

)
. We have that

1/‖Â−1‖ � 0.04, so that according to (3.8) fluctuationsP with intensity ‖P‖ ≥ 0.04 affecting the matrix A can destabilize
the equilibrium.We show a realization of the process dX t = (A dt + σ P dWt)X t with P = ( −0.07 −0.27

−0.92 0.37

)
and‖P‖ = 1. In the

rightmost panel, the varianceσ 2 = 0.04 is large enough to showpremises of destabilization. Recall that for thismatrix the real
stability radius was independent ofM, withS�(c)

STR (A)= 1.

inequalities

Sw
STR ≤ 2Sc

STR ≤ 2S�(c)
STR ≤ 2|α| (3.9)

with α the spectral abscissa of the Jacobian matrix at the equilibrium. (3.9) collapses onto an equality when
the Jacobian is normal (i.e. has orthogonal eigenvectors).

The example of Jacobian matrices (2.5) is revisited in figure 1. We see that the low stability with
respect to constant imaginary perturbations detected by Sc

STR is also present when considering
real stochastic fluctuations in the matrix coefficients, as predicted by Sw

STR. Inequality (3.9)
is illustrated in figure 2 showing that, although associated with real perturbations, Sw

STR can
sometimes be much smaller than its deterministic and complex counterpart Sc

STR.
We measured structural stability as a distance to instability from the perspective of the

second moments of the linear SDE (3.5), yet any perturbation acting as a multiplicative noise
can destabilize moments of high enough order.1 However, as long as the second moments are
bounded, Chebyshev’s inequality, that plays a pivotal role in the theory of persistence [25],
provides a control on the probability of excursions away from equilibrium. Indeed, we have that
‖Ct‖Tr = E‖Xt‖2 and Chebyshev’s inequality reads, for any δ > 0, and time t ≥ 0,

P(‖Xt‖ ≥ δ) ≤ 1
δ2 ‖Ct‖Tr (3.10)

which, by virtue of (3.6) and equivalence of trace and Frobenius norms, goes to zero as time flows
forward as long as Â + P is stable. In other words, loosing stability in the sense of (3.7) implies
loosing control on the probability of excursions from equilibrium. The importance of this kind
of probabilistic stability, called mean-square asymptotic stability, is discussed in [20], with examples
from ecology, turbulent fluid mechanics, and system control.

We mentioned that the dynamics defined by the SDE (3.5) correspond to Itô’s interpretation
of Wiener processes [22]. Such stochastic signals can be seen as trains of delta peaks, occurring at
random instants [22]. In Itô’s prescription, the intensity of random pulses should be determined
by the state variables before the pulse. For instance, the pulse x(t)δ(t − tk) arriving at time tk
should be multiplied by x(t−k ). On the other hand, Statonovich’s prescription would be to multiply
that pulse by (x(t+k ) + x(t−k ))/2. The two prescriptions yield the same SDE when the noise is
additive (i.e. only adds noise to dynamical variables), hence in our case, the same definition

1Indeed, consider the SDE dX = (−a dt + p dWt)X whose nth-order moments μn = EXn satisfy μ̇n = n(−a + p2(n − 1)/2)μn. As
soon as p �= 0, moments of order n ≥ 2a/p2 + 1 diverge as time flows forward.
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Figure 2. Illustration of the structural stability ordering (3.9).We randomly generated 1000 stable 3 × 3matrices. Entrieswere
independently drawn from a normal distribution of zero mean and unit variance, discarding unstable matrices. We see that the
stochastic structural stability of a matrix, Sw

STR, can be much smaller than the smallest constant complex change needed to
destabilize that matrix,S c

STR. The equalitySw
STR = 2S c

STR is attained for normal matrices.

of dynamical stability Sw
DYN. A difference occurs, the spurious drift, when the noise affects the

intercations between dynamical variables, i.e. when it affects the Jacobian matrix as in (3.5). This
yields a different definition of stochastic structural stability than Sw

STR. Choosing between the two
prescriptions depends on the physical origin of the noise [22,26]. If the system is intrinsically
stochastic, then Itô’s interpretation should be used. If the noise is created by the application of
a random force on an otherwise deterministic system, then Stratonovich’s interpretation makes
more sense.

4. Proving the theorem
To prove our main result, we follow a reasoning similar to the one that led to the identity
(2.4). Beyond establishing the validity of our claim, the proof shows how to explicitly construct
destabilizing internal perturbation from external perturbations. A construction that could be
useful for applications.

Let us start by showing that Sw
STR ≤ Sw

DYN. For a stable Jacobian matrix A, suppose that
Sw

DYN(A) = 1/v. By (3.3), this means that there exists two positive normalized matrices, the noise
correlation matrix Σ and the associated system response correlation matrix Π , such that

−Â−1Σ = vΠ ⇔ ÂΠ + v−1Σ = 0.

As in the deterministic setting, using Σ and Π , we construct a destabilizing operator P .
However, for this operator to represent real internal noise, it must be of the form

∑
k Pk · P�

k for
a set of real matrices Pk. To construct such an operator, we use the spectral decomposition of the
positive semi-definite matrices Σ and Π

Σ =
n∑

i=1

λiuiu
�
i and Π =

n∑
i=1

μiviv
�
i ,
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and put Pk =√
λiμj/vuiv�

j , representing n2 independent internal perturbations of the matrix A.
We have

P(C) =
∑

k

PkCP�
k

= v−1
n∑

i=1

λiuiu
�
i

n∑
j=1

μj〈vj, Cvj〉

= v−1 Tr(ΠC)Σ ,

and, using the Hilbert–Schmidt inner product 〈X, Y〉 = Tr(X∗Y) from which the Frobenius norm
derives, we see that P takes the compact form

P = v−1〈Π , · 〉Σ ,

showing that P(Π ) = v−1Σ and ‖P‖ = v−1. We thus have that

(Â + P)Π ≥ 0.

Hence, P destabilizes the lifted dynamics and corresponds to real internal noise of intensity ‖P‖ =
v−1. Thus,

Sw
STR(A) ≤ Sw

DYN(A).

Conversely, suppose that Sw
STR(A) = p. There exists an operator P with ‖P‖ = p such that Â + P is

unstable, i.e. it has a dominant eigenvalue on the imaginary axis. There can be strictly imaginary
dominant eigenvalues, but we show in appendix A that there is also a dominant eigenvalue at
zero. Hence, for some matrix X with ‖X‖F = 1

(Â + P)X = 0 ⇔ X = −Â−1(Y),

with Y =P(X). Because ‖Y‖F ≤ p, we find that ‖Â−1‖ ≥ p, so that by virtue of (3.4)

Sw
STR(A) ≥ Sw

DYN(A),

which concludes the proof of (3.8). We refer to appendix B for the proof of (3.9).

5. Epilogue
For linear systems, we demonstrated that dynamical and structural stability are remarkably
connected concepts, in the sense that the dynamical response to erratic and persistent external
perturbations (i.e. direct perturbations of dynamical variables) exactly reflects a system’s
sensitivity to stochastic fluctuations of its internal structure (i.e. of the interactions between its
constituent variables). This means that, in the vicinity of an equilibrium, the dynamical response
to external perturbations informs on the system’s sensitivity to changes of its local structure.

We quantified dynamical stability via the maximal system response to external perturbations,
and structural stability via the minimal destabilizing internal perturbation. However, it is not
necessary to consider these worst-case scenarios for a connection between these two stability
notions to hold. Indeed, to any external perturbation and associated system response, there
corresponds a destabilizing internal perturbation. The larger the amplification of the external
perturbation, the smaller the intensity of the corresponding destabilizing internal perturbation.

To derive our main result, we used Itô’s interpretation of Wiener processes [22], as opposed
to the one of Stratonovich. We explained that they are equivalent when the noise is external but
differ when the noise affects the interactions between variables. This would yield a potentially
different definition of stochastic structural stability then the one for which our theorem holds.
We leave it as an open problem to transpose the relationship between dynamical and structural
stability under Stratonovich’s interpretation.

Beyond this technical issue, it has long been acknowledged that local stability analysis is
not sufficient to fully grasp the stability of attractors. Outside the linear framework, other
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stability questions can and must be raised. For instance, the size of basins of attraction can
be a fundamental global feature, independent of local stability [27,28]. In models of interacting
species, other notions of structural stability have been introduced, based on the feasibility of an
equilibrium taking strictly positive values [14–16]. In a nonlinear setting, our stability measures
have to be interpreted with care. Indeed, they reflect the effect of local perturbations, which
might differ from those induced by directly perturbing parameters of the underlying nonlinear
model. How changes in parameters affect the local dynamics depends on the exact form of the
vector field.

Since Lyapunov’s seminal work [7], linear stability theory has served as a fundamental
reference point. Because it generically provides a qualitative depiction of the dynamical behaviour
in the vicinity of fixed points (Hartman–Grobman’s theorem [11]), it is a useful tool to study
dynamical properties of nonlinear dynamical systems, and their various attractors. In this paper,
we showed that the methodology used to quantify local dynamical stability also provides a
measure of local structural stability. In particular, our measures of dynamical and structural
stability can be transposed to discrete-time dynamical systems,2 which are important in their own
right, but also to deal with limit cycles of continuous-time systems, after making a stroboscopic
section of trajectories using the Poincaré map [29]. All in all, this suggest that our theory could
serve as a benchmark to improve global, quantitative analysis of structural stability.

Finally, it should be noted that we constructed our measures of dynamical stability to mimic
empirical approaches to estimate stability from time-series data, in which the fluctuations around
a fixed mean can be understood as the effect of stochastic perturbations of an equilibrium [17,30].
Thus, in the setting of near equilibrium dynamics, our work reveals a strong conceptual link
between pragmatic empirical views on stability and the more abstract concept of structural
stability. Furthermore, as discussed above, in the linear theory, it is not necessary to consider
worst-case scenarios (an unpractical notion from an empirical stand point) for a connection
between these two stability notions to hold. To further bridge the gap between empirical and
theoretical approaches, it could be worthwhile to investigate the most probable scenarios, given a
prior distribution on the set of perturbation directions.

Data accessibility. This paper has no data.
Authors’ contributions. Both authors contributed equally to this study.
Competing interests. The authors declare no conflict of interest.
Funding. This work was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41), the AnaEE
France project (ANR-11-INBS-0001) and by the BIOSTASES advanced grant, supported by the European
Research Council under the European Union’s Horizon 2020 research and innovation programme (grant
agreement no. 666971).
Acknowledgements. The authors thank Michel Loreau, José Montoya and Matthieu Barbier for discussions related
to this work. The authors express their gratitude to anonymous reviewers for thorough reading of previous
versions of this article. Their constructive and encouraging remarks greatly contributed in improving the
clarity of the manuscript.

Appendix A. Dominant eigenvalues of perturbed lifted operator
Recall that Â is the lifted operator defined from a stable real matrix A and acting on any matrix
X as Â(X) = AX + XA�, and that P is defined from an arbitrary sequence of real matrices Pk
as P(X) =∑

k PkXP�
k . Assume that the perturbed operator Â + P lies on the boundary between

2For a given discrete time, real linear dynamical system of the form

x(t + 	t) = Bx(t)

with the spectrum of B contained in the unit circle, we can compute dynamical and structural stability as

− 1
	t

log
(

1 − 1
‖(I − B)−1‖

)
,

where the lifted operator B now acts on covariance matrices as B(C) = BCB� and can be identified to B ⊗ B. With this
convention, if B = e	tA, then we recover the continuous-time stability measures when 	t goes to zero.



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150874

...................................................

stability and instability, that is,
α(Â + P) = 0.

Here, we show that any operator of the form

Aε = Â + εP with 0 ≤ ε < 1,

must have a real-dominant eigenvalue λε < 0, associated with an eigenvector Xε . This would
show, in particular, that λε → 0 as ε goes to 1, so that

Aε(Xε) → (Â + P)X1 = 0,

an identity that was previously needed to prove that Sw
STR(A) ≥ Sw

DYN(A).
To show this, suppose the converse, that is: that the dominant eigenvalues of Aε all have non-

zero imaginary parts. Arbitrarily, small perturbations of the matrices A and Pk can ensure that the
operator Aε has a unique dominant eigenvalue λε = iωε + αε up to complex conjugacy, associated
with left and right eigenvectors Xε

L, Xε
R, respectively. Choose a covariance matrix Σ such that

〈Xε
L, Σ〉 = Tr ΣXε

L �= 0,

Note that if there exist no such Σ we can disregard the eigenvalue λε and its associated eigenspace
as they will play no role on the dynamics restricted to positive semi-definite matrices. Indeed, by
construction, the semi-group

{etAε }t>0,

preserves the set of real positive matrices, and it is the restriction to that set that is of interest to
us. In particular, the starting point C0 = Σ becomes, as time flows forward

Ct = eαε t{eiωε t〈Xε
L, Σ〉Xε

R + c.c. + o(1)}.
Writing Zε = 〈Xε

L, Σ〉Xε
R, we see that Ct converges to

eαε t{cos(ωεt)�(Zε) − sin(ωεt)�(Zε)},
which rotates at frequency ωε . It therefore cannot be positive for all t which it should when the
subdominant terms in Ct become negligible. We thus get a contradiction, hence λε must be real.

To summarize, we have shown that, modulo arbitrary small perturbations of the matrices
A and Pk, the dominant eigenvalue of Aε is simple and real. Because the spectrum depends
continuously on the matrix entries [31], this implies that among the dominant eigenvalues of
Aε one was already real.

Appendix B. Ordering of structural stability measures
In the theorem, we claim that stochastic structural stability relates to the stability radius of
matrices following the general inequality (illustrated in figure 2)

Sw
STR ≤ 2Sc

STR,

with equality when the Jacobian matrix at the equilibrium is normal. Here, we prove this fact. Let
us start by stating a lemma from linear algebra.

Lemma B.1. For any invertible matrix B acting on C
n, it holds that

min
x∈Cn;‖x‖=1

‖Bx‖ =
(

max
y∈Cn;‖y‖=1

‖B−1y‖
)−1

.

Proof. Take x∗ = B−1y/‖B−1y‖ with y normalized and realizing the maximum of ‖B−1y‖. By
construction

min
x∈Cn;‖x‖=1

‖Bx‖ ≤ ‖Bx∗‖ =
(

max
y∈Cn;‖y‖=1

‖B−1y‖
)−1

.



11

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150874

...................................................

To show that taking the minimum over all normalized elements x does not give anything smaller,
it suffices to choose y∗ = Bx/‖Bx‖ with x normalized and realizing the minimum of ‖Bx‖. By
construction

max
y∈Cn;‖y‖=1

‖B−1y‖ ≥ ‖B−1y∗‖ =
(

min
x∈Cn;‖x‖=1

‖Bx‖
)−1

,

which is equivalent to

min
x∈Cn;‖x‖=1

‖Bx‖ ≥
(

max
y∈Cn;‖y‖=1

‖B−1y‖
)−1

,

proving the lemma. �

With this result in hand, we can write, for any stable real matrix A,

Sw
STR(A) = ‖Â−1‖−1 = min

‖X‖F=1
‖ÂX‖F.

In particular, for any normalized matrix X,

Sw
STR(A) ≤ ‖ÂX‖F = ‖AX + XA�‖F.

Choosing X as a rank-one orthonormal projector, X = ww∗, gives, for any real ω

Sw
STR(A) ≤ ‖(Aw)w∗ + w(Aw)∗‖F

≤ ‖((iω − A)w)w∗ + w((iω − A)w)∗
∥∥

F.

On the other hand, we also have, using lemma B.1, that

Sc
STR(A) = ‖(iω − A)−1‖−1 = inf

ω,‖w‖=1
‖(iω − A)w‖.

In the upper bound of Sw
STR(A), choosing ω to be the system’s resonant frequency and w the

associated minimizing vector of ‖(iω − A)w‖, and then invoking the triangular inequality, yields

Sw
STR(A) ≤ 2Sc

STR(A).

Let us now show that equality holds whenever A is normal. First of all, for normal A, Sc
STR(A)

coincides with the spectral abscissa α(A). This is a consequence of the following equality, valid for
any normal matrix A and complex number z away from the spectrum of A [8]

‖(z − A)−1‖ = 1
dist(z, spect(A))

. (B 1)

where dist(·, ·) stands for the Hausdorff distance between subsets of the complex plane, equipped
with the Euclidean metric. Indeed, taking z = iω, where ω is the imaginary part of the dominant
eigenvalue of A, gives Sc

STR(A) = α(A). In addition, if A is normal, Â is also automatically
normal. Because A is diagonalizable, we can express the spectrum of Â from the one of A.
Indeed, if {(λi, ui)}i are the complete eigenpairs of A, then {(λi + λ̄j, uiu∗

j )}i,j are the complete

eigenpairs of Â. If λ0 is the dominant eigenvalue of A, then by definition −�(λ0) = α(A), and
thus {−2α(A), 2λ0, 2λ̄0} are dominant eigenvalues of Â. Applying the above identity (B 1) to the
normal operator Â, namely

‖(z − Â)−1‖ = 1

dist(z, spect(Â))
,

and taking z = 0 gives ‖Â−1‖ = 1/2α(A), hence Sw
STR(A) = 2α(A) = 2Sc

STR(A), which is the expected
equality.
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Finally, because the real constant perturbation, P = α(A)I is always sufficient to destabilize any
stable matrix A, in the light of the previous result, we see that for normal matrices

S�(c)
STR (A) = Sc

STR(A)

completing the proof of the theorem.
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