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A B S T R A C T

Background and Objectives: Research in evolutionary medicine provides many examples of how evolu-

tion has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may

result in associated costs or reduce the energy available to other traits. We hypothesize that humans

have experienced more such changes than other primates as a result of major evolutionary change along

the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits

that have undergone marked evolutionary change along the human lineage.

Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One ap-

proach models trait covariation in non-human primates and predicts human phenotypes to identify

whether humans are evolutionary outliers. The other approach models adaptive shifts under an

Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the

human branch than on other primate lineages.

Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage

(amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease

(neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other

primates.

Conclusions and Implications: Human physiology has undergone increased evolutionary change

compared to other primates. Long distance running may have contributed to increases in haemato-

crit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to in-

creases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were

increased, but many other immune-related measures were not. Determining the mechanisms

underlying conspicuous evolutionary change in these traits may provide new insights into human

disease.
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INTRODUCTION

Physiological mechanisms relevant to human health

and disease have been studied in depth, yet the

evolution of these processes is less well understood.

Investigating the evolution of physiological

processes may shed light on why they fail or become

unhealthy. For example, fitness trade-offs may be

more likely to occur when rapid evolution in one trait

generates correlated costly effects on other traits or

bodily functions, especially when coupled with gen-

etics, developmental or morphological constraints

that inhibit the ability of natural selection to respond

to these costs (1). Indeed, it is well established that

many genes associated with disease have pleio-

tropic effects that could generate such tradeoffs,

including for traits involved with physiology (2).

One approach to investigate the evolution of

human physiology involves comparing humans to

our closest evolutionary relatives, the primates.

This comparative approach is central to

investigating the evolution of phenotypes, and

physiology has long been a focus of comparative re-

search. For example, Huey and Bennett (3) used

comparative approaches to investigate temperature

and running performance in lizards, while Kleiber’s

(4) studies of metabolic rate in relation into body

mass have had broad impacts on a wide range of

fields, such as the metabolic theory of ecology (5).

Similarly, using data on physiological reference

values for primates, Lindenfors et al. (6) investigated

sex differences in aerobic capacity, finding that

males have higher haematocrit (red blood cells per

blood volume) than females.

Most phylogenetic comparative methods test

adaptive hypotheses or map the origins of traits onto

a phylogeny (7–9). Comparative studies can also be

used to assess whether a species has undergone

exceptional or rapid evolution (10–12). For example,

Organ et al. (13) investigated dental morphology

and behaviour along the human lineage. They

showed that the origins of food processing (such

as cooking) have led to shorter durations of feeding

per day. They further used dental morphology to

pinpoint the timing of the origins of food processing

in fossil hominins by reconstructing the molar area

using phylogenetic and statistical modelling.

Similarly, Samson and Nunn (14) used a phylogen-

etic comparative approach to investigate human

sleep, relative to other primates. They discovered

that human sleep is substantially shorter than pre-

dicted based on phylogeny and patterns of trait

covariation in other primates. These and similar

approaches might be relevant for understanding

the generation of tradeoffs relevant to disease. For

example, reduced sleep could enable more time for

learning or building social alliances that lead to

higher fitness, but could have costly health or cogni-

tive effects later in life.

Here, we investigate physiological traits that

have undergone exceptional evolution along the

human lineage. By focusing on 41 physiological ‘ref-

erence values’—which are widely used in medical

diagnostics due to their relationships with disease

states—we aim to identify whether and how human

disease-relevant physiological traits differ from

other primates. We used two different methods to

investigate evolution along the human lineage

that make different assumptions and capture

different aspects of the evolutionary process. The

first method—phylogenetic prediction—uses

generalized linear models to predict trait values in

humans, and then quantifies the degree to which

humans depart from predictions (12,13). When

humans differ from expectations, they are identified

as ‘evolutionary outliers’. The second method—evo-

lutionary modelling—infers adaptive regimes

across the primate phylogeny under an Ornstein-

Uhlenbeck (OU) model of evolution. These adaptive

regimes enforce a central tendency on trait values,

with a trait optimum, variance and strength of selec-

tion that can vary across the branches of a phyl-

ogeny. With the evolutionary modelling approach,

we specifically investigated whether trait optima

have shifted on the branch leading to humans.

Taken together, these two analyses identify traits

that have experienced novel selective pressures on

the human lineage, relative to other primates.

The specific functions of the physiological traits

that we investigated (Table 1) are understood in the

context of health and disease. For example, low red

blood cell counts (anaemia) can cause fatigue and

dizziness, while high cholesterol is associated with

coronary heart disease. However, the adaptive sig-

nificance of interspecific variation in these traits is

less well understood. Although extensive effort has

been made to understand the healthy ranges of

physiological traits for humans and other animals,

virtually no research has considered why these traits

vary across species. Thus, for most of the physio-

logical reference values, a priori predictions for

human differences are not possible.

For a subset of traits, however, we can formulate

specific hypotheses and predictions to test.
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Table 1. Traits Analysed.

Trait Health associations

Alanine aminotransferase liver injury

Alkaline phosphatase liver and bone disease

Amylase pancreatitis

Aspartate aminotransferase liver disease

Basophilsa cancer (low), vascular disease (high)

Bicarbonate electrolyte and acid-base imbalance

Blood urea nitrogen liver failure (low), kidney disease (high)

Body temperature thermoregulation

Calcium bone, liver, kidney disease

Carbon dioxide kidney and lung malfunction

Chloride Addison disease (low), metabolic and renal tubular acidosis (high)

Cholesterol heart disease

Creatine phosphokinase injury or stress to muscle, heart, or brain

Creatinine kidney function

Eosinophilsa Addison disease, cancer

Gamma glutamyltransferase liver disease

Glucose Diabetes

Haematocritb anemia, leukaemia

Haemoglobinb anemia, chronic kidney disease

Indirect bilirubin Jaundice

Iron Anemia

Lactate dehydrogenase tissue damage

Lipase pancreatitis

Lymphocytesa HIV, leukaemia (low), hepatitis (high)

Magnesium loss of kidney or adrenal gland function

MCHb iron deficiency (low), folate deficiency, liver disease (high)

MCHCb iron deficiency (low), hereditary spherocytosis (high)

MCVb iron deficiency (low), folate deficiency, liver disease (high)

Monocytesa leukaemia, tuberculosis

Neutrophilic bandsa immune response

Osmolarity fluid balance

Phosphorus hyperthyroidism (low), kidney, liver failure (high)

Platelet count bone marrow diseases, cancer

Potassium Conn syndrome (low), kidney disease, infection (high)

Red blood cell countb nutritional deficiency, bone marrow damage (low), lung disease (high)

Segmented neutrophilsa eclampsia

Sodium problems with adrenal glands

Total bilirubin Jaundice

Triglyceride heart disease

Uric acid diabetes, leukaemia, renal failure (high)

White blood cell counta bone marrow disorders, autoimmune conditions (low), inflammation,

leukaemia, alergies (high)

aTraits predicted to increase as a result of increased pathogen load.
bTraits predicted to increase as a result of long distance running.
A list of all traits included in the analysis with potential health effects when that trait fall outside normal human ranges
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We focus on two hypotheses. First, under the hy-

pothesis that long-distance running resulted in

many human-specific adaptations (15), we predict

increases in blood parameters associated with more

efficient oxygen transport. Specifically, we predicted

increases in total haemoglobin and/or its concentra-

tion, which could be reflected in increased red blood

cell counts, haemoglobin, haematocrit, mean cor-

puscular haemoglobin (MCH, average mass of

haemoglobin per red blood cell), mean corpuscular

haemoglobin concentration (MCHC, concentration

of haemoglobin in a given volume of packed red

blood cells), and mean corpuscular volume (MCV,

mean volume of red blood cells).

The second hypothesis concerns the importance

of pathogens in human evolution, based on the

acquisition of parasites and pathogens from

domesticated animals (16) and evidence that the

pathogen environment has been a major selective

pressure (17). This hypothesis predicts higher than

expected values for overall white blood cell counts

(12) and specific white blood cell types, such as

eosinophils, which are important for fighting

macroparasites (18), and segmented neutrophils,

an important defence against bacterial pathogens

(19). With results from analyses of each of these

traits, we then investigated the more general hypoth-

esis that human physiology differs from other

primates.

METHODOLOGY

Data collection

Data on animal physiology were attained from the

International Species Information System (ISIS)

(20). ISIS aggregates physiological measurements

taken primarily from zoo animals for the purpose

of establishing improved veterinary care. From this

database, we extracted all records for primates,

focusing on average female values to control for dif-

ferences between sexes that arise through interspe-

cific variation in the degree of sexual selection

operating on males. We only included data with

values from at least ten animals, and we excluded

physiological traits when fewer than ten species of

primates had qualifying data. In addition, traits with

values that are highly variable over time (e.g. cortisol

or progesterone) or had no comparable trait com-

monly measured in humans (e.g. tocopherol) were

also excluded. We included body mass in the ana-

lysis because this trait is known to correlate with life

history, diet and disease risk (parasite richness), all

of which are likely to influence the physiological

traits we investigated. In addition, data on primate

body mass are widely available, often from the same

individuals that provided data on physiological ref-

erence values (except for Callicebus donacophilus,

Callicebus moloch, Macaca nigra and Miopithicus

talapoin, which were missing from ISIS and thus ob-

tained from Primate Info Net, http://pin.primate.

wisc.edu/; accessed 21 October 2014). Human

physiological reference values were primarily at-

tained from appendices and tables in Bope and

Kellerman (21), using the midpoint of the range

provided and again focusing on females when sex-

specific values were provided. The exceptions were

amylase, osmolarity, uric acid and phosphorous,

which were acquired from MedlinePlus (https://

www.nlm.nih.gov/medlineplus/encyclopedia.html;

accessed 21 October 2014). All data, including body

mass, were log10 transformed prior to analysis.

Phylogenetic prediction

Human values for each trait were compared to pre-

dictions made by BayesModelS (12), an R implemen-

tation (22) of methods similar to those first

introduced by Organ et al. (23). BayesModelS takes

as input a posterior distribution of phylogenies,

a regression formula and values for the predictor

and response variables for a set of species, excluding

species from the tree and dataset without equivalent

matching data. BayesModelS then generates a

posterior distribution of regression models using re-

versible-jump Markov Chain Monte Carlo (MCMC).

The parameters estimated in each model include

which predictor variables to include in the model (a

Bayesian model selection procedure), the coefficients

for included predictors, and a tree parameter (�) that

scales branch lengths to reflect phylogenetic signal.

Specifically,� scales the internal branches of the phyl-

ogeny by a value between 0 and 1. When � = 0, this

generates a star phylogeny (24), which is equivalent

to a non-phylogenetic analysis, while increasing

values of � (approaching 1) indicate stronger phylo-

genetic signal. In each step of the MCMC, parameters

may be added or dropped from the model, and par-

ameter values can change. The changes made to each

parameter are mediated by a set of predetermined

prior distributions. If the changes increase the likeli-

hood of the data, the parameters are updated to the

new values. If the changes reduce the likelihood, they

are kept with a probability inversely proportional to
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the magnitude of the reduction in likelihood; other-

wise values revert to their previous state before

making another set of changes.

Each model in the posterior distribution can be

used to generate a distribution of possible values for

a ‘target species’ that was not included when

estimating model parameters. These distributions

incorporate the predictor variables for the target spe-

cies of interest and the phylogenetic position of that

target species, and control for sources of uncertainty

in phylogeny and parameter estimation. A single

value is drawn from each of these distributions,

generating a set of predicted values for the target

species. One can compare the measured trait in

the target species to this distribution to quantify

any difference from predictions. When the actual

value is sufficiently far from the predicted distribu-

tion (see below), the species is an ‘evolutionary out-

lier’ relative to other species in the clade; the trait is

greater or less than predicted based on phylogeny

and trait covariation amongst the species.

For this analysis, the target species was Homo

sapiens. One hundred primate phylogenies were

downloaded from 10kTrees Version 3 (25) and

pruned for all species not included in a given ana-

lysis of one of the 41 physiological reference values.

The actual number of species varied by trait (see

Table 2). The MCMC was set to include female body

mass of each species as the predictor variable, and a

uniform prior was set for the regression coefficient.

The prior distribution of�was also set to be uniform,

ranging from 0 to 1. For each trait under investiga-

tion, the chain was run for 200100 steps, with the

first 100 discarded as burn-in and every 100 steps

after that selected for inclusion in the final posterior

distribution (‘thin’ rate). This produced posterior

probability distributions of 2000 model parameters

(and predictions). Before running any statistical

tests on these distributions, we checked the likeli-

hood of models across the chain to ensure minimal

auto-correlation of models. We also visually in-

spected the distribution of human predictions for

each trait for normalcy using Q-Q plots before

calculating the difference between the observed

and predicted means, and the probability of obtain-

ing a difference that size or larger. From these

probabilities, we identified evolutionary outliers

using a significance threshold determined by

controlling false discovery rate (26), with false dis-

covery rate set to 10%.

These analyses focused on change in single traits.

To test the overall hypothesis that humans are

recognized as an outlier for more physiological traits

than other primate species—i.e., that humans are

‘generally’ different from other primates—we ran

the same BayesModelS analysis for every primate

species for each trait. This provided information

on the number of outlier traits for each species on

the tree, while also helping to assess the validity of

our phylogenetic-statistical model. We then ran

BayesModelS a final time using the logit-trans-

formed proportion of outlier traits for each species

as the test variable, and including the number of

traits for which each species was included as a pre-

dictor variable. We predicted the proportion of out-

lier traits in humans and tested whether humans

departed from this prediction.

The statistical performance of BayesModelS has

been tested in general (12), but not in the specific

case of changes along the human lineage. Although

not expected, it is possible that some topologies

would tend to lead to an excess of outliers. To en-

sure that our inference of human outliers is not an

artifact of the tree topology, we created R code to

simulate evolution along with the tree, with either

no excess change along the human lineage (thus

testing for the rate of false positives), or with differ-

ent levels of excess change (testing for the rate of

false negatives). We generated 100 datasets by

simulating trait evolution under Brownian motion

on our consensus primate tree, and an additional

150 datasets generated by simulating with a rate

multiplier on the human branch, with this rate

varying continuously from one to four. We then

used BayesModelS to find the proportion of

datasets for which the simulated human trait was

identified as an outlier. To enable others to use this

code for their own datasets (including for any lin-

eage on any phylogeny), we provide it in the

Electronic Supplementary Material.

Inferring regime shifts

We analysed a multi-state Ornstein-Uhlenbeck (OU)

model with the bayou package (27) in R. Bayou uses

a reversible-jump MCMC similar to the one used in

BayesModelS, but instead of generating a linear re-

gression equation, bayou estimates the parameters

of an OU model of evolution and calculates the

likelihood of the data given the model. As a fully

Bayesian implementation of the OU model, bayou

overcomes many concerns of biased estimates

when modelling OU evolution (28). Bayou estimates

values for trait optimum (�), strength of mean
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Table 2. Summary of posterior distribution of predictions by BayesModelS.

Trait # of

Species

Units (log) Mean

prediction

SD

prediction

Human

value

Probability Extreme

species

Alanine aminotransferase 50 U/l 1.42 0.77 1.35 0.71 3

Alkaline phosphatase 50 U/l 2.46 0.01 1.97 0.01 1

Amylase 35 U/l 0.87 0.00 1.81 <0.01 3

Aspartate aminotransferase 50 U/l 1.32 0.57 1.39 0.56 2

Basophils 37 *10^9/l �1.16 0.05 �1.42 0.16 2

Bicarbonate 16 mMol/l 1.41 0.87 1.39 0.71 2

Blood urea nitrogen 50 mMol/l 0.59 0.04 0.78 0.03 2

Body temperature 44 C� 1.56 0.52 1.57 0.55 3

Calcium 50 mMol/l 0.37 0.66 0.38 0.63 4

Carbon dioxide 32 mMol/l 1.39 0.65 1.43 0.31 3

Chloride 48 mMol/l 2.01 0.53 2.00 0.60 2

Cholesterol 49 mMol/l 0.76 0.74 0.72 0.73 4

Creatine phosphokinase 40 U/l 2.42 0.01 2.00 0.01 3

Creatinine 50 mMol/l 1.94 0.76 1.97 0.72 3

Eosinophils 47 *10^9/l �0.56 0.52 �0.48 0.64 2

Gamma glutamyltransferase 41 U/l 1.47 0.62 1.59 0.74 3

Glucose 50 mMol/l 0.62 0.93 0.67 0.37 1

Haematocrit 50 L/l �0.40 0.00 �0.33 0.01 1

Haemoglobin 50 g/l 2.10 0.24 2.13 0.23 1

Indirect bilirubin 30 mMol/l 0.54 0.23 0.78 0.20 4

Iron 13 mMol/l 1.25 0.92 1.26 0.94 2

Lactate dehydrogenase 40 U/l 2.57 0.18 2.26 0.20 1

Lipase 23 U/l 0.83 0.20 1.56 0.06 3

Lymphocytes 50 *10^9/l 0.43 0.87 0.45 0.85 3

Magnesium 15 mMol/l �0.16 0.60 �0.07 0.49 2

MCH 48 pg/cell 1.41 0.07 1.48 0.08 2

MCHC 50 g/l 2.51 0.00 2.54 <0.01 4

Mcv 48 fL 1.90 0.09 1.95 0.12 2

Monocytes 50 *10^9/l �0.40 0.02 �0.07 0.02 5

Neutrophilic bands 31 *10^9/l �0.52 0.00 �1.46 <0.01 2

Osmolarity 10 Osmol/l �0.56 0.80 �0.56 0.92 2

Phosphorus 47 mMol/l 0.10 0.01 0.28 0.01 2

Platelet count 37 *10^12/l �0.59 0.85 �0.57 0.84 4

Potassium 47 mMol/l 0.60 0.95 0.60 0.93 4

Red blood cell count 48 *10^12/l 0.70 0.24 0.65 0.27 1

Segmented neutrophils 50 *10^9/l 0.88 0.10 0.69 0.08 3

Sodium 49 mMol/l 2.14 0.34 2.15 0.38 2

Total bilirubin 49 mMol/l 0.76 0.35 0.93 0.31 2

Triglyceride 43 mMol/l 0.05 0.16 0.23 0.18 2

Uric acid 39 mMol/l �0.96 0.17 �0.50 0.19 3

White blood cell count 50 *10^9/l 1.03 0.07 0.88 0.07 2

Probabilities in bold represent traits identified as significant given a false discovery rate of 10%. The final column provides the number of species
similarly found to have values outside 95% of predictions made (including humans). All trait values are log10 transformed.
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reversion to each optimum (a), the rate of evolution-

ary change (s2), the number of changes in � across

the phylogeny (k), and where changes in � occur on

the phylogenetic tree. For comparison to the

BayesModelS analyses, we used a developmental

version of bayou that included a predictor variable

(body mass). However, bayou will only accept a sin-

gle tree for analysis, and is thus unable to account for

phylogenetic uncertainty. All prior distributions were

created using the function make.prior in the R

package “bayou,” with the model type set to

“ffancova” which provides values to an assigned dis-

tribution type for each parameter based on the data

and the tree. A half-Cauchy distribution was as-

signed to a and s2, a uniform distribution to the

regression coefficient of log mass (b), a Poisson dis-

tribution to k, a normal distribution with mean and

standard deviation equivalent to the distribution of

values for the trait being tested was assigned to �,

and a uniform distribution was assigned to the prob-

ability that a change in � occurs on a given branch,

with the restriction that only one change can occur

on any branch. Two MCMCs were run for 2,002 000

steps, with the first 2000 steps discarded as burn-in,

and thin rate of every 1000 steps thereafter (resulting

in MCMC chains with 2000 samples). After discard-

ing initial burn-in, Gelman’s R statistic was used to

evaluate the convergence of the two chains run for

each trait. An additional proportion of each chain

was discarded to bring Gelman’s R for the likelihood

of models across both chains as close as possible to

one. The two chains were then combined for all add-

itional analyses, and effective sample sizes were

estimated based on the log likelihoods of the re-

maining models. We analysed the output from

bayou to obtain the proportion of models that

inferred a regime shift on the human lineage. We

also obtained the magnitude of that change relative

to other changes on the tree. To operationalize

whether humans are recognized as experiencing a

change in selective regime, we required that at least

20% of models inferred a shift on the human tip and

at least 95% of those changes had to be consistently

in one direction.

RESULTS

Phylogenetic prediction

Human values for monocytes, phosphorous,

haematocrit, MCHC and amylase all received sub-

stantial support as higher than predicted. Human

values for creatine phosphokinase, alkaline phos-

phatase and neutrophilic bands were all substan-

tially lower than predicted. Thus, human values for

eight traits were determined to fall outside the range

expected by our phylogenetic predictions (Fig. 1).

Some traits associated with aerobic function

(haematocrit, MCHC) or immunocompetence

(monocytes) are amongst the traits identified as

evolutionary outliers, as predicted. Specific

probabilities for all traits are presented in Table 2.

We also investigated whether other primates in

the dataset have traits with unexpected values.

These analyses revealed that humans are outliers

for more traits than any other primate. On average,

non-human primate species had an unexpected high

or low value for 6.4% of traits tested (SD = 4.9%),

compared to 20.5% of traits for humans. When pre-

dicting the proportion of outlier traits in humans,

only 2.6% of predictions were larger than the actual

value of 20.5% (Fig. 2). Tree topology also does not

appear to have played a role in the high proportion of

human outlier traits. Only 5% of simulations

produced outliers on the human tip when using a

constant rate Brownian motion model across the

tree including all primates used across our analyses.

When we simulated data using Brownian motion

with a rate multiplier on the human tip, the percent-

age of simulations with human outliers reached 20%

when the rate ranged from 3 to 4 (Supplementary

Material, Fig. 1), suggesting that the method re-

quires large changes for detection of outliers on

the human lineage, at least under Brownian motion.

Thus, it appears that humans show a general pattern

of altered physiology, with an unexpected number of

outlying physiological traits.

Modelling regime shifts using an

Ornstein-Ulenbeck analysis

Inspection of MCMCs revealed moderate auto-

correlation of models in the posterior distributions.

All chains reached convergence, indicating that our

parameters were estimable and reducing concerns

about over-parameterization of the OU model raised

by Ho & Ané (28). Large overall chain size resulted in

acceptable effective sample sizes for model likeli-

hood (between 200 and 4000) for all traits except

potassium, glucose and body temperature

(Table 3). In addition, four traits (bicarbonate, iron,

magnesium and osmolarity) did not have four times

more species in the analysis than estimated regime

shifts, a condition that resulted in reduced accuracy
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Figure 2. Humans have more traits identified as outliers. Posterior distribution of proportion of human traits predicted to be outliers using BayesModelS. Vertical

line indicates the observed value for humans

Figure 1. Results from phylogenetic prediction using BayesModelS. Bars show the distance in standard deviations of the actual human value for each trait from

the mean of predictions in the posterior distribution generated for that trait by BayesModelS
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Table 3. Summary of posterior distributions of models generated with bayou.

Trait # Species Eff. Sample

Size (lnL)

Mean �

shifts

per model

Prop. models

with � shift on

human lineage

Branches in

tree with more �

shifts than

human lineage

Mean �

shift

SD �

shift

Prop. Shifts

on human

lineage > 0

Alanine aminotransferase 50 1791 6.6 0.02 >10 -0.09 0.15 0.16

Alkaline phosphatase 50 3292 5.7 0.03 >10 -0.20 0.26 0.22

Amylase 35 863 5.9 0.52 0 0.93 0.32 0.99

Aspartate aminotransferase 50 1303 6.2 0.01 >10 0.18 0.26 0.82

Basophils 37 3115 6.1 0.06 >10 -0.13 0.19 0.21

Bicarbonate 16 3201 5.1 0.09 >10 0.00 0.07 0.53

Blood urea nitrogen 50 589 7.2 0.20 4 0.24 0.11 0.99

Body temperature 44 173 5.6 0.02 >10 0.01 0.00 1.00

Calcium 50 260 7.3 0.02 >10 0.01 0.02 0.78

Carbon dioxide 32 1901 6.0 0.13 2 0.05 0.03 0.95

Chloride 48 470 6.3 0.02 >10 -0.01 0.01 0.26

Cholesterol 49 774 7.8 0.04 >10 -0.03 0.14 0.48

Creatine phosphokinase 40 3804 6.0 0.06 >10 -0.06 0.34 0.46

Creatinine 50 1697 5.4 0.02 >10 0.04 0.05 0.84

Eosinophils 47 1721 7.3 0.04 >10 0.07 0.13 0.74

Gamma glutamyltransferase 41 1845 6.0 0.09 5 0.34 0.27 0.91

Glucose 50 153 7.5 0.01 >10 0.06 0.11 0.79

Haematocrit 50 460 7.1 0.48 1 0.07 0.03 0.99

Haemoglobin 50 1562 5.9 0.04 >10 0.03 0.03 0.84

Indirect bilirubin 30 907 6.4 0.12 7 0.18 0.16 0.84

Iron 13 3013 5.4 0.12 >10 -0.03 0.13 0.38

Lactate dehydrogenase 40 3525 5.9 0.06 >10 -0.12 0.29 0.34

Lipase 23 2446 5.6 0.49 0 0.63 0.28 0.98

Lymphocytes 50 1624 6.2 0.03 >10 0.01 0.11 0.57

Magnesium 15 1637 6.1 0.21 6 0.09 0.13 0.82

Mch 48 330 7.2 0.09 >10 0.05 0.09 0.89

Mchc 50 3315 5.9 0.06 3 0.01 0.01 0.77

Mcv 48 621 6.9 0.08 >10 0.04 0.09 0.90

Monocytes 50 921 6.2 0.60 2 0.29 0.15 1.00

Neutrophilic bands 31 3265 5.7 0.27 4 -0.47 0.03 0.03

Osmolarity 10 264 6.2 0.20 >10 -0.01 0.03 0.43

Phosphorus 47 1109 7.1 0.19 3 0.15 0.10 0.98

Platelet count 37 1406 6.4 0.03 >10 0.02 0.12 0.57

Potassium 47 30 7.9 0.03 >10 0.00 0.06 0.37

Red blood cell count 48 453 7.2 0.03 >10 -0.03 0.08 0.21

Segmented neutrophils 50 320 7.2 0.02 >10 0.01 0.14 0.58

Sodium 49 381 6.3 0.02 >10 0.00 0.01 0.47

Total bilirubin 49 2421 5.9 0.05 >10 0.10 0.16 0.79

Triglyceride 43 2600 6.2 0.11 >10 0.15 0.13 0.91

Uric acid 39 216 9.5 0.06 >10 0.41 0.56 0.93

White blood cell count 50 974 6.3 0.03 >10 -0.04 0.09 0.28

For each trait, the effective sample size of the likelihood (natural log) of models in the MCMC, the mean and standard deviation of the number of �
shifts per model in the posterior distribution, the proportion of models with an optimum shift on the Homo tip, the rank of the Homo tip amongst all
branches in the tree in terms most optimum shifts on the given branch, the mean and standard deviation of all shifts on the Homo tip, and the
proportion of those shifts that are positive. Optimum shift values represent log10 transformed data.
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of estimates in previous simulations (27). Thus, we

interpret results for these traits with caution.

For all traits, the average number of adaptive re-

gime changes that occurred on the tree ranged from

five to eight, with the exception of uric acid, which

averaged 9.53 regime changes per model (Table 3).

We used several measures to estimate the magni-

tude of evolutionary change since the humans’ com-

mon ancestor with Pan (Table 3). Across traits, the

average percentage of models in the posterior dis-

tribution with an optimum change on the branch to

Homo is 11.7% (SD = 15.0%). Several traits contain

an adaptive regime shift on the Homo branch at high

frequencies: monocytes (60.3%), amylase (52.1%),

lipase (48.8%) and haematocrit (48.2%). For amyl-

ase and lipase, the Homo branch contains an opti-

mum change in a greater proportion of models than

any other branch in the primate tree; for monocytes,

haematocrit, neutrophilic bands, blood urea nitro-

gen, phosphorus, carbon dioxide and MCHC, the

Homo branch is in the top five branches.

In addition to identifying regime shifts, it is crucial

to assess whether the optimum (�) shift direction is

consistently in one direction. The proportion of

models that contain a � shift of the Homo tip and

the directionality of the shifts are visualized simul-

taneously in Fig. 3. When considering only models

for which the Homo tip contains a regime change,

95% or more of the � shifts are positive for body

temperature, blood urea nitrogen, amylase, phos-

phorus, lipase and carbon dioxide. Consistent with

a priori predictions, we also found positive shifts

along the human lineage for monocytes and

haematocrit. For neutrophilic bands, 95% of � shifts

on the Homo tip are below zero.

CONCLUSIONS AND IMPLICATIONS

The approaches that we used represent new ways to

examine evolution on a single branch, based on vari-

ation across species in the clade of interest and

phylogenetic-statistical modelling. The specific

methods expand on previous approaches (10,11)

by employing Bayesian MCMC to incorporate uncer-

tainty in estimated parameters and phylogeny, and

by explicitly modelling evolutionary change along

single branches (the OU model) or by making phylo-

genetically informed predictions for humans (phylo-

genetic prediction using PGLS). In the latter case,

the analysis is essentially predicting the phenotype

of humans as if we were ‘typical’ primates, given

covariation between the physiological values and

body mass. Thus, any deviations from predictions

suggest that humans have undergone substantial

evolutionary change based on predictor variables

that were not incorporated in the model for under-

standing other primates, and potentially involving

unique selective pressures. These predictions also

incorporate phylogeny when making the prediction,

based on the degree of phylogenetic signal in the

statistical models.

Focusing on the traits supported in both analyses,

we find that the following five traits reached our

criteria for undergoing substantial evolution along

the human lineage: amylase, haematocrit, phos-

phorus, monocytes and neutrophilic bands. Some

additional traits were supported as outliers in one

analysis, but not the other, including MCHC, creat-

ine phosphokinase, alkaline phosphatase and lip-

ase. More generally, we found a striking pattern

that humans have more traits identified as outliers

in the phylogenetic prediction model than other pri-

mates (where twelve species were identified as

having no exceptional traits). This pattern suggests

that broad physiological changes are more common

in recent human evolution than for any other primate

analysed. Alternatively, the large number of outlier

traits for humans may be attributable to obtaining

our human data from a different source than the

other primates, and may reflect effects of captivity

on physiology in non-human primates.

For some of the traits, we were able to formulate

specific a priori predictions for differences in humans.

One hypothesis involved the importance of endur-

ance running in human evolution (15). Under this

hypothesis, we predicted that variables related to oxy-

gen transport in the blood would show higher values

in humans, including haematocrit, red blood cell

counts, haemoglobin and MCHC. We found strong

support for an increase in haematocrit over the

human lineage in both analyses, although red blood

cells and haemoglobin were not among the traits

identified as evolutionary outliers in humans.

We also predicted increases in white blood cells

along the human lineage, based on hypotheses that

humans have undergone multiple epidemiological

transitions (29). Specifically, several factors in human

evolution may have facilitated an over-abundance of

parasites and pathogens, including more sedentary

lifestyles, close affiliation with domesticated animals

and their parasites and pathogens, and contact with

rodents and other animals that pilfer stored food

items (16,29). We found support for one specific type

of white blood cell—monocytes—to show increases
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along the human lineage, although other cell types

(and overall counts) did not show significant in-

creases (see also ref. 12). We also found strong

evidence for a decrease in neutrophilic bands (a type

of immature white blood cell) in the human lineage.

It remains unclear why other cell types, such as

mature neutrophils, eosinophils and lymphocytes,

do not show corresponding increases along the

human lineage, or why neutrophilic bands decreased.

We thus draw cautious conclusions concerning

the role that pathogen load has had on the evolution

of human physiology. Further research could investi-

gate more complex models that account for add-

itional ecological and social variables, although

this was not found to improve predictive capacity

for leukocyte counts in a previous BayesModelS

analysis (12).

Amylase was also among the best supported of

the traits that we investigated. In hindsight, this

makes sense in relation to changes in the human

diet, although it was not among our a priori hypoth-

eses. In particular, previous work has suggested that

the number of copies of the amylase gene increased

in humans; these increases are proposed to relate to

increased consumption of starch in the human diet

(30). Our findings suggest that the increased copy

number has physiological outcomes that show up in

rigorous evolutionary modelling along the human

branch.

The findings from our study may provide insights

into human diseases, and even novel solutions for

controlling disease. We propose that traits undergo-

ing rapid change—and in relation to potentially

novel selective forces—may generate new tradeoffs

with other traits, for example, through antagonistic

pleiotropy (1) and evolutionary inertia (or ‘evolution-

ary lag’, ref. 31). A major concept in applications of

the OU model is that traits may exhibit inertia, which

can be estimated (32). Results are mixed as to which

traits show inertia and the reasons for this, with sev-

eral studies of primates failing to find compelling

evidence for evolutionary lag (31,33,34). An im-

proved understanding of how traits respond to

changes in other traits may help to uncover con-

straints that limit counter-measures that would off-

set the costs of rapidly evolving traits. This may be

especially true for physiological parameters, which

can be both costly to produce (e.g., immune system

cells) or detrimental to health through effects on

other body systems (e.g., cholesterol, testosterone).

One cautionary note in interpreting our data con-

cerns our use of human values from Western

countries where hygiene, access to healthcare and

sedentary lifestyles may affect the physiological

values. Some changes in physiological values may

be a response to behavioural changes, rather than

traits shaped by natural selection, often with non-

intuitive effects. For example, fitness levels may

mediate traits like haemoglobin; in some studies,

Figure 3. Results of modelling adaptive regimes in the OU model. Each bar represents the proportion of adaptive regime shifts occurring on the Homo tip that are

positive (top of bar) and negative (bottom of bar) for each trait. Shading represents the proportion of models in the posterior distribution for which a � shift occurs

on the Homo tip, where darker shades mean a higher proportion of models. Bars that are almost entirely above or below zero (red line) and have a darker fill indicate

stronger evidence of an evolutionary change in recent human evolution. Traits are listed on the x-axis in the same order as Fig. 1 for comparison
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trained athletes have shown lower levels of

haematocrit, haemoglobin concentration and total

blood volume than other individuals from the same

population (e.g., 35), and higher levels of these traits

in other studies (e.g., 36). Similarly, Blackwell et al.

(37) studied immune traits of an Amazonian popu-

lation in a parasite rich environment and found

elevated levels overall, with particularly high values

of eosinophils. Although parasite load itself may ex-

plain this pattern, these results highlight the need for

more comprehensive human data and complicate

the lack of difference we found in many immune

traits, including eosinophils. Alternatively, one

could argue that eosinophil counts in those without

helminth infections—such as our use of data from

Western populations—is more relevant to assessing

evolutionary variation in baseline defences,

provided of course that the other primates in the

sample experience similar conditions (which, as

zoo animals with access to medicine and veterinary

care, they do). Further studies comparing different

human populations could elucidate the interactions

between evolutionary changes and phenotypic plas-

ticity that we are unable to address with our current

data set.

While some of the traits we predicted to be outliers

in our a priori hypothesis did indeed show a strong

effect, some traits that were predicted to show

marked change failed to do so. For example, our re-

sults revealed support for one type of white blood cell,

but not for increased overall white blood cell count.

Similarly, we found support for increased haematocrit

along the human lineage, but not for overall red blood

cell counts. This suggests that adaptations in traits

for long distance running and increased pathogen

load were either too small to detect, or occurred only

in specific aspects of human physiology. In the latter

case, changes like those we found for monocytes or

haematocrit may be revealing, but should be

investigated further. Another caveat concerns the

consistency of the association between the physio-

logical reference values and disease across species.

For example, we do not know whether similar values

of haematocrit reflect similar levels of aerobic fitness

in humans, other apes and monkeys. Future studies

may use methods similar to ours, but also include

additional predictor variables and intraspecific vari-

ation, optimize prior distributions for an individual

trait, or explore the interactions of changes in multiple

physiological values. Comparative analyses may also

be conducted among different human populations

thought to differ in selective pressures on these

phenotypes.

The methods we apply here could be used to study

the evolution of other traits that are relevant to human

health. Recently, for example, Samson and Nunn (13)

investigated human sleep in evolutionary context,

finding that humans sleep much less than one would

predict for a primate with our body mass, brain size,

diet, activity pattern and life history traits. They further

showed that humans spend a greater proportion of

the night in rapid eye movement sleep than expected.

This approach could be applied to additional traits,

such as those associated with bipedal locomotion,

childbirth, or brain size. Many of these gross changes

in human evolution are likely linked to disease or

health consequences, such as difficulty in childbirth.

Yet, few studies have quantitatively assessed the spe-

cific morphological features that have undergone

rapid change along the human lineage.

In conclusion, we found that several physiological

traits have undergone rapid and exceptional change

along the human lineage in ways that differ from other

primates, and that selective regimes have commonly

changed along the human lineage. A critical step for

future research will be to understand more about how

these ‘exceptional’ traits change with other physio-

logical, morphological and behavioural traits across

primates, and how these may represent constraints or

tradeoffs along the human lineage with conse-

quences for understanding how evolution has made

us susceptible to disease.
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