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Establishing the connection between genotype and
phenotype is currently one of the most significant chal-
lenges facing modern plant biology. Although spectac-
ular advances in next-generation DNA sequencing have
allowed genomic data to become commonplace through-
out biology, progress has been much slower in trans-
lating this discrete DNA base pair information into an
accurate description of phenotypic variation. The lim-
iting factor for quantifying phenotypes, particularly in
the context of agricultural and native plant populations,
has been the lack of phenotypic information of a scale,
density, and accuracy comparable to DNA sequencing
data. The extensive collection of phenotypic data for
many physiological and developmental traits from
many individuals remains onerous (Furbank and Tes-
ter, 2011). As a result, for large populations, there is
often a focus on traits that are easy or inexpensive to
measure, while more costly or difficult-to-score phe-
notypes are studied in only a few individuals. This is
especially true for traits that are complex in nature,
meaning that they have polygenic inheritance and
varying responses to the environment. Complex traits
are of primary interest not only because they represent
the majority of important agronomic crop traits but also
because they govern key biological processes that in-
fluence overall plant productivity and adaptability in
plant populations (Lynch and Walsh, 1998). Success in
deciphering these processes could translate into in-
creased genetic gains in plant breeding, elucidation of
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the mechanisms impacting important ecophysiological
traits, and improved crop management decisions to
further maximize yield and quality. In light of these
potential benefits, the aim of this Update article is to
present the basic principles of phenomics, summarize
the current state of field-based phenotyping, and
highlight key challenges and limitations. In addition,
the areas of data collection and management, environ-
mental characterization, and crop growth models
(CGMs) are presented as topics where further consid-
eration is needed to capitalize on advancements in
phenotyping technologies.

Phenomics, or high-throughput phenotyping, which
emerged in recent years in response to limited pheno-
typing capacity, is the use of sensor and imaging tech-
nologies that permits the rapid, low-cost measurement
of many phenotypes across time and space with less

ADVANCES

e Plants are intrinsically related to their environment, and ob-
served phenotypes are a direct product of this interaction.
Therefore, the ability to study and quantify phenotypes under
real-world conditions is essential to the basic understanding, as
well as improvement, of ecophysiological traits.
Recent technological developments have enabled progress in
plant phenotyping, but areas such as root phenotyping are still
lacking the needed instrumentation in order to capitalize on
these developments.
Extraction of high-dimensional phenotype data from images is
becoming more commonplace with advancements in image-
processing software. This is leading to the discovery of novel
phenotypes not identified previously but that are more related
to underlying physiological processes.
e Developments in envirotyping and crop growth modeling can
provide a useful framework for understanding plant develop-
ment.
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labor; it can include laboratory, greenhouse, and field-
based applications. In model plant species with small
physical stature, such as Arabidopsis (Arabidopsis
thaliana), large populations can be evaluated under
controlled environmental conditions. However, the use
of controlled environmental systems is not scalable for
many areas of interest. Native species often need to
be evaluated in their natural environment and over
a broad geographic and climatic distribution, and
agricultural crop trials must simultaneously evaluate
thousands of potential cultivars. Furthermore, these
controlled systems are unable to replicate the environ-
mental variables of a field environment that influence
complex traits such as grain yield or drought tolerance.
Therefore, field-based, high-throughput phenotyping
(FB-HTP) capacity is desperately needed to understand
phenotypic variation relevant to a broad range of re-
search areas such as food and nutritional security, an-
thropogenic effects on the environment, and ecological
community interactions.

The physical basis for most nondestructive, proximal
sensing systems is the quantification of absorption,
transmission, or reflectance characteristics of the elec-
tromagnetic radiation (EM) spectrum’s interaction
with the plant canopy surface (Mulla, 2013; Araus
and Cairns, 2014). The EM spectrum, specifically the
wavelengths between 400 and 2,500 nm, can be broken
down into three major parts that offer information
about plant status, structural properties, and bio-
chemical composition (Fig. 1). These three subregions
are composed of (1) the photosynthetically active re-
gion (400-700 nm PAR), in which photosynthetic pig-
ments, namely chlorophylls a and b, strongly absorb
light; (2) the near-infrared region (700-1,400 nm), in
which healthy plant tissue is highly reflective; and (3)
the shortwave infrared region (1,400-2,500 nm), in
which water and biomolecules contribute to reflectance
characteristics (Jones and Vaughan, 2010; Homolova
et al., 2013). In addition to these regions, thermal in-
frared, typically 8 to 13 um when used for remote
sensing, can provide information about canopy tem-
perature (Jones, 2004). The variation present in these
spectral traits give rise to ecological, species-, and
genotype-specific phenotypes.

Robust sensors mounted on a field-deployable vehi-
cle are imperative for FB-HTP. Although the aim of this
review is not to summarize specific sensor technol-
ogies (for summary, see Jones and Vaughan, 2010;
Sankaran et al., 2015), a brief list is provided for orien-
tation. The most common types of canopy sensors in-
clude digital imaging via red-green-blue cameras;
multispectral, including color-infrared modified digital
cameras; hyperspectral; thermal; fluorescence; and three-
dimensional (3D; time-of-flight and stereo cameras as
well as light detection and ranging). The choice of ve-
hicle for positioning sensors directly impacts the scale
of research that can be conducted as well as the
achievable sensor resolution and associated costs (for
review of vehicles, considerations, and limitations,
see White et al., 2012; Sankaran et al., 2015). For
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phenotyping large ecological systems, satellites and
manned aircraft remain the only practical option
(Kerr and Ostrovsky, 2003; Asner et al.,, 2012), but
small unmanned aircraft systems (UASs) are now a
viable alternative for smaller, geographically distinct
areas (Kim et al., 2013). Finally, for small-scale experi-
mental field studies, several vehicle options include
high-clearance tractors, cable gantries, cranes, linear
move irrigation systems, and small UASs in addition to
stationary observation platforms (Haberland, 2010;
Andrade-Sanchez et al., 2013; Busemeyer et al., 2013a;
Chapman et al., 2014; Liebisch et al., 2015).

PLANT CANOPY PHENOTYPING

Canopy reflectance can provide insight into overall
plant health as well as specific physiological processes.
To date, most FB-HTP and remote sensing applica-
tions have focused on using vegetative indices to infer
overall plant status (for review, see Bannari et al., 1995;
Govender et al.,, 2009), with normalized difference
vegetation index (Tucker, 1979) being the most well
known. Although these indices generally can be infor-
mative, they use less than 1% of available spectra and
lack the ability to give detailed information on physi-
ological processes. In contrast, canopy spectroscopy,
using either multispectral or hyperspectral sensors, can
assess canopy chemistry and composition by capturing
more of the spectra. Several research groups have
demonstrated that hyperspectral data (400-2,500 nm)
can be utilized to nondestructively infer leaf chemical
properties in various species (Ustin et al., 2009; Asner
etal., 2011, 2015), with specific applications including
estimation of canopy nitrogen (Martin et al., 2008) and
lignin content (Wessman et al., 1988). Spectral signa-
tures arising from these various leaf biochemical
compounds can give further insight into community-
level phenotypes, including species diversity, eco-
system composition, and threats to native plants by
the spread of invasive species (Turner et al., 2003;
Bradley, 2014).

However, spectral signatures of canopies are jointly
influenced by environmental factors and the biochem-
ical composition of the plant (Gates et al., 1965; Curran,
1989), making it difficult to understand how different
wavelengths across the measured spectrum translate
into biological meaning and function. In particular, the
complex interaction of light with the canopy surface
and the associated effects of light scatter pose a signif-
icant challenge. Attempts have been made to handle
this heterogeneity with the seminal Scattering by Ar-
bitrarily Inclined Leaves and Leaf Optical Properties
Spectra models, but these canopy reflectance models
oversimplify the structural characteristics of leaves into
a single parameter (Verhoef, 1984; Jacquemoud and
Baret, 1990). An additional layer of complexity is the
corresponding geometry and position of the sensor
itself, which can introduce systematic error into the
analysis of the spectral data and, therefore, must be
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Figure 1. Typical spectral reflectance curve for healthy vegetation. The unique spectral signature of vegetation in the wavelength
range of 350 to 2,500 nm allows it to be differentiated from other types of land features. The shape of the reflectance spectrum is
influenced by the chlorophyll content, health, water content, and biochemical composition of the vegetation (Curran, 1989; Jones
and Vaughan, 2010), which then can be used to help identify the type of vegetation and diagnose its status. Thermal sensing of
vegetation is valuable for the detection of drought stress and closure of stomata. There are five common types of sensors that are
used to measure spectral variation, with differences among them in the specific targeted wavelengths. The inset image depicts the
spectra underlying solar-induced chlorophyll fluorescence based on application of the Fraunhofer line discrimination principle
using three spectral bands (FLD3). Measurements of chlorophyll fluorescence can be used to detect the early stages of biotic or
abiotic stress before the appearance of visible symptoms. NIR, Near-infrared region.

properly accounted for in the model (Lobell et al., 2002).
Despite these limitations, the use of canopy reflectance
data at large scales provided by satellite and manned
aerial systems has proven valuable. However, far higher
spatial resolution is needed for the study of phenotypes
at the experimental plot level.

With recent technological developments, the ability
to use smaller, more portable sensors in combination
with vehicles, whether ground or aerially based, per-
mits the collection of canopy data with higher spatial
resolution. In addition, most developed FB-HTP plat-
forms incorporate sets of multiple sensors, creating
complementary streams of data that, when combined,
provide more information than what individual sensors
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alone can achieve (termed sensor fusion). In one of the
first demonstrations of FB-HTP, Montes et al. (2011)
developed a platform carrying light curtains (measure
of canopy height) and spectral reflectance sensors
(canopy reflectance) to predict aboveground biomass
accumulation in maize (Zea mays). Their results showed
that the combination of data from both sensors was more
predictive than data from either sensor alone. Such com-
bined sensor data were used successfully by Busemeyer
et al. (2013b) to phenotype X Triticosecale Wittmack
L. for harvestable biomass at multiple developmental
stages. More recently, Deery et al. (2014) developed an
advanced platform combining numerous high-precision
sensors that are capable of capturing details of plant
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physical structure such as canopy leaf angle and can
produce 3D surface reconstructed images of plants.
FB-HTP systems have been used to study the temporal
nature of trait development and its interaction with en-
vironmental effects. Historically, canopy temperature
has been used to assess the water status of plants, as
plants with available soil moisture exhibit decreased leaf
surface temperatures relative to atmospheric conditions
(Ehrler, 1973; Jackson et al., 1981). Recently, Pauli et al.
(2016) demonstrated the use of FB-HTP to study the
physiological processes underlying heat and drought
responses in an upland cotton (Gossypium hirsutum)
population grown under contrasting irrigation regimes.
They were able to assess the dynamic nature of multiple
canopy traits in response to rapidly changing field
conditions within one day and over the growing sea-
son. The longitudinal collection of phenotypic data
enabled the detection of quantitative trait loci (QTL)
with temporal expression patterns coinciding with
plant growth stages (Fig. 2). Further supporting the
ability of FB-HTP to monitor plant development under
managed stress, Sharma and Ritchie (2015) used a
similar system to identify differential growth charac-
teristics among cotton cultivars evaluated under vary-
ing irrigation levels. The novel ability of FB-HTP to
capture the temporal changes of a phenotype provides

Precipitation

Temperature

S -

Expression

Figure 2. Relationship of plant growth stages, environmental patterns,
and QTL expression. FB-HTP facilitates the study of plants at distinct
developmental stages or continuously throughout the season, thus
allowing the logistic growth pattern of plants to be modeled. As a result,
the genetic mapping of QTL can be performed with phenotype data
obtained by successive measurement of a trait, such as height,
throughout plant development, thereby enabling the expression dy-
namics of identified QTL to be monitored in the context of changing
environmental conditions.
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the critical pivot needed to focus on developmental
quantitative genetics in order to grasp how trait
manifestation is a function of many QTL whose effects
fluctuate with time (Wu et al., 1999). Because the ex-
pression dynamics of individual QTL vary and are
modulated further by phenological stage as well as
their interaction with the environment, it is not pos-
sible to capture this dynamism with single time point
analyses. Therefore, recognizing the individual be-
havior of QTL may permit genotype optimization with
respect to target environments or in identifying how
ecosystem disturbances impact the genetics of natural
populations.

Although its application in FB-HTP is still in its in-
fancy, fluorescence imaging, which quantifies the light
reemitted from chlorophyll 2 molecules via chlorophyll
fluorescence, can provide information about the pho-
tosynthetic apparatus under various abiotic and biotic
stresses (Maxwell and Johnson, 2000). Furthermore,
changes in fluorescence readings often precede the
manifestation of any visible symptoms (Lichtenthaler
and Miehé, 1997), making it useful for the early detec-
tion of abiotic and biotic stress (Massacci et al., 2008;
Jedmowski and Briiggemann, 2015; Ni et al., 2015). The
use of solar-induced chlorophyll fluorescence, based on
the Fraunhofer line discrimination principle (Plascyk,
1975; Meroni et al., 2009), was recently implemented
successfully using UAS-based hyperspectral imagery
(Zarco-Tejada et al.,, 2013) for the early detection of
Verticillium wilt in a production olive (Olea europaen)
orchard (Calderodn et al., 2013). As an extension of this
technology to ecological studies, the relationship of
chlorophyll fluorescence to gross primary production
has enabled the assessment of temporal changes in ec-
osystem health and productivity in response to cli-
matic change (Damm et al., 2015; Yang et al., 2015).
Although fluorescence imaging is promising, it still
suffers from the same limitations as other spectral
imaging techniques, including inconsistent or uneven
illumination, wind disturbances under field condi-
tions, and being unable to discriminate the underlying
cause of the stress.

PLANT DISEASE AND PEST PHENOTYPING

The plant canopy’s role as a vital aboveground in-
terface with the environment makes identifying and
quantifying disturbances due to biotic factors a critical
aspect of FB-HTP. The outcomes of early and accurate
detection of plant diseases and pests in the field have a
global economic impact. The presence of many biotic
diseases, including those caused by viruses, bacteria,
fungi, oomycetes, and insect pests, can be difficult to
detect until disease progression is advanced, pathogen
load is high, and symptoms are abundant. At this late
stage, disease is extremely difficult to control (Fry,
1982). Methods for the direct and indirect assessment of
pathogen presence in the field were reviewed recently
(Mahlein et al., 2012; Fang and Ramasamy, 2015; Mutka
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and Bart, 2015), and these methods are widely employed
(Ward et al., 2004; Lievens and Thomma, 2005;
Mirmajlessi et al., 2015). The early detection of plant
diseases prior to their spread remains the larger
challenge. Various techniques such as fluorescence,
visible and infrared spectroscopy, and hyperspectral
imaging have been tested for their ability to detect
biotic stress with differing levels of success (Sankaran
et al., 2010; Mutka and Bart, 2015). Although the as-
sessment of pathogen presence remains the detection
method with the highest sensitivity and specificity, a
robust method for the indirect detection of biotic
stress in general would provide a complementary
early warning system.

The task of biotic stress identification is conceptually
simple: identify the plant phenotypic signatures that are
specifically displayed during response to biotic stress.
However, symptoms of abiotic and biotic stresses phe-
notypically overlap, thus complicating these analyses.
Altered water content, thermal characteristics, and
changes in red-green-blue profiles are among the major
phenotypic alterations elicited by both biotic and abiotic
stress. For example, vascular bacterial and fungal path-
ogens can obstruct water transport within the plant,
leading to symptoms phenotypically similar to those of
drought stress (Yadeta and Thomma, 2013). Efforts to
identify phenotypic indicators of biotic stress have
approached this challenge by using FB-HTP in con-
junction with traditional field surveys to locate diseased
areas. In addition to on-ground phenomic methods, it
may be possible to use data collected from satellites to
assess plant health on a larger, ecological scale (Zhang
et al., 2014). These experiments are challenging because
of the complexity and unpredictability of field systems,
but the technology holds great promise for the identi-
fication and management of both current and emerging
plant diseases.

Since biotic and abiotic stress induce distinct early
events that lead to phenotypic changes, research aimed
at developing methods of distinguishing the differences
between biotic and abiotic stress responses has high
potential for success. Consequently, many researchers
are conducting experiments under controlled condi-
tions with a known inoculum and an ability to apply
additional abiotic and /or multiplexed biotic stresses in
predictable ways. As an example, fluorescence spec-
troscopy was used to distinguish citrus (Citrus spp.)
plants experiencing mechanical injury, drought, varie-
gated chlorosis, or bacterial infection (Lins et al., 2006;
Marcassa et al., 2006; Belasque et al., 2008; Bock et al.,
2008). Granum et al. (2015) investigated the ability to
detect early stages of infection of avocado (Persea
americana) by the fungus Rosellinia necatrix using fluo-
rescence and thermal imaging. Additional research
within controlled environments to understand these
complex interactions and their phenotypic outputs,
with particular focus on in planta changes that occur
during early stages of infection, can be expected to
eventually translate to in-field early detection systems
for plant diseases.
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PLANT ROOT PHENOTYPING

High-quality and high-throughput root phenotyping
in the field has long been a valuable but elusive target
for plant scientists. In many ways, the trench and
monolith excavation methods developed in the early
1900s (Weaver, 1926) are still state of the art, although
they are now assisted by modern tools, especially
digital images (Fig. 3). High-throughput soil coring
(Wasson et al., 2014), root crown excavation (Das et al.,
2015), and minirhizotron analysis (Maeght et al., 2013)
are common ways in which roots are studied in the
field, but each provides limited information relative to
the actual root structure. Thus, there remains a lack of a
coherent view of root phenotypes and their genetic and
environmental conditioning (Topp et al., 2016). An
ideal technology would allow the explicit in situ visu-
alization of root architecture as it develops through
time and likely would involve sensors that were either
aboveground or located belowground with minimum
invasiveness. The fundamental problem is that roots
are largely composed of water and organic matter,
which are usually abundant in the soil. Furthermore,
most soils have structural inhomogeneities, and other
properties, such as water content and temperature,
change over time. These factors create significant diffi-
culties for identifying consistent patterns in digital data
that can separate root and soil.

While none of these challenges for root phenotyping
will likely be solved in the near term, there have been
promising advances in sensor development, image
analysis, and signal processing. In particular, the ap-
plication of geophysical survey methods that use
magnetic and electrical field information for the non-
destructive analysis of soil features has some promise
for root phenotyping. Ground-penetrating radar (GPR)
uses radio waves (typically microwaves) to discrimi-
nate objects based on differences in their electrical
permittivity (for review, see Guo et al., 2013). An an-
tenna is used to transmit and receive EM pulses into the
ground, which interact with subsurface objects in ways
characteristic of their electrical properties. By moving
the array across the ground in proscribed transects, a
reflectance profile of the subsurface, called a radar-
gram, can be made (Zenone et al., 2008). Roots can
generate a characteristic hyperbolic pattern, which can
be used to generate two-dimensional images or even 3D
models of root systems (Zhu et al., 2014).

There are several limitations to GPR becoming an
effective tool for field root phenotyping, especially for
fine roots (Hirano et al., 2009), given the fundamental
tradeoff between penetration ability and object reso-
lution. Longer wavelengths can penetrate farther but
can resolve less detail, and vice versa. Furthermore,
electrically conductive materials that have high re-
flectance to radar, such as wet-clay soils, greatly re-
duce root discrimination. Soil temperature and the
amount of nonliving organic material also are known
to influence GPR signal; therefore, extensive calibra-
tion must be undertaken, especially for nonuniform
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Figure 3. Adding another dimension to the analysis of field-excavated
roots. 3D reconstructions are shown for a maize root crown that was

excavated, washed, and imaged by x-ray computed tomography. The
scan took less than 5 min. A, A segmented volume from which root
architectural features can be explicitly measured in 3D space, such as
total root length, angles, tortuosity, branching topology, etc. B, A two-
dimensional slice of the raw x-ray computed tomography volume
showing individual branches from a whorl of nodal roots and infor-
mation internal to the stem.

soils. Even in ideal conditions (relatively dry, sandy
soils), careful comparisons with excavated root sys-
tems have not shown strong correlations, especially
for roots growing downward (Zenone et al., 2008; Guo
et al., 2015a). To date, GPR has not been shown to be
capable of detecting fine (approximately less than
2 mm) roots, which may constitute the majority of root
length for many plants (Pierret et al., 2005; Brown
etal., 2009). GPR may currently be useful to provide a
rough estimate of biomass and root distribution in
some scenarios, but care should be taken because
many important contexts in which we wish to under-
stand root biology (e.g. water content, root angle
variation, and interactions with soil structure) also
affect our observation ability.

Electrical resistivity tomography (ERT) uses differ-
ential electrical properties of materials to map aspects
of the soil. ERT has been used to monitor soil water
content in a maize field (Beff et al., 2013) as well as tree
root biomass distribution (Amato et al., 2008), but it
has limited resolution that requires substantial em-
bedded infrastructure and cannot be easily scaled
to entire fields. Nonetheless, ERT has shown some
potential to improve signal processing for GPR by
mapping background soil properties at sites of inter-
est (Zenone et al., 2008). Electrical capacitance also has
been exploited to estimate root biomass in plants (for
review, see Dietrich et al., 2013) and even for QTL
identification in maize (Messmer et al., 2011); how-
ever, these relationships are only sometimes consis-
tent (Dietrich et al., 2013). The concept of mapping soil
qualities, rather than root structure per se (Werban
et al., 2013; Hartemink and Minasny, 2014), provides
a potentially powerful ally to direct root detection
methods, although many fundamental connections
between the two have yet to be established. As ma-
chine learning and other computationally intensive
statistical methods improve, so will our ability to ac-
curately classify and quantify biological structures
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and processes from highly multivariate and noisy
data (Singh et al., 2012; Aanensen et al., 2014; Smith
et al., 2015).

CHALLENGES OF FB-HTP

Based on the limited number of success stories pre-
sented herein, it becomes apparent that FB-HIP (and
phenomics in general) remains in its infancy, with nu-
merous challenges facing it. Perhaps the most restric-
tive factor to widespread implementation of FB-HTP is
the lack of any commercially available platforms that
offer a turn-key solution to address a plethora of bio-
logical questions. As the examples referenced within
highlight, most FB-HTP platforms are constructed by
cross-disciplinary research groups consisting of agri-
cultural engineers, plant breeders, and computer sci-
entists, which demonstrates the amount of expertise
required to construct even simple platforms that are
one-off solutions. These required resources, including
large budgets and specialized personnel, generally
are not available to most researchers, thereby put-
ting the needed tools of FB-HTP out of reach for
many. Additionally, these purpose-developed platforms
are specific to the research question being addressed;
therefore, they are not commonly transferable to other
crops, field designs, or research settings. This poses a
significant limitation, as it prevents the extensive test-
ing of these types of tools that is desired and needed by
the larger community.

Looking forward, it is challenging to predict which
type of platform will best be able to serve the needs of
the research community. Any platform that is to be
successful must be easy to use and deploy in the field,
inexpensive, utilize robust sensors, have a sizable user
community, and have acceptable technical perfor-
mance under field conditions. The best way to meet
these criteria is to develop tools for FB-HTP that are
open source so that the largest number of researchers
are able to contribute to the design, development, and
testing of these needed resources. Currently, UASs
embody some of these features because of the exten-
sive research and design invested in them, due to their
pervasive application outside of basic research, but
they still have a major limitation in that they are only
able to phenotype plant canopies. Because of this
limitation and others, there is still a strong need for
ground-based vehicles that can capitalize on their
proximity to plants to increase data resolution as
well as capture finer scale phenotypes and permit
the transition beyond canopy-level phenotypes. Al-
though the future hardware demands of FB-HTP re-
main unclear, the required tools and resources will
need to become universal, and the most realistic way
to achieve that is through low-cost, open-source
technology.

Technical limitations aside, the question remains
of what value is the vast amount of data that are
being generated and how biological meaning will be
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extracted from these data to answer important ques-
tions. Such considerations become especially relevant
with regard to the large amount of image data being
generated (and video in the near future). Although
imaging technologies are relatively new to plant bi-
ology, they have been transformative in other fields,
including medical and geochemical, and have led
to substantial new understandings and capabilities.
This is largely because imaging and sensor data allow
the capture of multivariate information that may
not be perceived by humans but is nonetheless es-
sential for understanding plant biology. This can
be exemplified by Chen et al. (2014), who used
high-throughput image analysis to gain insight into
drought stress physiology. Using an open-source
image-analysis pipeline, the authors were able to
extract nearly 400 phenotypic traits from images, but
more importantly, they were able to derive new traits
of physiological importance that captured growth
dynamics as well as stress-responsive traits, some-
thing not possible with low-throughput phenotyp-
ing. Examples of this type highlight the potential for
high-dimensional data to reveal new phenotypes that
serve to further the basic understanding of plant bi-
ology. However, as data of this nature are utilized, a
healthy balance must be struck between validating
phenotypic data from FB-HTP with state-of-the-art
conventional measurements and exploring how novel,
data-derived traits can be of value for uncovering bio-
logical phenomena.

There are still many issues that stand as hurdles
to FB-HTP becoming an accepted technology in the
plant science field. Primary among these challenges
are the development of resources to carry out this
work and how to leverage this information for insight
into plant biology. With these considerations in mind,
three areas important to the success of phenomics,
and FB-HTP in particular, are data management
and documentation, characterization of the environ-
ment in which plant phenotypes arise, and, most
importantly, application of these data for under-
standing the mechanisms governing plant growth
and development.

PLANT PHENOTYPE DATA CAPTURE,
MANAGEMENT, AND UTILIZATION

A promising development in FB-HTP is the ability to
accurately capture and record phenotype data from
field-grown plants using smartphones and tablets. The
scope of phenotyping with mobile apps can be broadly
classified into on-site experiments conducted by scien-
tists and survey-level or crowd-sourced information to
gather information on larger ecological or agriculture
landscapes. The data types, computational require-
ments, and image-processing challenges for these two
purposes are largely similar, with minor distinctions in
user interface, data structure, and data organization.
Plant breeder-led trials generally consist of thousands
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of distinct entries from a common location, while
farmer surveys or surveys of natural populations target
hundreds of locations with limited data collection at
each site. In order to facilitate data collection and stor-
age, a number of software apps have been developed
ranging from research-specific tools to applications for
farm- and landscape-level surveys. Field Book is an
example of an application developed to specifically
meet the requirements of plant breeding programs
where detailed data collection is necessary (Rife and
Poland, 2014). In contrast, iNaturalist (http://www.
inaturalist.org) is an application developed to capitalize
on crowdsourcing and is used to catalog biodiversity,
identify endangered species, and monitor invasive
species. For FB-HTP, improved data management and
electronic data capture constitute a critical foundation, and
numerous apps have been developed to meet this need
(IBreedIT [https:/ /play.google.com/store/apps/details?
id=com.ibreedit.mobile.live], Daventi [https://itunes.
apple.com/us/app/fieldapp/id457953534?mt=8&ign-
mpt=u0%3D4], Phenome Networks [http://phenome-
networks.com/phenome-one/application], PhenoType
[https:/ /play.google.com/store/apps/details?id=com.
phenotype.phenotype], and Diversity Arrays Technology
[https:/ /play.google.com/store/apps/details?id=com.
diversityarrays.kdsmart]). There also is a growing num-
ber of Web apps to curate and link data gathered in the
field and, therefore, increase the utility and value of col-
lected data (Aanensen et al., 2014).

In order to be useful, these apps rely on data collection
using standard methods, protocols, and formatting. This
is due to the fact that, regardless of how they are col-
lected, phenotype data are inherently complex, given
that they can range from populations to individual plants
to specific tissues and can be recorded on comparative,
discrete, or continuous scales. Because the data are es-
sentially infinite in both diversity and scale, data docu-
mentation, integration, representation, and accessibility
are critical aspects that present significant challenges (for
review, see Deans et al., 2015). In order to be broadly
useful, large-scale, high-dimensional data sets must be
represented in such a way that data can be easily ag-
gregated and extracted to address biologically questions.
In addition, data collection methods must be reported at
a level to enable experimental reproducibility. Central to
these issues is the proper reporting of experimental
metadata, the information that describes experimental
design, sampling methods, environmental conditions,
instrumentation, and analysis (Krajewski et al., 2015). To
determine which types of metadata should be reported
for a given experiment to make it both discoverable
and reusable, Minimal Information About a Plant Phe-
notyping Experiment standards (http://cropnet.pl/
phenotypes; Krajewski et al., 2015) should be followed,
and methods used to measure phenotypes should be
detailed at a level that enables reproducibility (Sandve
et al., 2013). For example, the maize Genomes to Fields
initiative has collected phenotype data and has released
detailed methods that not only outline how to collect
maize phenotypic data under field conditions but also
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the requisite metadata to enable discovery, aggrega-
tion, analysis, and reuse (available at http://www.
genomes2fields.org/; see About and then Project
Overview and Scope). This information includes de-
tailed descriptions of what traits were measured (plant
height, ear height, stand count, etc.), units of measure-
ment, and protocols for how to measure traits, includ-
ing when the data should be collected, so that all of the
project’s phenotypic data can be aggregated regardless
of where and by whom they were collected.

To avoid confusion due to simple naming issues and
maximize the potential to integrate data across experi-
ments, environments, or even species, the use of well-
established nomenclatures, controlled vocabularies,
and ontologies for both metadata documentation and
phenotypic descriptions is needed. Further impetus to
report data using these community standards lies in the
fact that many online data repositories rely on them for
data representation. However, while mechanisms to
report experimental design metadata based on shared
vocabularies are comparatively mature, methods to
accurately describe phenotypic descriptions are just
now emerging. Oellrich et al. (2015) report a proof of
concept wherein plant phenotypes for six species were
curated as entity quality (EQ) statements to enable
analysis by semantic reasoning. For example, dwarf
plants are generally short (due to reduced internode
length) with leaves that are both reduced in length and
increased in width. Using EQ statements, the first of
these three aspects of the dwarf phenotype would be
reported as “internode length reduced.” Their analyses
of the resulting data demonstrated that, once plant
phenotype data were represented as ontology-based
EQ statements, semantic reasoning could be used to
discover shared biology and increase analytical power.

In summary, proper metadata documentation ac-
companying FB-HTP data is critical for data discovery,
analysis, and reuse. To enable cooperative plant phe-
notyping activities, the International Plant Phenotyping
Network (IPPN; http://www.plant-phenotyping.org/)
was recently formed. The IPPN provides leadership as
the foremost body coordinating multinational efforts for
plant phenotyping across many species and represents
numerous stakeholders from all sectors of the research
community. One goal of this organization is to develop
and disseminate standards that aid in the distribution
and sharing of phenotypic data. The IPPN represents a
useful starting place to get a foothold on the status of
existing plant phenotyping efforts, standards, and
data sets.

ENVIROTYPING

Although it is well known that plants grow in het-
erogenous environments, analytical methodologies
tend to oversimplify the contribution of the environ-
ment to the phenotype. This weakens our understand-
ing of how ecosystems or even individual plants
respond to changes in the environment. Furthermore,
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the long-term effects of environmental conditions, such
as temperature and water availability, on phenological
development are significant; environmental conditions
greatly influence the initiation and duration of vege-
tative, reproductive, and maturation stages of plants
(Bahuguna and Jagadish, 2015; Mickelbart et al., 2015).
Due to the interrelatedness of physiological traits, plant
developmental phases, and growth conditions, there is
a need to gain a better understanding of the complex-
ities of genotype-by-environment interactions. An ad-
ditional component contributing to these complex
interactions are the management practices (genotype-
by-environment-by-management interaction) employed
in both agricultural and natural system settings that can
have significant, large effects on how plants interact with
their environment. To this end, envirotyping, which is
the detailed characterization of the environment in
which plants are growing (Cooper et al., 2014), needs to
be employed.

The characterization of atmospheric conditions at
local levels has become relatively commonplace with
the advent of portable weather stations and inter-
polation methods using data from regional weather
stations. However, the ability to quantify the soil
environment, including parameters like pH, organic
matter, and moisture content, at high spatial resolu-
tion remains challenging given the heterogeneity of
soils. Grid soil sampling and electromagnetic soil
mapping, which measure soil conductivity to esti-
mate properties like salinity, water content, and or-
ganic matter, have proven useful in characterizing
spatial soil variability (Mallarino and Wittry, 2004;
Brevik et al., 2006; Sun et al., 2013; Guo et al., 2015b).
These methods are not without their limitations
though; both grid soil sampling and electromagnetic
mapping are typically performed once per season,
making it impossible to capture the dynamic nature
of the soil-water profile. In addition, these methods
are too invasive for implementation in most natural
systems.

To adequately characterize environmental conditions
throughout the course of a season, a network of af-
fordable, open-source sensors is the best option for
field-level environmental data collection. Bitella et al.
(2014) designed a novel, low-cost hardware platform
that incorporates sensors for recording air temperature
and relative humidity as well as soil temperature and
moisture content at multiple depths. Given the low
cost of these sensors, they could be spaced at close,
regular intervals throughout the field, providing a
high-resolution sampling grid. To further enhance the
capability of stationary sensors, the incorporation of
wireless networks connected to a central computer
(node) could be implemented to synchronize data
collection in real time (Hirafuji et al., 2004; Fukatsu
and Hirafuji, 2005). By incorporating photovoltaic
powered sensors and networks, envirotyping also
could be carried out in remote locations for longer
periods of time with minimal disruption to the natural
habitat.
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CROP AND PLANT MODELING

Since their inception in the 1960s, CGMs have devel-
oped into useful tools for assessing the adaptation of
cropping systems, informing management choices, and
guiding policy decisions. Typically, models are run using
either historical or predicted weather data (based on un-
related climate models) and are then used to determine
optimal solutions of input parameters such as planting
date or fertilizer application. Within the last 20 years,
models have been used increasingly in crop adaptation
and breeding, but this requires better modeling of phys-
iological processes (for summary, see Holzworth et al.,
2014). In the context of breeding, models have been used
for two purposes, first to extend envirotyping beyond the
analysis of environment variables per se (i.e. using the
model as an integrator that characterizes the growth en-
vironment), and second to extend the phenotyping per
se at the level of the plot or plant, sometimes described
as model-assisted phenotyping (Luquet et al., 2006;
Rebolledo et al., 2015). A newly sought outcome from
applications of CGMs is to combine their outputs of
development and growth variables with knowledge
from genomics and understanding of genetic architec-
ture in order to predict the trait combinations, and
eventually the allele combinations, that provide im-
proved solutions in breeding (Technow et al., 2015).

The generation of environment proxies, such as
drought indices, that then can be utilized in statistical
analyses of phenotypes collected in one or more trials
on a set of genotypes (Chapman et al., 2000; Chenu
et al., 2011; Cooper et al., 2014). For this purpose, the
models need to be capable of simulating the perfor-
mance of one or more check genotype(s), with the in-
puts typically being daily weather data and an accurate
trial-level soil characterization. The demands on model
precision are relatively lower for envirotyping than for
other uses: reasonable prediction of phenology and bio-
mass production/water use demand can be sufficient to
estimate drought patterns (Chapman, 2008) or accu-
mulated stresses due to heat (Loffler et al., 2005; Zheng
et al.,, 2015). Similar types of applications of models are
made in ecological research to estimate the incidence
and intensity of favorable or stressful growing condi-
tions, again with a similar need for weather and soil
data (Haxeltine and Prentice, 1996). While soil and
management are perhaps the major spatial variables to
consider in agricultural situations, spatial modeling of
the environment in ecosystems is typically more chal-
lenging due to changes in topography, species distri-
bution, and multispecies canopy, all of which affect the
resulting microclimate and the specific influence on
plant adaptation.

Model-assisted phenotyping can be taken to refer to
multiple roles of models in relation to plant phenotyp-
ing. These roles include (1) use of models to decide which
traits to measure; (2) calculation of extended phenotypes
using inputs of plant phenotyping; (3) estimation of
plant growth parameters from integration of multiple
data sets from plant phenotyping; and (4) feedback from
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plant phenotyping to improve the physiological basis of
models (Fig. 4). Until now, the most common use of
models to assist phenotyping has likely been in associ-
ation with the first role. Many examples have been as-
sociated with optimizing the phenology, especially the
timing of reproductive stages, with respect to the historic
or predicted future occurrence of different types of
stresses (Zheng et al., 2015). Most existing models are
easily suited to this purpose as long as their estimation
of phenology and the damage functions for the stresses
are reasonably precise.

The most desired use of CGMs has been to propose
ideotypes of trait combinations that would result in op-
timal adaptation for given combinations of genotype-by-
environment-by-management interactions in current or
future climate scenarios (Hammer et al., 2014; Asseng
et al., 2015). While the models used may have been well
tested for a range of environments and/or genotypes,
these models are far more convincing and useful in plant
phenotyping and breeding if the modeling has been
augmented by physiological and genotypic experimen-
tation. For example, Singh et al. (2012) demonstrated that
the incorporation of QTL effects partially responsible for
sorghum (Sorghum bicolor) root architecture into a CGM
showed that narrow root angle would generally im-
prove yield via increased access to water. The final and
most convincing part of this work was that one of these
major QTL was mapped across breeding populations
and found to be highly associated with higher yields in
trials over multiple genetic backgrounds, years, and lo-
cations. This comprehensive approach combines exper-
imental data, physiological understanding of a trait from
multiple genotypes, model simulation, and breeding
trial validation to determine what traits to measure
(Hammer et al., 2016). The current cutting edge of phe-
nomics/CGM application in breeding is best described
by the CGM-whole-genome prediction approach of
Cooper et al. (2016), who show how a relatively simple
CGM can be inserted between genomic and phenomic
data to impose biological pathway constraints to the
statistical prediction models.

CONCLUSION

Progress has been made in FB-HTP, and more generally
phenomics, although significant barriers remain prevent-
ing its widespread implementation and utilization (see
“Outstanding Questions”). Although early results seem to
suggest that FB-HTP will be a valuable technology for the
plant sciences, questions remain concerning whether the
investment in FB-HTP is practical and justified on a larger
scale. Contemplating the future, it is clear that open-source,
low-cost hardware solutions need to be developed so that
more researchers have access to the tools and can test and
evaluate them within the context of their respective re-
search programs; only this will determine if expenditure
on these resources was warranted. Parallel to hardware
improvement, increased research into data management
and documentation needs to be implemented so that
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Figure 4. Schematic illustrating the integration of several data types for modeling phenotypes. The flow diagram shows the
process in which genotype, environment (including management practices), and their interaction produce the phenotype and
how FB-HTP can be integrated with envirotyping, genomic models, and crop models to predict phenotypes. Envirotyping and FB-
HTP, in conjunction with results from previous experimentation, provide the multivariate data needed to develop genotype-
specific crop models that capture the nonlinear dynamics of plant development under variable environmental conditions.
Combining genomic models, which tend to capture additive genetic effects, with crop models may provide the ability to better
incorporate nonadditive genetic effects and genotype-by-environment (G X E) interactions. The integration of these two
approaches has the potential to significantly enhance the prediction accuracy of modeled phenotypes.

accurate comparisons can be carried out between different
FB-HTP systems, further assisting in the maturation of this
nascent technology. As with all new technologies, the ini-
tial development phase is often fraught with setbacks,
challenges, and vigorous debate, but these are all healthy
signs of a technology worth pursuing.

Advancements in all areas of plant science are be-
ginning to bring field-based research into a new era,
an era where genomics, envirotyping, and phenomics
coalesce to unravel the complexities of plant biology.
Continued progress in artificial intelligence coupled
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with autonomous vehicles will permit the genera-
tion of data sets of unprecedented dimensionality
as robots begin to collect data nearly around the
clock. These advancements in combination with aerial
phenotyping, a rapidly maturing technology, and
exhaustive envirotyping will create a fully integrated
field site whereby trait development and expres-
sion can be evaluated in the context of dynamic en-
vironmental conditions. By achieving this goal, the
transition to studying developmental quantitative
genetics becomes possible, thereby allowing the
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OUTSTANDING QUESTIONS

There is a need to evaluate whether the data generated by high-

throughput phenotyping is capturing true biological signal and

if that signal is worth the investment of resources. Will it provide
better information or deeper knowledge?

Will latent phenotypes be more useful than those defined by

humans?

e Developmental quantitative genetics needs to become the focus
of future field-based research so that gene/QTL expression can
be understood within the context of both environmental condi-
tions and phenological stages.

e The incorporation of CGMs and envirotyping with high-

throughput phenotyping will be crucial to understanding the

dynamic interaction between plants and their environment.

This will help elucidate the physiological mechanisms respon-

sible for observed phenotypes as well as improve the prediction

of phenotypes.

interpretation of genetic effects in relation to the en-
vironment and life cycle in a way not previously
possible. Building on this framework, CGMs could
incorporate these components into their machinery,
helping to further the understanding of plant devel-
opment and its relationship with the environment,
which will permit a deeper knowledge of the com-
plexities of trait development in response to chang-
ing climatic conditions. Essential to this will be the
continued work to integrate CGMs with whole-
genome prediction methods to enable the robust
prediction of phenotypes in a number of environ-
ments, including those in which genotypes have not
been tested previously. This should not only assist in
the breeding of superior, stress-resilient cultivars but
also enable the identification of those natural popu-
lations that could be at risk from climatic variation
and their interaction with other anthropomorphic
disturbances.
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