
Breakthrough Technologies

3D Sorghum Reconstructions from Depth Images
Identify QTL Regulating Shoot Architecture1[OPEN]

Ryan F. McCormick, Sandra K. Truong, and John E. Mullet*

Interdisciplinary Program in Genetics and Biochemistry and Biophysics Department, Texas A&M University,
College Station, Texas 77843

ORCID IDs: 0000-0002-0753-0384 (R.F.M.); 0000-0002-5561-139X (S.K.T.); 0000-0003-2502-2671 (J.E.M.).

Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging
technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to
acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time
points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and
used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant
reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height, leaf angle,
and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of
the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum
Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle
prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such
as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an
economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study
the genetic basis of complex traits.

The rate-limiting step for crop improvement and for
dissecting the genetic bases of agriculturally important
traits has shifted from genotyping to phenotyping,
creating what is referred to as the phenotyping bottle-
neck (Houle et al., 2010; Furbank and Tester, 2011).
Alleviating the phenotyping bottleneck for agricultur-
ally important plants will help the world meet the in-
creasing food and energy demands of the growing
global population (Somerville et al., 2010; Alexandratos
and Bruinsma, 2012; Cobb et al., 2013). Approaches to
alleviate the plant phenotyping bottleneck fall into
two broad categories: approaches that increase the
number of individuals that can be grown and evalu-
ated (Fahlgren et al., 2015b) and approaches that pre-
dict performance in silico to prioritize individuals to
grow and evaluate (Hammer et al., 2010; Technow et al.,
2015). Both of these approaches will be instrumental for

increasing the rate of crop improvement, and both ap-
proaches are facilitated by advances in image-based
phenotyping; multiple plant measurements can be ac-
quired rapidly from images, and data from image-based
phenotyping approaches also can inform performance
prediction (Spalding and Miller, 2013; Pound et al.,
2014). As such, the development of image-based phe-
notyping platforms for agriculturally important plant
species is a high priority for plant biology and crop im-
provement (Minervini et al., 2015).

The diversity of crop species and the variety of traits
of interest have resulted in the development of a
number of different platforms for plant phenotyping
(Cobb et al., 2013; Li et al., 2014). Commercial platforms,
including the Scanalyzer series from Lemnatec (http://
www.lemnatec.com/products/; accessed February 2016)
and the Traitmill platform from CropDesign (http://
www.cropdesign.com/general.php; accessed February
2016), have gained adoption in the research community
and have promoted the development of additional soft-
ware (beyond that which the respective companies pro-
vide) to analyze the images produced by the platform
(Reuzeau, 2007; Hartmann et al., 2011; Fahlgren et al.,
2015a). Avariety of noncommercial platformsandmethods
developed by the research community also exist and
have been demonstrated to perform well (White et al.,
2012; Fiorani and Schurr, 2013; Sirault et al., 2013; Pound
et al., 2014). Several platforms have been deployed at
sufficiently large scale to examine genomic loci underly-
ing complex traits in crop plants such as barley (Hordeum
vulgare; Honsdorf et al., 2014), pepper (Capsicum annuum;
vanderHeijdenet al., 2012),maize (Zeamays; Liuet al., 2011),
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rice (Oryza sativa; Campbell et al., 2015), and wheat
(Triticum aestivum; Rasheed et al., 2014). These suc-
cessful applications of image-based phenotyping to
understand the genetic bases of complex crop traits
represent only a small fraction of the imaging modali-
ties and crop species available for study. Sorghum
(Sorghum bicolor) is the fifth most produced cereal crop
in the world and is a promising bioenergy feedstock
(Mullet et al., 2014). Recent work has demonstrated that
optimization of plant canopy architecture has the po-
tential to improve sorghum productivity (Ort et al.,
2015; Truong et al., 2015). As such, we sought to de-
velop an image-based platform to examine the genetic
bases of shoot architecture traits in sorghum. While
commercial products like the Scanalyzer and Traitmill
systems are capable of exerting fine control and exten-
sive automation for aboveground architecture mea-
surements, these and other current systems did not
meet our specifications for phenotyping in terms of cost
of entry, portability, output, throughput, or potential
applicability in field phenotyping scenarios (Biskup
et al., 2007; Sirault et al., 2013; Pound et al., 2014). Thus,
we sought to develop an economical (i.e. less than
$1,000 U.S.) image acquisition and processing pipeline
capable of nondestructively assaying sorghum canopy
architecture in a portable and semiautomated fashion.

Previous work has demonstrated the potential of
commercial-grade depth sensors in measuring plant
architecture (Chene et al., 2012; Azzari et al., 2013;
Paulus et al., 2014). Therefore, we used the time-of-
flight depth sensor onboard Microsoft Kinect for Win-
dows version 2 to capture depth images from multiple
perspectives of individual sorghum plants, and these
images were processed to construct three-dimensional
(3D) representations of the imaged plants. In this man-
ner, three replicates of 99 lines from a sorghum bipa-
rental recombinant inbred line (RIL) population were
imaged at multiple time points during 1 month of
development, and the resulting point clouds were
registered, meshed, and segmented to generate 3D re-
constructions of the imaged plants.Measurements from
the segmented meshes and genotypes for the RIL popu-
lation were used to identify quantitative trait loci (QTLs)
underlying shoot architecture traits. We report QTLs
for shoot architecture traits such as shoot height, leaf
angle, and leaf length, and we demonstrate that the
relative contributions to phenotypic variability of the
QTLs change with respect to time. We also discuss our
image analysis procedures andmake our code available
as part of the growing body of low-cost, open-source,
image-based plant phenotyping solutions.

RESULTS

3D Sorghum Reconstructions from Depth Images

To efficiently make plant architecture measurements,
a portable, economical, semiautomated image acquisi-
tion and processing pipeline was developed. Image
acquisition was performed using a laptop, a tripod

supporting a time-of-flight depth camera, and a turn-
table (Supplemental Fig. S1). Plants were manually
transported between a greenhouse and the nearby
imaging station, and, for each plant, a series of 12 depth
and 12 red-green-blue (RGB) images were acquired as
the plant made a 360° rotation on the turntable. Fol-
lowing acquisition, images were transferred to a work
station and processed (Fig. 1).

Most of the processing steps use generally applicable
procedures available in open-source libraries and soft-
ware, including registration, cleaning, and meshing
of the point clouds (Cignoni et al., 2008; Rusu and
Cousins, 2011; Buch et al., 2013; Kazhdan and Hoppe,
2013). General solutions for the segmentation of features
like leaves and stems from plants, however, remain less
developed, especially for 3D plant representations
(Paproki et al., 2012; Paulus et al., 2013; Xia et al.,
2015). Because of this, we developed a segmentation
procedure for our particular application to partition
the plant mesh into component parts. The final result
of the semiautomated processing pipeline was a plant
mesh segmented into a shoot cylinder, an inflores-
cence (when present; Supplemental Fig. S2), and in-
dividual leaves, with each individual leaf assigned a
relative order of emergence (Fig. 1).

A total of 297 plants representing triplicate plantings
of 99 plants (97 RILs and the two parental lines) from the
BTx623 3 IS3620C sorghum mapping population were
grown in a greenhouse environment (Burow et al., 2011).
Because image-basedphenotyping is nondestructive, the
same plant can be sampled at multiple time points to
enable change over time to be monitored. All 297 plants
were imaged at four time points over a 17-d interval
starting 27 d after planting (DAP). The four time points,
consisting of more than 14,000 depth images and
representing nearly 1,200 samples, were processed to
segmented meshes. As such, an individual plant was
represented by a time course of four segmented meshes,
and a RIL was represented by three biological replicates
(Fig. 2). A series of measurements from each mesh was
then automatically acquired (Table I).

To compare the measurements obtained from the
image acquisition and processing platform with stan-
dard physical measurements of plant morphometric
traits, 15 plants (with 140 leaves) from the experiment
were imaged, and then leaf and stem measurements
were obtained from harvested plants 62 d after planting.
Shoot height, shoot cylinder height, leaf angle, leaf
width, leaf length, and leaf area were compared. Leaf
width and leaf length were measured using both a
measuring tape and an LI-3100C Area Meter (LI-COR),
and leaf area was measured using only the LI-COR in-
strument. Comparisons between the measurements in-
dicated that the image-based measurements performed
at least as well as the LI-COR leaf-scanning instrument
for leaf width and leaf length relative to hand mea-
surements with a measuring tape (Fig. 3). The RMSD
between manual measurements and image-based mea-
surements for leaf length and leaf width were 7.94 and
1.84 cm, respectively; this indicated marginally better
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performance than the RMSDs between manual mea-
surements and the LI-COR instrument for leaf length
and leaf width, which were 9.41 and 1.94 cm, respec-
tively. Leaf area measurements made with the depth
imaging platform andwith the LI-COR instrument were
well correlated (r of 0.92), although the image-based
platform reported, on average, larger values of leaf
area than the LI-COR instrument,with ameandifference
of 52.45 cm2. Leaf angle was measured with an RMSD of
9° and a r of 0.95 relative to hand measurements, and
shoot cylinder height was measured with an RMSD of
7 cm and a r of 0.99. Measurements of shoot height
showed the lowest correlation (r = 0.63 and RMSD =
11 cm) due to three outlier points; these outlier points
likely represent errors in manual measurement due to
the inherent difficulty in identifying the true maximum
height point of the shoot in an unbiased way during
manual measurement. We also note two leaf measure-
ment outliers in both leaf length and leaf area that oc-
curred because the image-based platform failed to fully
reconstruct two of the leaves that were in the same
vertical plane as the sensor. Ultimately, image-based
measurements were well correlated with manual mea-
surements, and the coefficient of variation of the RMSD
for the measurements ranged from 0.07 to 0.3 (within
the same range as measurements made using standard

instrumentation). As such, measurements made with
the phenotyping platform have utility for applications
such as QTL mapping.

Genetic Bases of Imaged Traits

To determine if the platform could be used to identify
genetic loci regulating shoot architecture, measure-
ments obtained from the plant meshes were associated
with genetic data from the RIL population. Genotypes
for members of the BTx623 3 IS3620C RIL population
were obtained previously and available to construct
a genetic map for mapping QTLs for the image-based
phenotypes across multiple developmental time
points (Morishige et al., 2013; Truong et al., 2014;
McCormick et al., 2015). Measurements obtained
from plant meshes were grouped into two categories:
organ-level measurements and composite measure-
ments. Organ-level measurements are segmentation
dependent and measure organ-level plant architec-
ture, such as leaf length and shoot cylinder height;
composite measurements are segmentation indepen-
dent and measure overall shoot architecture, such
as shoot height and shoot compactness (Table I;
Supplemental Figs. S4 and S5).

Figure 1. Processing of image data to segmented meshes. A, Point clouds are sampled from multiple perspectives around the
plant. B, The point clouds are registered to the same frame and combined. C, The combined cloud is meshed to generate a set of
polygons approximating the surface of the plant. D, The mesh is segmented into a shoot cylinder, leaves, and an inflorescence (if
one exists; Supplemental Fig. S2), and phenotypes are measured automatically.

Figure 2. Plant growth over time. A, Segmented
meshes for replicate 3 of RIL 175 are depicted at
four different DAP time points. Leaf colors repre-
sent individual segmented leaves and have been
assigned manually to enable tracking of the same
leaf between meshes; Supplemental Figure S3
depicts how color is assigned automatically by
the platform. The shoot cylinder is colored cyan.
Meshes are depicted at the same relative scale. B,
RGB data (not to scale) that correspond to the
imaged plants and were coacquired with depth
images; Supplemental Figure S3 depicts original
RGB images.
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QTL mapping of organ-level traits identified seven
unique genomic intervals with significant contributions
to phenotypic variability (Fig. 4; Supplemental Fig. S6;
Supplemental Table S1). A genome-wide scan under a
single-QTL model was used to examine the following
phenotypes across the four time points: the average value
of leaves 3, 4, and 5 for leaf length, width, surface area,
and inclination angle as well as shoot cylinder height.
Significant QTLs identified from a genome-wide scan
under a single-QTL model were used as an initial model
for stepwise model traversal to identify the most likely
penalized multiple-QTLmodel (Manichaikul et al., 2009);
the overlapping LOD-2 intervals of these multiple-QTL
models define unique intervals on chromosomes 3, 4, 6, 7,
and 10 (Supplemental Table S1).

A major source of variation in shoot architecture in
the BTx6233 IS3620C RIL population is Dwarf3 (Dw3),
a sorghum dwarfing gene on chromosome 7 at 59.8Mb.
The parents of the imaged RIL population, BTx623 and
IS3620C, are fixed for nonfunctional and functional
forms, respectively, of the Dw3 gene, which encodes an
auxin efflux protein that has pleiotropic effects on stem
elongation and additional architecture traits like leaf an-
gle (Multani et al., 2003; Truong et al., 2015). A significant
association betweenDw3 and shoot cylinder height is not
observed until the second time point (34 DAP), while
different alleles ofDw3 introduce significant variability in
leaf angle by the earliest time point (27 DAP). This is
likely because Dw3 impacts height by impacting stem
elongation and the stem has not yet begun to elongate
substantially by the earliest time point; as such, the
nonfunctional dw3 allele caused smaller leaf angles prior
to any significant effect on stem elongation (Multani et al.,
2003; Truong et al., 2015). Similar to Dw3, the effects of
Dw2, a sorghum dwarfing gene on chromosome 6 near
42 Mb (but not yet cloned), are significantly associated
with shoot cylinder height after thefirst time point (34, 39,
and 44 DAP); unlike Dw3, Dw2 is not significantly asso-
ciated with any other pleiotropic effects on leaf mor-
phology. However, an interval distinct from Dw2 is
observed on chromosome 6 near 51 Mb for leaf width.

A large interval on chromosome 10 was significantly
associated with variability in leaf length and surface

area as well as shoot cylinder height. While the LOD-2
intervals for these traits overlapped when comparing
all phenotype-by-time point combinations, the LOD-2
interval for leaf surface area at 39 DAP was distinct
from any shoot cylinder height intervals. Additionally,
the significant association of the interval with shoot
cylinder height is lost after 34 DAP, while the asso-
ciation is maintained with leaf traits throughout the
time course, suggesting that multiple QTLs that reg-
ulate shoot architecture are present on chromosome
10 (Supplemental Table S1).

An interval on chromosome 4 was associated with
multiple leaf traits, including length, width, and surface
area, measured as the average value of leaves 3, 4, and
5 when counting green leaves starting from the bottom
of the plant at the time of acquisition. Further analysis
showed that plants with BTx623 alleles of an insertion/
deletion (indel) marker at the leaf length maximum log
of the odds (MLOD) coordinate (chromosome 4; 62.45
Mb) had a leaf length of 50.1 cm when averaged across
the four time points. This was 5.6 cm longer than plants
with IS3620C alleles, which had a leaf length of 44.5 cm
when averaged across the four time points. Addition-
ally, the platform captured changes in leaf length over
time; plants with BTx623 alleles increased from an av-
erage length of 44.2 cm to an average length of 54.8 cm
over the 17 d, whereas plants with IS3620C alleles had
leaves that increased from an average length of 40.1 cm
to an average length of 47.5 cm (Fig. 5).

Because segmentation-dependent traits represent
organ-level traits that are often manually measured,
QTLs identified via the image-based platform for
organ-level traits were compared with QTLs identified
previously for similar traits in the BTx623 3 IS3620C
population and previous reports on the sorghum
dwarfing loci Dw2 and Dw3 (Hart et al., 2001; Feltus
et al., 2006; Brown et al., 2008; Mace and Jordan, 2011;
Morris et al., 2013; Higgins et al., 2014). Most organ-
level QTL intervals found in this study overlap with
comparable or related traits from previous field studies
(Table II). Of note, some of the intervals, like chromo-
some 6 near 51Mb and chromosome 4 near 62Mb, may
have multiple genes that each affect different traits or

Table I. Summary of the subset of traits automatically measured from the plant mesh used for the reported QTL analyses

Additional descriptions of the methods used to obtain the measurements are found in Supplemental File S1.

Trait Type Measurement Description of Measured Trait

Composite Shoot height Vertical distance from the lowest shoot point to the highest shoot point, including
leaves and inflorescence

Shoot surface area Surface area of the entire shoot
Shoot center of mass Vertical distance from the lowest shoot point to the shoot’s center of mass
Shoot compactness Surface area of the smallest convex polyhedron that contains the entire shoot

(i.e. convex hull surface area)
Organ level Shoot cylinder height Vertical distance from the lowest shoot cylinder point to the highest shoot cylinder point

Leaf length Length of a leaf
Leaf surface area Surface area of a leaf
Leaf width Width of a leaf
Leaf angle Angle at which a leaf emerges from the shoot cylinder

826 Plant Physiol. Vol. 172, 2016

McCormick et al.

http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1


Figure 3. Comparison of image-based measurements with measurements made using standard methods. Axes represent mea-
surements made via one of three methods: image-based measurements made from plant meshes, manual measurements made
with a measuring tape or protractor, and measurements with a LI-COR LI-3100C Area Meter. Plots with an axis representing
image-based measurements are colored blue, and plots without an axis representing image-based measurements are colored
orange. Leaf area measurements made with the platform include abaxial and adaxial leaf surfaces, so the image-based area
measurements were divided by two for comparison with LI-COR measurements of area. MD, Mean difference between mea-
surements; RMSD, root-mean-square difference; CV(RMSD), coefficient of variation of the RMSD given the range of data on the
bottom axis; r, Pearson product-moment correlation coefficient; n, number of samples from which the differences and coeffi-
cients were calculated.
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genes with pleiotropic effects, since these intervals were
associated with diverse leaf morphology traits across
the studies. Additionally, the genes involved could be
environmentally responsive, since related but different
traits were associated for the intervals when comparing
the greenhouse-based and field-based studies (e.g. leaf
length in this study versus leaf pitch, but not leaf length,
in the previous study, where leaf pitch measures the
length of the leaf from the leaf base to the apex of
the naturally curved leaf). Overall, there was exten-
sive overlap between the QTL intervals identified in

previous work and those identified using the imag-
ing platform, suggesting that these genomic loci
exert phenotypic effects across multiple studies and
environments.

In addition to capturing components of plant archi-
tecture like leaf morphology, the image-based mea-
surements also capture overall architecture traits that
integrate component traits. These composite measure-
ments are difficult or impossible to measure by hand
and integrate how component traits interact to influ-
ence overall plant architecture and, ultimately, how a

Figure 4. Log of the odds (LOD) profiles for or-
gan-level traits. For each phenotype, LOD pro-
files are based on chromosome-wide scans of
chromosomes with QTLs based on the most
likely multiple-QTL models found by model
selection (Supplemental Fig. S6). Each row rep-
resents a different trait, and within each trait are
four nested rows that each represents a different
time point (DAP). Each group of columns repre-
sents a chromosome, and each column represents
a marker at its genetic position. Cells are colored
bymarker LOD for the phenotype at the particular
time point.

Figure 5. Organ-level measurement of
average leaf length over time. A and B,
Meshes displaying development over
time for a plant bearing BTx623 al-
leles (A; RIL 257) and a plant bearing
IS3620C alleles (B; RIL 306) of an indel
marker on chromosome 4 that had the
MLOD for leaf length. C, Change in
average leaf length over time. Each thin
line in the plot represents the average
leaf length of a RIL (n = 3) colored by its
genotype. Leaf length was calculated
as the average of the third, fourth, and
fifth leaves counting from the bottom,
corresponding to the light green, dark
green, and blue leaves in A and B. The
two thick lines represent a linear fit for
each genotype and 95% confidence
intervals.
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plant canopy intercepts solar radiation. One specific ex-
ample of such a measurement is shoot compactness,
measured as the surface area of the convex hull of a plant
mesh. Shoot compactness is influenced by factors like
leaf angle and the height and planarity of a plant
(Supplemental Fig. S5). Accordingly, a strong associa-
tion between Dw3 and shoot compactness is present at
all time points due to the consistent effects ofDw3 on leaf
angle and later effects of Dw3 on stem growth (Fig. 6).
As such, composite traits represent measures of overall
plant architecture and integrate the interrelationships
between component phenotypes. Additional composite
traits examined were shoot surface area, shoot center of
mass, and shoot height, as described in Table I.
QTL mapping of the selected composite traits iden-

tified four genomic intervals with significant contribu-
tions to phenotypic variability (Fig. 6; Supplemental
Fig. S7; Supplemental Table S2). Since composite traits
are expected to be driven by phenotypic variation in
their component traits (and thus correlated), the com-
posite trait QTLs are discussed in the context of organ-
level QTLs with shared intervals. All of the composite
traits were significantly associated with a large interval
on chromosome 10 at early stages of development
(27 and 35 DAP). Consistent with the observation of
nonoverlapping QTL intervals for organ-level traits of
leaf morphology and shoot cylinder height on chro-
mosome 10, at least two QTLs are likely present in the
interval; canopy compactness is a trait influenced by
both leaf morphology and shoot height, and distinct
LOD peaks were observed, one at 6 Mb and one at
52 Mb (Supplemental Table S2).
Interestingly, one interval unique to the composite

trait measurements was identified on chromosome

3 near 66 Mb for shoot height, indicating that there are
additional component traits driving variability in
overall architecture that remain to be resolved and
explained by organ-level traits. Alternatively, the im-
pact of the QTLs on individual organ-level traits is
relatively small, and only the combined effects across
multiple individual traits provide sufficient power for
detection. As such, these composite traits represent a
useful approach for detecting novel genetic loci.

Due to the effect ofDw3 on shoot cylinder height and
leaf angle, a strong association is present for shoot
height and shoot compactness at the Dw3 locus; like-
wise, Dw2 is associated with shoot height. To further
quantify the influence of Dw3, the shoot heights of in-
dividuals bearing different alleles of an indel marker
near Dw3 were compared. Plants that have the domi-
nant, functional Dw3 allele increase in height from, on
average, 60.2 to 112.6 cm over the 17-d imaging inter-
val, and plants with nonfunctional dw3 alleles increase
in average height from 56.8 to 93.2 cm (Fig. 7). Fitting a
linear model to the data,Dw3 plants grew vertically at a
rate of 3.1 cm d21, whereas dw3 plants grew at a rate of
2.2 cmd21 between27and44DAP.Nondestructive, image-
based phenotyping combined with high-throughput
genotyping has great potential for parameterizing
plant functional-structural modeling and performance
prediction with genotype-specific rates of growth.

DISCUSSION

A time-of-flight depth camera was used to image
sorghum plants from a RIL population, and we devel-
oped an image processing pipeline to reconstruct 3D

Table II. Comparison of QTL intervals identified using image-based phenotyping with previously reported QTL intervals in the literature

Most QTL intervals identified with the platform overlapped with QTLs or causal genes reported previously for related phenotypes (Hart et al., 2001;
Feltus et al., 2006; Mace and Jordan, 2011; Morris et al., 2013; Higgins et al., 2014). Dw3 was cloned previously (Multani et al., 2003). For image-
based QTL intervals, the LOD-2 interval and peak coordinate for the phenotype with the maximum MLOD are reported, and the phenotype name is
indicated by an asterisk; maximum MLOD coordinates are not applicable to intervals from the literature, indicated by a dash. Supplemental Table S1
contains all identified organ-level QTLs. Leaf pitch and leaf curve are both measures of Euclidean distance from the leaf base to the apex of the
curved leaf blade and from the leaf base to the leaf tip, respectively (Feltus et al., 2006).

Chromosome Origin

Interval

Begin

Max MLOD

Coordinate Interval End

Related Traits with Overlapping

Intervals Prior Locus Names

Mb
4 Image based 57.48 62.45 63.40 Leaf length*, leaf surface area,

leaf width
QLcv.txs-D2, QLpt.txs-D

Literature 61.86 – 65.07 Leaf curve, leaf pitch
6 Image based 40.10 42.77 44.83 Shoot cylinder height* Dw2

Literature 39.72 – 42.64 Preflag leaf height
Image based 48.45 50.97 55.08 Leaf width* QLcv.txs-I
Literature 53.73 – 56.52 Leaf curve

7 Image based 59.51 59.65 59.99 Leaf angle*, shoot cylinder height Dw3
Literature 59.821905 – 59.829910 Leaf angle, culm height, culm

uniformity
10 Image based 1.23 2.00 8.21 Leaf length*, leaf surface area QLcv.txs-G, QLpt.txs-G, QLln.txs-G,

QHtu.txs.G, QHGT_meta1.105.27 7.46 52.24 Shoot cylinder height*
Literature 1.11 – 5.76 Leaf curve, leaf pitch

6.40 – 13.05 Leaf length, culm height, culm
uniformity
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sorghum plants and make automated measurements
from the reconstructions. Measurements made in this
manner are sufficiently rapid and accurate to enable the
identification of multiple genetic loci regulating shoot
architecture. As such, we demonstrate that depth imag-
ing represents a useful approach for high-throughput
phenotyping of crop plant architecture for the genetic
dissection of complex traits.

While the platform successfully identified QTLs reg-
ulating sorghum architecture (Figs. 4 and 6), a number of
improvements will be necessary prior to its applicability

in even larger scale studies. First, the acquisition process
will need to be improved. Registration artifacts were a
recurring problem, introduced by nonrigid transforma-
tions of plant leaves caused by leaf shaking on the
turntable, the registration methods used, and sensor
noise in acquisition. Multiple potential solutions for
these are available, including the use of a registration
algorithm capable of handling nonrigid transforma-
tions (Zheng et al., 2010; Bucksch and Khoshelham,
2013; Brophy et al., 2015), the use of multiple sensors,
the use of real-time mesh construction procedures like

Figure 6. LOD profiles for composite traits. For
each phenotype, LOD profiles are based on
chromosome-wide scans of chromosomes with
QTLs based on the most likely multiple-QTL
models found by model selection (Supplemental
Fig. S7). Each row represents a different trait, and
within each trait are four nested rows that each
represents a different time point (DAP). Each group
of columns represents a chromosome, and each
column represents a marker at its genetic position.
Cells are colored by marker LOD for the pheno-
type at the particular time point.

Figure 7. Composite measurement of
shoot height over time. A and B,Meshes
displaying development over time for a
plant bearing IS3620C alleles (A; RIL
175) and BTx623 alleles (B; RIL 19) of
an indel marker closely linked with the
Dw3 gene, an auxin transporter that
regulates plant height. C, Change in
plant height over time. Each thin line in
the plot represents the average height of
a RIL (n = 3) colored by its genotype at
the Dw3 locus. Shoot height was mea-
sured as the vertical distance from the
lowest shoot point to the highest shoot
point, including leaves and inflores-
cence (Table I). The two thick lines
represent a linear fit for each genotype
atDw3 and 95% confidence intervals.

830 Plant Physiol. Vol. 172, 2016

McCormick et al.

http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00948/DC1


Kinect Fusion to average sensor data and rapidly re-
construct the plant (Izadi et al., 2011), or the use of a
model-based approach to fit a geometric plant model
to the acquired points (Quan et al., 2006; Ma et al.,
2008). Second, the segmentation procedure will need
to be improved to better distinguish leaves that are
in contact with one another, to better automatically
identify the shoot cylinder of the plant, and to poten-
tially make it applicable to other grass or plant species.
Progress in data-driven approaches that automatically
cluster points into stem and leaf organs using feature
histograms indicate that segmenting point clouds di-
rectly represents a viable option, at least for high-
resolution laser scans (Paulus et al., 2013; Wahabzada
et al., 2015). Segmenting the point cloud directly may
provide the most general solution for both controlled-
environment and field applications, where reconstruc-
tion prior to segmentation is difficult due to occlusion.
Approaches that can accurately segment the point cloud
directly also could enable automated fitting of general-
ized plant or organ models to the segmented cloud,
potentially yielding methods that can automatically
reconstruct and measure complex plant scenes.
A major benefit of image-based phenotyping is its

nondestructive nature because insight into the tempo-
ral onset of genetic regulation is valuable in dissecting
its mechanistic basis. Markers tightly linked with Dw3,
a gene encoding an auxin transporter, are associated
with leaf inclination angle and shoot compactness prior
to their association with shoot height and shoot cylin-
der height, suggesting that changes in auxin transport
caused by different Dw3 alleles introduce variability in
leaf development and overall shoot compactness prior
to large effects on stem elongation (Figs. 4, 6, and 7).
Additionally, variation in the shoot cylinder height at
the earliest time point is most associated with an in-
terval on chromosome 10 (Fig. 4). This QTL is the pri-
mary driver of variability in shoot height and shoot
cylinder height until the variability in stem growth in-
troduced by alleles of Dw2 and Dw3 increases, and it
may be related to the timing of a developmental tran-
sition (Figs. 4 and 6). It is likely that multiple QTLs are
present on chromosome 10, given that distinct LOD
peaks at 2, 7, and 52 Mb were observed; additional
experimentation will be necessary to resolve the con-
tributions and temporal prevalence of specific QTLs in
the interval.
Many of the QTLs identified via image-based phe-

notyping overlapped with QTLs for comparable traits
discovered in prior field experiments (Table II). These
shared QTLs represent good candidates for continued
investigation, as they display robust phenotypic effects
across multiple experiments and conditions. Notably,
despite sharing overlapping intervals, the associated
traits sometimes differed. For example, this study
identified significant associations between leaf length,
width, and surface area with an interval on chromo-
some 4; a similar interval was identified in previous
work for leaf curve and leaf pitch, but it was not sig-
nificantly associated with leaf length in the previous

study (Table II). While all of these traits are aspects of
leaf morphology and share relationships, additional ex-
perimentation will be necessary to determine whether
these represent one QTL with pleiotropic effects (as ob-
served with Dw3), one QTL with different environmen-
tal responses, different QTLswith overlapping intervals,
or some combination of these possibilities.

CONCLUSION

Depth imaging and subsequent processing enabled the
rapid acquisition of multiple shoot architecture pheno-
types from a sorghum RIL population, and genetic loci
contributing to variation in shoot architecture were
identified. Depth cameras represent a practical tool to
rapidly measure plant morphology, and their applica-
tion to plant phenotyping alongside other imaging mo-
dalities will be useful for both controlled-environment
and field phenotyping scenarios. Integrated platforms
that merge image-based phenotyping approaches, ge-
netics, and performance modeling will enable rapid
improvements in understanding plant biology and will
promote the selection and engineering of plants for su-
perior performance in target applications.

MATERIALS AND METHODS

Plants, Greenhouse Conditions, Manual Measurements,
and Image Acquisition

A total of 98 RILs from the sorghum (Sorghum bicolor) BTx623 3 IS3620C
recombinant inbred mapping population and the two parents (Burow et al.,
2011) were planted in triplicate with five seeds per pot in C600 pots of Sunshine
MVP soil (BWI) in a College Station, Texas, greenhouse on July 7, 2015. Plants
were thinned to one plant per pot after germination. Plants were fertilized with
Osmocote Classic (13-13-13; Everris International) and watered on demand.
Tillers and senesced leaves were removed regularly. Each of the three replicates
of the 100 lines was grown on a separate greenhouse table, and differences in
shoot morphology were visibly apparent in the population throughout devel-
opment (Supplemental Figs. S8 and S9). Seeds for one of the RILs failed to
germinate (RIL 3), leaving three replicates of 99 lines for which images were
acquired. Plants were imaged at 27, 34, 39, and 44 DAP. Fifteen of the plants
were imaged at 62 DAP, harvested, and manually measured to compare the
performance of the platform relative to standard measurement techniques.
Manual measurements of leaf angle were made with a protractor, and shoot
height, shoot cylinder height, leaf length, and leaf width were measured using a
measuring tape. Additionally, leaf length, leaf width, and leaf area were mea-
sured using an LI-3100C Area Meter (LI-COR).

Image acquisition was performed using a Microsoft Kinect for Windows
version 2 sensor and theKinect forWindows SDK (version 2.0). TwelveRGBand
12 depth image frames were acquired at approximately 3-s intervals, and the
images were saved to disk on a laptop while the Kinect for Windows version
2 sensor was positioned on a tripod in front of an Arqspin 12-inch motorized
turntable that rotated the imaged plant (Supplemental Fig. S1). Plants were
transported manually to and from the greenhouse to the nearby imaging
station. Images were transferred from the laptop to a work station for sub-
sequent processing.

Processing Images to Acquire Plant Measurements

Procedures for processing images to acquire plant measurements and alter-
native methods that were explored are explained in Supplemental File S1. Here,
brief descriptions of procedures used for the reported analysis are outlined. For
each plant, the point cloud contained in each depth image was automatically
cleaned and registered to generate a single 3D point cloud using available
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open-source libraries and algorithms, including OpenCV (http://opencv.org;
accessed February 2016) and PCL (Fischler and Bolles, 1981; Besl and McKay,
1992; Rabbani et al., 2006; Rusu et al., 2008; Rusu and Cousins, 2011; Buch et al.,
2013). This point cloud was inspected manually, acquisition and/or regis-
tration errors were corrected manually using MeshLab (Cignoni et al., 2008),
and the cleaned point cloud was meshed to generate a set of polygons rep-
resenting the surface of the plant using available open-source software
(Bernardini et al., 1999; Corsini et al., 2012; Kazhdan and Hoppe, 2013). The
plant mesh was then segmented into a shoot cylinder (composed of the stem
and leaf sheaths), individual leaves, and an inflorescence (when present;
Supplemental Fig. S2). The shoot cylinder and inflorescence were labeled
manually. Following this, individual leaves were segmented using an auto-
mated procedure we developed that uses supervoxel adjacency and geodesic
paths across the adjacency graph to identify leaf tips and grow leaf regions
(Dijkstra, 1959; Surazhsky et al., 2005; Papon et al., 2013).

Multiple measurements were automatically obtained from each mesh,
both at the level of the whole plant (i.e. segmentation-independent, composite
traits) and at the organ level (i.e. segmentation-dependent, organ-level traits).
The traits measured are described in Table I. Descriptions of how these traits
were measured from the plant mesh are provided in Supplemental File S1,
and graphical depictions of selected measurements are shown in Supplemental
Figures S4 and S5. Additional implementation details can be found with the
code base (see “Code and Data Availability” below).

QTL Mapping and Comparison with Prior QTL Studies
from the Literature

Genotypes for the BTx623 3 IS3620C RIL population were generated pre-
viously using Digital Genotyping, a restriction enzyme-based, reduced-
representation sequencing assay (Morishige et al., 2013). Genotypes were
called using the naive pipeline of the RIG workflow with the GATK, and the
genetic map was constructed as described previously with marker orderings
relative to the version 3 assembly of the sorghum reference genome, Sbi3
(Department of Energy-Joint Genome Institute [http://phytozome.jgi.doe.
gov]; accessed February 2016); this resulted in a genetic map with 10,787
markers (McKenna et al., 2010; Goodstein et al., 2012; Truong et al., 2014;
McCormick et al., 2015). Both single- and multiple-QTL mapping were per-
formed with R/qtl (Broman et al., 2003). For single-QTL mapping (i.e. testing a
single-QTL model), the complete marker set of 10,787 markers was used.
Measurements of a trait for each of the three replicates of a RIL were averaged;
average trait values were normalized using empirical normal quantile trans-
formation prior to QTL mapping, so that the same permutation threshold
would apply to all phenotype-by-time point combinations (Peng et al., 2007). A
genome-wide scan under a single-QTL model for each phenotype-by-time
point combination was performed (Supplemental Figs. S6 and S7). If any of
the reported phenotype-by-time point combinations had a marker with a LOD
greater than 3.28 (the 95% threshold obtained from 25,000 permutations), its
LOD-2 interval (the coordinates of the flanking markers where the LOD had
dropped by 2 units below the peak value) was retained. The positions (centi-
morgans) with the largest LODwithin each LOD-2 interval for each phenotype-
by-time point combination were retained to initialize multiple-QTL mapping.

For multiple-QTL mapping, a subset of 1,209 markers was obtained by
enforcing a minimum marker distance of 0.8 centimorgans; significant peak-
LODmarkers from single-QTL mapping intervals were added back to the set if
they were dropped, resulting in 1,224 markers used for multiple-QTLmapping.
The genetic coordinates of the markers with the largest LOD for each LOD-2
interval from single-QTL mapping of each phenotype-by-time point combina-
tion were used to seed model selection for multiple-QTL mapping as imple-
mented in R/qtl (Manichaikul et al., 2009). Main effect, heavy chain, and light
chain penalties (3.2, 4.38, and 1.94, respectively) formodel selectionwere obtained
as 95% thresholds from 25,000 permutations of the appropriate statistics. The
multiple-QTLmodelswith the largest penalizedLOD for each phenotype-by-time
point combination are reported (Table II; Supplemental Tables S1 and S2;
Supplemental Figs. S6 and S7). For a given phenotype, the maximum LOD across
all time points characterized the MLOD of the phenotype (Kwak et al., 2014).
A longitudinal QTL model for each phenotype that contained QTLs at the
MLOD coordinates was used to generate the chromosome-wide LOD profile
scans (Figs. 4 and 6).

To compare QTLs found in this study with existing QTLs in the literature, the
physical coordinates relative to the sorghum version 1 reference assembly, Sbi1, for
QTLs in the BTx6233 IS3620C population were obtained; Mace and Jordan (2011)
determined these physical coordinates using a consensus map and QTLs identified
by Hart et al. (2001) and Feltus et al. (2006). The coordinates ofDw2 and Dw3were

obtained from Morris et al. (2013) and Multani et al. (2003). The corresponding lo-
cations of themarkers in Sbi3were obtained using Biopieces for sequence extraction
and BLAST via a local instance of Sequenceserver (Altschul et al., 1997; Paterson
et al., 2009; Priyam et al., 2015; www.biopieces.org). Physical locations relative to
Sbi3 were used as the QTL intervals for comparison with this study.

Code and Data Availability

The C++, Bash, and Python code written for image acquisition and pro-
cessing, the R code written for QTL mapping, the genotype and phenotype
data, and the full multiple-QTL models for each phenotype-by-time point
combination can be found on GitHub at https://github.com/MulletLab/
SorghumReconstructionAndPhenotyping. For each imaged plant, its depth
images, a single RGB image, and the segmented mesh can be found at the
Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.9vs26).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Imaging platform.

Supplemental Figure S2. Plants with inflorescences.

Supplemental Figure S3. Plant growth over time.

Supplemental Figure S4. Visual depiction of selected measurements.

Supplemental Figure S5. Composite traits integrate multiple architecture
traits.

Supplemental Figure S6. QTL mapping steps for organ-level traits leading
to the final LOD profiles shown in Figure 4.

Supplemental Figure S7. QTL mapping steps of composite traits leading
to the final LOD profiles shown in Figure 6.

Supplemental Figure S8. BTx623 3 IS3620C RIL population in the green-
house.

Supplemental Figure S9. Plants from the BTx623 3 IS3620C RIL popula-
tion display variation in shoot morphology.

Supplemental Table S1. QTL intervals by phenotype for organ-level traits.

Supplemental Table S2. QTL intervals by phenotype for composite traits.

Supplemental File S1. Image processing methods, potential alternatives,
and future development.
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