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Genomic imprinting affects a subset of genes in mammals, such that
they are expressed in a monoallelic, parent-of-origin–specific man-
ner. These genes are regulated by imprinting control regions (ICRs),
cis-regulatory elements that exhibit allele-specific differential DNA
methylation. Although genomic imprinting is conserved in mammals,
ICRs are genetically divergent across species. This raises the funda-
mental question of whether the ICR plays a species-specific role in
regulating imprinting at a given locus. We addressed this question
at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the
misregulation of which is associated with the human imprinting
disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell
syndrome (SRS). We generated a knock-in mouse in which the en-
dogenousH19/Igf2 ICR (mIC1) is replaced by the orthologous human
ICR (hIC1) sequence, designated H19hIC1. We show that hIC1 can
functionally replace mIC1 on the maternal allele. In contrast, pater-
nally transmitted hIC1 leads to growth restriction, abnormal hIC1
methylation, and loss of H19 and Igf2 imprinted expression. Imprint
establishment at hIC1 is impaired in the male germ line, which is
associated with an abnormal composition of histone posttransla-
tional modifications comparedwith mIC1. Overall, this study reveals
evolutionarily divergent paternal imprinting at IC1 between mice
and humans. The conserved maternal imprinting mechanism and
function at IC1 demonstrates the possibility of modeling maternal
transmission of hIC1 mutations associated with BWS in mice. In
addition, we propose that further analyses in the paternal knock-
in H19+/hIC1 mice will elucidate the molecular mechanisms that may
underlie SRS.
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Genomic imprinting is a conserved, epigenetic process in mam-
mals that regulates the expression of a small number of genes

in a monoallelic, parent-of-origin–specific manner. Typically clus-
tered within domains, the parental-specific expression of imprinted
genes is controlled by a cis-regulatory element, the imprinting
control region (ICR). During gametogenesis, ICRs acquire dif-
ferential DNA methylation patterns according to the sex of the
germ cells. This DNA methylation is maintained in somatic cells
after fertilization but is erased in primordial germ cells, allowing
the establishment of sex-specific imprints in mature gametes. The
proper establishment, maintenance, and erasure of imprints are
crucial for the correct expression of imprinted genes. Misregulation
of imprinted genes is associated with human imprinting disorders,
including Beckwith–Wiedemann syndrome (BWS), an overgrowth
disorder, and Silver–Russell syndrome (SRS), an undergrowth
disorder (1–3).
Mouse models have been valuable to the study of imprinting at

the H19/insulin-like growth factor 2 (Igf2) locus, serving as a proxy
for the orthologous human locus. On distal mouse chromosome 7,
reciprocal imprinting of the paternally expressed fetal growth
factor gene, Igf2, and the maternally expressed noncoding RNA,

H19, is regulated by the ICR located betweenH19 and Igf2, herein
termed imprinting center 1 (IC1) (4). IC1 is hypomethylated in
female germ cells and forms a CCCTC-binding factor (CTCF)-
dependent insulator in somatic cells, preventing the interaction of
the Igf2 promoters with downstream enhancers that are shared
between H19 and Igf2. CTCF binding at the maternal IC1 is crit-
ical for maintaining its methylation-free status and silencing Igf2
expression (5). In contrast, IC1 DNA methylation is acquired dur-
ing spermatogenesis. Methylation at IC1 blocks CTCF binding and
allows Igf2 expression.
Comparative genome studies have revealed extensive con-

servation of H19/Igf2 in therians (6). Consistently, key features
of imprinting, as well as spatial organization of the mouse and
human loci, are shared, including DNA methylation patterns,
CTCF-binding sites (CTSs), and cis-regulatory elements. No-
tably, however, the length of IC1 and the number of CTSs within
IC1 have diverged; the ∼5-kb human IC1 has seven CTSs,
whereas the corresponding mouse sequence is ∼2 kb and has
four CTSs. In addition, with the exception of the CTCF-binding
motifs, IC1 exhibits low sequence homology between mice and
humans (7, 8). This raises the question of whether the human
IC1 sequence could successfully regulate H19/Igf2 imprinting
in the mouse. If it can, then an in vivo model for imprinting
disorders associated with mutations at human IC1 could be
generated (9).
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Although interspecies compatibility of human IC1 was previ-
ously investigated in a transgenic mouse model (8), the human
transgene failed to exhibit the expected imprinting pattern. The
transgene acquired DNA methylation in male germ cells in a
copy number-dependent manner, but the imprint was not stably
maintained in somatic cells. In addition, the humanH19 transgene
was abnormally expressed on paternal transmission. Interpretation
of these observations is complicated by transgene copy number
variation, however. Furthermore, because long-range chromatin
looping plays an essential role in H19/Igf2 imprinting (10, 11), the
transgene insertion site may influence the phenotype. Thus, it is
imperative to test the functionality of the human IC1 element at
the orthologous locus.
Here we generated a knock-in mouse model in which the en-

dogenous mouse IC1 (mIC1) was replaced by human IC1 (hIC1).
Our goal was to investigate the extent to which hIC1 can
functionally replace mIC1. We found that hIC1 properly reca-
pitulates mIC1 function on the maternal allele, whereas hIC1 fails
to properly regulate the H19/Igf2 locus on the paternal allele. hIC1
is incompletely methylated in the male germ cells of knock-in mice,
which is associated with increased enrichment of dimethylation of
histone H3 at lysine 4 (H3K4me2) on hIC1. Overall, this study
reveals interspecies incompatibility of hIC1 in the mouse male germ
line. Importantly, we show that abnormal histone modification
composition at hIC1 may affect the proper establishment of DNA
methylation at hIC1 during mouse germ cell development.

Results
Generation of the H19hIC1 Allele. To determine whether hIC1 could
functionally substitute for the orthologous mouse sequence, we
replaced the endogenous mIC1 with hIC1 by gene targeting in em-
bryonic stem (ES) cells (Fig. 1A). Even though we obtained highly
chimeric mice after blastocyst injection of the targeted ES cells, germ-
line transmission of the targeted allele was inefficient. Only one
female pup with the H19hIC1 allele was live-born out of >250 agouti
pups; all other agouti pups were wild-type, suggesting that the pups
inheriting the H19hIC1 allele might be dying prenatally. The single
live-born female knock-in pup was of noticeably smaller size com-
pared with its wild-type siblings and remained small.
The neomycin resistance cassette (NeoR) was excised by cross-

ing the female to EIIA-Cre male on a C57BL/6J (B6) background
(Jackson Laboratories). Germ-line transmission of the targeted
allele and excision of NeoR were confirmed by Southern blot
analysis (Fig. 1B). When bred to a B6 male, the female knock-in
mouse was fertile, and wild-type and knock-in progeny were born in
the expected Mendelian ratios with no sex bias. Embryonic lethality
on paternal transmission was again observed after NeoR excision.
The use of knock-in males in a B6/CF1 mixed strain for paternal
transmission did not resolve the embryonic lethality. These results
rule out NeoR and pure B6 background as being solely re-
sponsible for the failure to obtain mutant pups. The H19hIC1 allele
was maintained through maternal transmission in a B6 background.

The Maternally Transmitted H19hIC1 Allele Can Functionally Substitute
for mIC1. To investigate H19 and Igf2 imprinting when the targeted
allele was maternally transmitted, we bred female H19hIC1/+ mice to
B6 (CAST7) mice, which have a Mus musculus castaneus chromo-
some 7 on a B6 background (12). This cross allows the parental
origin ofH19 and Igf2 expression to be distinguished in F1 progeny.
Heterozygous H19hIC1/+ mice were compared with their wild-
type littermates (H19+/+). The H19hIC1/+ and H19+/+ mice were
born in Mendelian ratios with no sex bias and no difference in
neonatal weight (Fig. 2A). We assayed expression and IC1
methylation in neonatal livers, where H19 and Igf2 are highly
expressed, and detected monoallelic expression in all cases (Fig.
2B). Consistently, total expression levels of H19 and Igf2 were
statistically equivalent in H19+/+ and H19hIC1/+ livers, as mea-
sured by quantitative real-time PCR (qRT-PCR) (Fig. 2C).

DNAmethylation at hIC1 on the maternal allele and endogenous
mIC1 on the paternal allele was measured by bisulfite mutagenesis
of genomic DNA, followed by pyrosequencing. The maternal hICI
was hypomethylated, as expected (Fig. 2D). Methylation at several
other ICRs in H19hIC1/+ livers was normal, suggesting that the
general imprinting machinery is functioning normally (Fig. S1A).
Finally, hIC1 was properly hypomethylated in the oocytes of
H19hIC1/+ females (Fig. 2E). We repeated these analyses in two
sequential generations of the H19hIC1 allele maternal transmission
offspring and obtained the same results. Overall, these data illustrate
that hIC1 can functionally replace mIC1 on the maternal allele.

The Paternally Transmitted H19hIC1 Allele Leads to Abnormal Insulation
at the H19/Igf2 Locus. To investigate H19 and Igf2 imprinting on the
paternal allele, we bred male H19hIC1/+ mice to B6 (CAST7) mice.
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Fig. 1. Targeting strategy to generate the H19hIC1 allele. (A) Schematics of the
endogenous locus, targeting vector (phIC1-neo), correctly targeted allele
(H19hIC1-neo), and targeted allele after excision of the neoR cassette (H19hIC1).
Depicted are the IC1 (white rectangle) with CTCF-binding sites (black blocks
within the IC1), H19 exons (gray rectangles), pBluescriptIIKS sequence (bold
line), neoR cassettes (green rectangles), loxP sites (black arrowheads), and en-
dogenous mouse DNA (thin line). Restriction sites and their relative positions
(in kb) to the H19 transcription start sites are indicated above the endogenous
locus. Probes (A, B, and C) used for Southern blot analyses are shown as thick
lines below the endogenous locus. (B) Southern blot analysis to confirm correct
targeting of the alleles. Genomic DNA from wild-type (+/+), hIC1-neo/+, and
hIC1/+mice was either digested with EcoRV-MluI and hybridized to external 5′
probe A or digested with StuI and hybridized to external 3′ probe B or to in-
ternal probe C. (C) Depiction of mIC1 (Top) and hIC1 (Bottom) highlighting
regions analyzed by qRT-PCR (a–m). IC1s are illustrated in the orientation
shown in A, with each CTS numbered. a, bisulfite treatment followed by se-
quencing for mIC1; b and c, ChIP–qRT-PCR for mIC1; d, pyrosequencing for
mIC1; e–h, bisulfite treatment followed by sequencing for hIC1; i–k, ChIP–qRT-
PCR for hIC1; l, pyrosequencing for hIC1; m, bisulfite treatment followed by
sequencing for hIC1 (used for oocytes). Details are provided in Materials and
Methods.
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All live-born neonates were wild-type, similar to what was ob-
served when breeding for germ-line transmission in chimeric mice,
suggesting that paternal transmission of the H19hIC1 allele is em-
bryonic lethal. To investigate this possibility, we isolated embry-
onic day (E)15.5 conceptuses. Although theH19+/hIC1 conceptuses
were viable, the H19+/hIC1 embryos and placentas were smaller
and weighed significantly less compared with those ofH19+/+ (Fig.
3A). Anecdotally, such a size difference was not apparent at E10.5,
and a trend toward a smaller size was observed at E12.5. The fetal/
placental weight ratio was not different between E15.5H19+/+ and
H19+/hIC1, demonstrating that H19+/hIC1 tissues were proportion-
ately smaller (Fig. S2A).
Allele-specific RNA analysis revealed biallelic H19 in E15.5

H19+/hIC1 livers and placentas, with equal expression derived from
the two parental alleles (Fig. 3B and Fig. S2D), suggesting com-
plete derepression of paternal H19. In contrast, paternal Igf2 ex-
pression was barely detectable, indicating complete repression
of Igf2 (Fig. 3B and Fig. S2D). Consistently, qRT-PCR analyses
revealed approximately 3.4-fold and 1.5-fold increases of H19 in
liver and placenta, respectively, and undetectable Igf2 inH19+/hIC1

compared with H19+/+ embryos in both tissues (Fig. 3C and

Fig. S2E). Similar results were observed in E9.5 whole embryos
(Fig. S2 B and C).
We next examined the extent to which methylation at hIC1 cor-

related with abnormal expression in heterozygous livers and pla-
centas. hIC1 was completely unmethylated on the paternal allele,
resembling the endogenous mIC1 on the maternal allele (Fig. 3D
and Fig. S2F). This unusual methylation pattern was not due to a
gross defect in the methylation machinery, because methylation at
other ICRs was normal in H19+/hIC1 embryos (Fig. S1B).
Finally, to determine whether the hypomethylated state of hIC1 is

associated with ectopic binding of CTCF on the paternal allele, we
performed allele-specific chromatin immunoprecipitation (ChIP)
followed by quantitative real-time PCR (ChIP–qRT-PCR) for
CTCF in E12.5 mouse embryonic fibroblasts (MEFs). As expected,
CTCF bound only to the unmethylated hIC1 on the maternal allele
and did not bind to the methylated mIC1 on the paternal allele in
H19hIC1/+ MEFs. In contrast, CTCF bound to both the unmethy-
lated mIC1 on the maternal allele and the unmethylated hIC1 on
the paternal allele in H19+/hIC1 MEFs (Fig. 3E). The results dem-
onstrate that paternal hIC1 is unable to acquire or maintain the
hypermethylated state of endogenous mIC1, fails to repress H19,
and instead gains a CTCF-dependent insulator function.

Incomplete Establishment of Genomic Imprinting at hIC1 During
Spermatogenesis. Because the paternal allele in E15.5 H19+/hIC1

embryos was hypomethylated, we assayed DNA methylation at
earlier stages (Fig. S3). We did not detect any methylation at hIC1
as early as the blastocyst stage, suggesting that either methylation
was not established during spermatogenesis or methylation was
established but was lost during preimplantation development (Fig.
S3). To distinguish between these possibilities, we examined DNA
methylation at hIC1 in sperm of H19hIC1/+ males, and observed
partial methylation (Fig. 4 A and B). As positive controls, we
analyzed methylation at endogenous hIC1 in human sperm sam-
ples from two fertile men as well as at endogenous mIC1 in
H19hIC1/+ sperm and found that all were hypermethylated, as
expected (Fig. 4 A and B).
To explore whether the methylation at hIC1 in H19hIC1/+ sperm

could be maintained after the first cleavage division, we assayed
H19+/hIC1 two-cell embryos in which the zygote had undergone
one round of mitosis. We found reduced methylation levels (close
to one-half less) at hIC1 in two-cell embryos compared with ma-
ture sperm (Fig. 4A). These results demonstrate that the DNA
methylation is partially established at hIC1 during spermatogen-
esis, but is not maintained in preimplantation development.

Increased Enrichment of H3K4me2 at hIC1 in Spermatogenic Cells. To
investigate factors that may inhibit complete establishment of
DNA methylation at hIC1 during spermatogenesis, we examined
histone posttranslational modifications at hIC1. Parental allele-
specific histone modifications have been described at mIC1 in
both somatic and germ cells (14–18). Several studies have sug-
gested an antagonistic relationship between “activating marks,”
such as dimethylation and trimethylation of histone H3 at lysine 4
(H3K4me2 and H3K4me3, respectively), and DNA methylation
(17–20). Other studies have shown a strong relationship between
“repressive marks,” such as trimethylation of histone H3 at lysine
9 (H3K9me3), and DNA methylation (21). In fact, H3K4 meth-
ylation is found preferentially on the hypomethylated maternal
IC1, and H3K9me3 is found on the hypermethylated paternal IC1
in mouse and human somatic cells (11, 14). We hypothesized that
depletion of H3K9me3, increased enrichment of H3K4me2, or
both contribute to the inability to fully establish DNA methylation
at hIC1.
Spermatogenic cells were fractionated by the STA-PUTmethod,

and chromatin was isolated from a round spermatid-enriched
fraction (22). ChIP–qRT-PCR analyses in round spermatids
revealed that hIC1 had fivefold greater enrichment of H3K4me2
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Fig. 2. Maternal transmission of the H19hIC1 allele. (A) Neonatal (P0) weight
of wild-type (+/+) and hIC1/+ mutant offspring. (B) Allele-specific expression
of H19 and Igf2 in neonatal liver analyzed by restriction fragment length
polymorphism (RFLP). Genotypes (wild-type and hIC1/+) and maternal (m)
and paternal (p) allele controls are indicated above each gel. (C) Total ex-
pression of H19 and Igf2 in neonatal liver analyzed by qRT-PCR. (D) Percent
methylation at IC1 in neonatal liver measured by pyrosequencing. Maternal
(m) and paternal (p) alleles in hIC1/+ are shown separately, because different
primers were used. Assay d was used for the wild-type (+/+) and hIC1/+(p),
and assay l was used for hIC1/+(m) (Fig. 1C). (E) IC1 methylation in oocytes
analyzed by bisulfite treatment followed by sequencing. Assay a was used
for mIC1, and assay m was used for hIC1 (Fig. 1C). Empty and filled circles
indicate unmethylated and methylated cytosines in CG dinucleotides, re-
spectively. Each horizontal row of circles denotes individual strands of
cloned DNA. Cytosines in CG dinucleotides that are conserved between
mouse and human and located within the CTS are depicted as black lines
above the clones and marked as CTS2 and CTS6 (13). In A and C, two-tailed
Student’s t test with equal variance was used; no significant differences
were observed. In A–D, wild-type (+/+), n = 11; hIC1/+, n = 12 (from three
litters). Bars represent the mean ± SEM; error bars in A and D are too small
to be visible on the graph.
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compared with mIC1 (Fig. 4C). Unlike previous studies that did
not report significant enrichment of H3K9me3 above background
at mIC1 in the male germ line (14, 17), we obtained a ChIP signal
above background. This discrepancy could be attributed to the
different antisera used for H3K9me3. Nevertheless, there was no
difference in the enrichment of H3K9me3 between hIC1 and
mIC1. Our finding that the difference in H3K4me2 between
mIC1 and hIC1 is greater than the difference in H3K9me3 sug-
gests that (i) H3K9me3 does not affect the acquisition of DNA
methylation at hIC1 during spermatogenesis, and (ii) enrichment
of activating histone marks at hIC1 contributes in part to the in-
complete establishment of imprinting at hIC1 during spermato-
genesis (Fig. 4C).

Abnormal Placental Morphology in H19+/hIC1. Because H19+/hIC1

embryos display similar phenotypes to those of many patients with
SRS who present with IC1 hypomethylation, including altered H19
and Igf2 expression and growth defects (23, 24), we hypothesized
that these embryos can serve as a model for SRS. Placental growth
defects are prevalent among individuals with SRS (24); thus,
we further characterized H19+/hIC1 placentas to study potential
mechanisms underlying SRS associated with IC1 hypomethylation.
We performed histological analyses on E15.5 H19+/hIC1 placentas
to explore whether abnormal placentation could contribute to
embryonic growth restriction, given thatH19 and Igf2 play essential
roles in placental development (25, 26). In addition to being smaller
(∼74% of H19+/+), H19+/hIC1 placentas displayed an increased
junctional/labyrinthine zone ratio, indicative of abnormal placenta
morphology (Fig. S2 G and H).

Discussion
Using a mouse model replacing endogenous mIC1 with hIC1, we
have shown that the ability of hIC1 to functionally replace mIC1
depends on the parental origin of the hIC1 allele. Although the

main aim of this study was to investigate interspecies compatibility
of hIC1 in the mouse system, we anticipate that findings from this
study also will provide insight into modeling and further examining
imprinting disorders such as BWS and SRS.
Several groups have reported that a subset of patients with BWS

carry mutations at IC1, and that these mutations are largely as-
sociated with IC1 hypermethylation, reduced H19 expression,
and biallelic Igf2 expression. Notably, these IC1 mutations (i.e.,
microdeletions and point mutations) manifest BWS clinical phe-
notypes when the mutant allele is maternal in origin (9, 27, 28).
Determining the extent to which these mutations contribute to the
molecular and clinical phenotypes of BWS is challenging, because
IC1 hypermethylation is mosaic in the patients, suggesting that not
all cells are aberrantly DNA-methylated. Moreover, clinical phe-
notypes of the patients are highly variable, possibly as a conse-
quence of either the mosaicism or the genetic background of the
individuals (27). In this study, we have shown that maternal
transmission of hIC1 can functionally replace mIC1 by properly
regulating imprinted expression and hIC1 methylation. Thus, our
findings raise the exciting possibility of modeling IC1 mutations
associated with BWS in mice via maternal transmission.
In contrast, paternal transmission of hIC1 leads to loss of H19

and Igf2 imprinting; H19 displays biallelic and increased expression,
and Igf2 is silenced. Offspring inheriting hIC1 paternally also exhibit
severe growth restriction. Of note, previous studies have shown that
Igf2 null neonates are born smaller but viable (29, 30), suggesting
that prenatal lethality of H19+/hIC1 is not due solely to the loss of
Igf2. Mice from two independent H19 knockout models exhibited
overgrowth, suggesting a growth-suppressing role of H19 (31, 32).
In addition, ectopic expression of H19 caused late-gestation le-
thality (33). Thus, changes in both H19 and Igf2 may synergistically
contribute to the severe growth restriction and prenatal lethality
of H19+/hIC1.
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Fig. 3. Paternal transmission of the H19hIC1 allele. (A) E15.5 fetal and placental weight of wild-type (+/+) and +/hIC1 mutant offspring. (B) Allele-specific
expression of H19 and Igf2 in E15.5 livers analyzed by RFLP. PCR cycle numbers varied between wild-type (+/+) and +/hIC1 for Igf2 (Table S1; see Table S2 for
primers). (C) Total expression of H19 and Igf2 in E15.5 livers analyzed by qRT-PCR. (D) Percent methylation at IC1 in E15.5 livers measured by pyrosequencing.
Assay dwas used for wild-type (+/+) and +/hIC1(m), and assay lwas used for +/hIC1(p) (Fig. 1C). (E) CTCF binding at mIC1 and hIC1 in heterozygous (hIC1/+ and
+/hIC1) E12.5 MEFs analyzed by ChIP–qRT-PCR. Assays b, c, i, and k were used (Fig. 1C); results from two biological replicates are shown separately. The y-axis
denotes percent input of CTCF IP normalized to nonspecific IgG (percent input of CTCF − percent input of IgG). **P < 0.01; ***P < 0.001; ****P < 0.0001, two-
tailed Student’s t test with equal variance (A) or unequal variance (C). In A–D: wild-type (+/+), n = 8;+/hIC1, n = 6 (from two litters). Bars represent the mean ± SEM;
error bars in D are too small to be seen on the graph.
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Previous studies have shown that abnormal H19 and Igf2 ex-
pression is linked to both placental and embryonic growth defects.
Deletion of a placenta-specific Igf2 transcript was found to result
in growth restriction of embryos in late gestation (34). In a mouse
model in which H19 was deleted and Igf2 expression was in-
creased, both the placenta and the fetus were overgrown at E19
(35, 36). In humans, placental growth defects are common in in-
dividuals with BWS and SRS (24, 37). We observed that H19+/hIC1

placentas not only are smaller, but also have abnormal placental
morphology. Although the contribution of an abnormal placenta
to fetal growth defects is unclear, it is noteworthy that H19 is more
highly expressed in the labyrinthine zone compared with the
junctional zone (38), and that Igf2 null mice display a dispropor-
tionate reduction in the labyrinthine zone compared with the
junctional zone (39). These observations suggest a potential major
growth-suppressing effect of increased H19 and silenced Igf2 ex-
pression in the labyrinthine zone.
We also have shown that hIC1 is partially methylated in the

male germ line of H19hIC1/+ mice. This phenotype is in contrast
with that of other mouse models that carry mIC1 mutations; in

those mice, methylation is properly established at nonmutated
CpGs in the male germ line (5, 40). This finding suggests that
interspecies communication between mouse and human is in-
effective in establishing IC1 methylation. Based on our finding
that hIC1 is abnormally enriched with activating H3K4me2
marks in the male germ cells, it is tempting to speculate that
somatic histone modification marks carried from the maternal
allele are not completely erased in the male germ cells. (Note
that hIC1 was necessarily transmitted maternally to generate
offspring.) Consequently, the establishment of DNA methylation
at hIC1 is inhibited. This finding adds to the growing consensus
that H3K4 methylation marks are inhibitory to de novo DNA
methylation in the germ line, whereas repressive histone marks
do not play major role in the establishment of methylation at
ICRs (14, 16–18, 20). However, it is equally possible that the
hypomethylated state of DNA attracts H3K4me2 at hIC1 by an
unknown mechanism. More detailed time course analyses of
DNA methylation and H3K4me2 enrichment in the primordial
germ cells and early-stage male germ cells will provide insight
into this hypothesis. Alternatively, there might be an inherent
difference between mIC1 and hIC1 in terms of acquisition of
methylation. A noncoding transcript has been detected at mIC1
during methylation acquisition in male germ cells (41), suggest-
ing a potential role of transcription in the establishment of meth-
ylation at mIC1. Whether the same holds true at hIC1 remains to
be determined, however.
Finally, we have shown that the partially established methylation

at hIC1 in the male germ line is not properly maintained during
preimplantation development. We also have shown that CTCF ec-
topically binds to hIC1 on the paternal allele in somatic cells. Similar
results have been reported for an earlier mouse model in which
CpGs within the CTCF-binding sites at the mIC1 were mutated to
abrogate methylation, while keeping the CTCF-binding motifs intact
(5). There, although methylation was properly established in the
male germ cells at the mIC1, it was not maintained during pre-
implantation development (5). These data suggest that CTCF
binding inhibits the maintenance of DNA methylation in somatic
cells, although the mechanism remains unknown. Alternatively,
hIC1 might lack properties that allow the mouse imprint main-
tenance machinery to properly recognize the sequence. It is also
possible that hIC1 contains inhibitory signals that block accessi-
bility and/or activity of the mouse imprint maintenance machinery.
In conclusion, we have elucidated hitherto unreported princi-

pals regarding the conservation of ICR function at the H19/Igf2
locus and molecular mechanisms associated with SRS. First, evi-
dence of incomplete histone reprogramming at hIC1 suggests that
the mechanism regulating histone reprogramming at IC1 in the
germ line has diverged between mouse and human. In this regard,
it would be interesting to explore whether an IC1 ortholog of a
species more closely related to mouse could recapitulate the wild-
type epigenetic pattern on paternal transmission. Second, despite
the fact that IC1 hypomethylation is the most common epi-
mutation found in individuals with SRS (24), the molecular
mechanism underlying the phenotype remains elusive. Obstacles
to addressing this question include mosaicism of the epimutation
in patients and the lack of a suitable genetic model system. We
suggest that the paternal transmission of hIC1 in mice can be used
to study the molecular mechanisms underlying SRS associated
with IC1 hypomethylation. Future experiments, such as breeding
H19hIC1/+ males with H19 null females, will help elucidate the
extent to which H19 contributes to the SRS-like phenotype. In
addition, identifying pathways altered by IC1 hypomethylation
may shed light on the physiology of SRS.

Materials and Methods
Targeting Vector. Detailed information on the hIC1 target vector is provided
in SI Materials and Methods.

A

B

C

Fig. 4. Incomplete establishment of imprinting at the hIC1 in knock-in male
germ cells. (A) Percent methylation at IC1 measured by pyrosequencing;
assays d and l were used (Fig. 1C). From left to right, results for endogenous
hIC1 in mature sperm samples from fertile men (hSP1 and hSP2), the en-
dogenous mIC1 and targeted hIC1 in knock-in sperm (KISP) from adult mice,
and the targeted hIC1 in pools of H19+/hIC1 two-cell stage embryos (KI2 cells)
are shown. KISP, n = 6 mice; KI2 cell pools, n = 3. *P < 0.05, two-tailed
Student’s t test with equal variance. Bars represent mean ± SEM; error bar of
the KISP (mIC1) is too small to be seen on the graph. (B) Methylation at hIC1
in KISP and hSP1 analyzed by bisulfite treatment followed by sequencing.
Assays e–h were used (Fig. 1C). Cytosines in CG dinucleotides that are con-
served between mouse and human and located within CTS are depicted as
black lines above the clones and marked as CTS1, 2, 3, 4, and 6 (13). Cytosines
measured by pyrosequencing are marked with an asterisk. (C) ChIP–qRT-PCR
for H3K4me2 and H3K9me3 at mIC1 and hIC1 in knock-in round spermatids.
Assays b and j were used (Fig. 1C). Two independent pools of round sper-
matids were generated as detailed inMaterials and Methods, and the results
from each pool are shown separately.
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ES Cells and Mouse Generation, Breeding, and Genotyping. Details regarding
ES cell targeting, Southern blot analyses, and mouse generation, breeding,
and genotyping are provided in SI Materials and Methods.

Gene Expression Analysis. RNA isolation and cDNA synthesis was performed as
described previously (42). For qRT-PCR, total expression levels of H19 and Igf2
were measured relative to the geometric mean of expression levels of Arbp
(acidic ribosomal phosphoprotein P0), Nono (non–POU domain-containing,
octamer-binding protein), and Rpl13a (ribosomal protein L13A). For the y-axis
on the graph, the mean value of wild-type is set arbitrarily as 1. Details are
provided in SI Materials and Methods.

DNAMethylation Analysis. gDNA isolation fromneonatal, embryonic, and germ
cell samples; bisulfite treatment; and methylation analyses are described in
detail in SI Materials and Methods.

Histology. Histological analysis was performed as described previously (43).

Mouse Spermatogenic Cell Fractionation. Round spermatid fractions of mouse
spermatogenic cellswere collected using STA-PUT in two independent replicates,

and the purity of each fraction was verified as described previously (22, 44). Each
collection used both testes of 12 heterozygous (H19hIC1/+) male mice. The purity
was measured as 87% for pool 1 and 86% for pool 2.

Isolation of MEFs.MEFs were isolated from individual day 12.5 embryos in a B6
background as described previously (15).

ChIP–qRT-PCR Analysis. ChIP–qRT-PCR was carried out as described previously
(44); details are provided in SI Materials and Methods. Each ChIP signal was
calculated as the percent input of each immunoprecipitation (IP) normalized
to nonspecific IgG (percent input of IP − percent input of IgG). In Fig. 4C, the
y-axis denotes the ChIP signal of each histone mark normalized to that of total
H3 (e.g., percent input of H3K4me2/percent input of total H3).
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