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Abstract

Functional magnetic resonance imaging (fMRI) without an explicit task, i.e., resting state fMRI, of 

individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) is growing rapidly. Early 

studies were unaware of the vulnerability of this method to even minor degrees of head motion, a 

major concern in the field. Recent efforts are implementing various strategies to address this 

source of artifact along with a growing set of analytical tools. Availability of the ADHD-200 

Consortium dataset, a large-scale multi-site repository, is facilitating increasingly sophisticated 

approaches. In parallel, investigators are beginning to explicitly test the replicability of published 

findings. In this narrative review, we sketch out broad, overarching hypotheses being entertained 

while noting methodological uncertainties. Current hypotheses implicate the interplay of default, 

cognitive control (frontoparietal) and attention (dorsal, ventral, salience) networks in ADHD; 

functional connectivities of reward-related and amygdala-related circuits are also supported as 

substrates for dimensional aspects of ADHD. Before these can be further specified and definitively 

tested, we assert the field must take on the challenge of mapping the “topography” of the 

analytical space, i.e., determining the sensitivities of results to variations in acquisition, analysis, 

demographic and phenotypic parameters. Doing so with openly available datasets will provide the 

needed foundation for delineating typical and atypical developmental trajectories of brain structure 

and function in neurodevelopmental disorders including ADHD when applied to large-scale multi-

site prospective longitudinal studies such as the forthcoming Adolescent Brain Cognitive 

Development study.
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Examining functional connectivity (FC) (1) during fMRI scans without an explicit task, 

other than remaining still, i.e., “resting state” fMRI (R-fMRI), began in 1995 (2). This initial 
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observation did not gain momentum until the brain's default mode network (DMN) was 

identified (3) and independently replicated using R-fMRI (4). Ever since, the number of R-

fMRI studies has doubled every two years as the approach is applied across neuropsychiatry 

(5), including Attention-Deficit/Hyperactivity Disorder (ADHD). For example, a 2014 

review by Posner et al. covered 21 ADHD R-fMRI studies (6), whereas we include 76 

reports (See Table 1). Neuroimagers have rapidly adopted R-fMRI methods because they 

can be applied across nearly the entire age range (7) and across ability levels (8), efficiently 

reveal whole-brain between-group differences (9), and can be used translationally across 

animal and human studies (10-12).

Besides numerical growth, R-fMRI ADHD study quality has also improved. Specifically, in 

that earlier review (6), mean sample size was ~23/group. Excluding analyses of the 

ADHD-200 sample (13), mean sample size has grown since to ~43/group. Larger samples 

increase statistical power (14), other factors remaining equal.

Head motion is the most pernicious threat to R-fMRI ADHD study integrity (15-20). This 

concern was not even on the horizon when ADHD R-fMRI studies first emerged. Motion is 

always a concern in neuroimaging, but fMRI standards are inadequate for R-fMRI, which 

lacks a known task temporal structure. Head motion occurs at similar low frequencies as 

intrinsic blood-oxygen level-dependent (BOLD) signal fluctuations and produces regionally 

distinct artifacts which cannot be overcome by increasing sample size or scan duration (21). 

This is especially troublesome for ADHD, which is characterized by hyperactivity, even in 

adults (22). Accordingly, results from studies which did not account for head 

micromovement artifacts must be considered tentative – as they are even more likely than 

most to include false positives (14;23). The complexity of this issue is highlighted by 

observations that in-scanner head motion correlates with impulsivity ratings (24). Global 

signal regression (GSR) during preprocessing mitigates between-subject effects of head 

motion (20), although GSR is controversial for potentially biasing group differences by 

enhancing negative correlations (25). An imperfect alternative is to “scrub” data (delete data 

points exceeding a threshold) (21), at least for confirmatory analyses. Compensatory 

methods are under active investigation (13;15-21;26-29), while efforts continue to address 

head motion during data acquisition (30) and analysis (31).

A counterweight to such concerns has been provided by the field's embracing a culture of 

open science (32) and open datasets (8). The ADHD-200 Consortium released 776 R-fMRI 

and structural scans with phenotypic data on March 1, 2011. Data aggregated from eight 

sites included 491 datasets from typically developing children and adolescents (TDC) and 

285 from children and adolescents with ADHD (33). To recruit scientists from outside the 

ADHD field, the Consortium announced a competition to discern the diagnoses (TDC, 

ADHD combined type, or ADHD inattentive type) of 197 unlabeled datasets, released on 

July 1, 2011 as raw or pre-processed data (33). Twenty-one teams competed and 12 papers 

documented their efforts (13;34-44). Ironically, the best diagnostic results leveraged 

demographic biases inherent to ADHD (sex, handedness, IQ) without including 

neuroimaging (35). Still, multiple teams assigned diagnoses substantially above chance from 

neuroimaging parameters alone (45). This proof-of-principle effort was not intended to 

establish a novel diagnostic approach, nor did it. Instead, the challenge provided an initial 
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milestone of progress. Importantly, the ADHD-200 initiative has also supported numerous 

novel applications of analytic algorithms (46-57). As summarized elsewhere (45), 

neuroimaging is far from attaining psychiatric clinical utility, but initial progress is being 

made.

In this narrative review, we provide a snapshot of this rapidly developing field in anticipation 

of game-changing initiatives such as the prospective large-scale longitudinal Adolescent 

Brain Cognitive Development (ABCD) study. We include studies resulting from PubMed 

searches of the conjunction of “ADHD” and “resting state fMRI” and their synonyms as of 

December 30, 2015 and exclude studies lacking healthy comparisons. Our aim is to 

highlight lessons learned as the field invents itself, with an eye to the emergence of 

analytical and conceptual frameworks to be brought to bear on prospective longitudinal 

studies such as ABCD. These remain the gold standard for delineating typical and atypical 

developmental trajectories of brain structure and function (58).

The heterogeneity of the literature summarized in Table 1 precludes detailed descriptions. 

Instead this review is organized around three themes: (1) principal measures and approaches 

employed; (2) studies bearing on the DMN interference hypothesis (59); and (3) emerging 

models/hypotheses of brain functional organization in ADHD that are accruing empirical 

support.

Principal Measures and Approaches

Although data collection is superficially simpler for R-fMRI than for task-based fMRI, the 

absence of an explicit task and its temporal structure allows nearly innumerable analytical 

approaches, which represents its own challenge. Six categories of analytic methods (seed-

based correlations (SBC), independent component analysis (ICA), clustering, pattern 

classification, graph theory, and two local methods (regional homogeneity (ReHo) and 

amplitude of low frequency fluctuations (ALFF)) have been extensively reviewed elsewhere 

(60). Here we briefly note measures used in ADHD R-fMRI studies to date.

Intrinsic Functional Connectivity Networks

The main challenge of SBC, i.e., examining correlations of time series between a region-of-

interest (“seed”) and remaining gray matter voxels, is constraining seed selection, since even 

minor variations matter (61). A popular alternative is ICA, which decomposes 4D imaging 

data into 3D spatial maps, each with its associated time course (62-64). As compellingly 

demonstrated by Yeo, Krienen et al. (65), ICA components are remarkably replicable across 

groups. These maps of coherent spontaneous BOLD signal correspond strikingly to 

functional networks revealed by meta-analyses of task-based fMRI (9). Such networks can 

be defined by SBC (e.g., 61;66;67;68) or ICA (9;65). Maps of cortex divided into seven ICA 

networks (65) based on R-fMRI scans of 1000 healthy young adults available at https://

surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 are increasingly being 

used as a strategy to reduce analytic dimensionality, as illustrated in the section on emerging 

models.
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Voxel-wise Indices of Intrinsic BOLD Signals

Theoretically, functional connectomics can encompass (n*(n-1))/2 distinct correlations (n= 

number of nodes, ≤ total number of voxels), incurring an immense multiple comparisons 

problem (69;70). An alternative is to survey voxel-wise indices to identify regional between-

group differences using statistical methods comparable to task-based fMRI. Among the 

earliest to be applied to ADHD was regional homogeneity (ReHo) (71;72), an index of 

contiguous FC. Like all R-fMRI metrics, ReHo is affected by preprocessing (73), 

complicating across-study comparisons, which have conflicted (37;43;72;74-81). For 

example, in lingual gyrus, both increased ReHo (37;75;78) and decreased ReHo (72;81) 

were found. Still, in medial prefrontal cortex (PFC), reports converged on decreased ReHo 

in ADHD (37;75;78).

Amplitude of low-frequency fluctuations (ALFF), the total power within a low-frequency 

range, was first defined in a study on ADHD (82), although conflicting results have also 

been reported (83). A more methodologically rigorous effort (larger samples, medication-

naïve patients) found decreased ALFF in ventral PFC and orbitofrontal cortex (OFC) – along 

with increased ALFF in pallidum and dorsal PFC (84). In a head-to-head comparison of 

ALFF and ReHo, ReHo was more sensitive in detecting lower values in fronto-cingulo-

occipital-cerebellar areas in ADHD (77).

An intriguing feature of intrinsic FC is the robust nature of homotopic (mirror image) FC 

relative to all other edges in brain (85). These were highlighted in contrasts of FC among 90 

anatomically-defined nodes in samples containing 239 children with ADHD from the 

ADHD-200 initiative, 39 adults with major depression, 69 adults with schizophrenia, and 

their respective controls (86). Across all three diagnostic comparisons, partial correlations 

revealed that homotopic counterparts contributed 60-76% of the altered Pearson values in 

FC abnormalities, suggesting that psychopathology in general entails altered 

interhemispheric communication (86).

Entropy measures, derived from information theory, index repeatability or randomness (87). 

Sample entropy of BOLD time series was reduced in anterior cingulate cortex (ACC), 

superior frontal gyrus, precuneus and cuneus in a small sample of adults with ADHD, 

indicating lower complexity (88). By contrast, entropy applied to network clusters (termed 

graph spectral entropy) was increased in ADHD in pre- and postcentral gyrus, superior 

temporal gyrus, and inferior frontal gyrus (IFG) in ADHD-200 data (89). This was 

interpreted as indicating abnormal network structure in ADHD, our focus in the next section.

Graph Theory

The complexity of the functional connectome (90) also invites graph theoretical approaches 

in which regions-of-interest are abstracted as network nodes and their relationships, 

including correlations, as edges (91). This allows application of a family of indices including 

path-lengths, their efficiencies (relative to random or lattice-like networks), and measures of 

centrality or hubness (91). Decreased global efficiency has been found in adults (92) and 

children with ADHD (93). Mapping the density of local FC (all correlated contiguous voxels 

exceeding a given threshold – this differs from ReHo, which examines the average 
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correlation among contiguous voxels) revealed 15% higher local FC in OFC, ventral 

striatum, and superior frontal cortex, regions associated with reward and motivation, 

whereas long-distance FC density (the difference between local FC and whole-brain FC) 

was 33% lower in superior parietal cortex and posterior DMN (55).

Centrality measures have been used to contrast children with ADHD and TDC to children 

with autism spectrum disorder (94). Shared abnormalities were found in the patient groups 

in precuneus, whereas increased degree centrality in striatum and pallidum was associated 

with ADHD, with or without comorbid autism (94). The two neurodevelopmental disorders 

and TDC were also contrasted on the topographic structure of the connectome (95). In this 

pilot study, children with autism (n=16) differed from those with ADHD and from TDC in 

exhibiting higher structural and functional connectivity, but only inside “rich-club” 

networks, i.e., those composed of highly connected hubs (95).

The hierarchical nature of brain information transfer (96) supports the use of “step-wise FC” 

to discretize FC into distinct relay steps from primary cortex to executive processing and 

DMN areas (97). Children with ADHD, selected from group-matched ADHD-200 

subsamples (n=120/group), showed greater FC within primary cortex and decreased step-

wise FC to attention-regulatory networks; increased step-wise FC to DMN also 

characterized ADHD (98).

Test-retest Reliability

A marker of scientific maturity is the extent to which methods have been standardized, 

particularly whether measurement reliability has been quantified. In this regard, R-fMRI has 

a ways to go (but see the Consortium on Reliability and Replicability dataset for a novel 

resource (99)). In ADHD, one study examined short-term (intra-session) test-retest 

reliability of four R-fMRI indices (ALFF and fractional ALFF, ReHo, and FC of posterior 

cingulate cortex (PCC), a core DMN node) (100). These short-term best-case reliability 

estimates yielded moderate-to-high values. Still, for most indices, controls were significantly 

more reliable than patients in some brain regions (100). These preliminary findings highlight 

the importance of examining longer-term (i.e., one week) test-retest reliability across ages 

(beyond the one small study documenting test-retest reliability in children (101)), by sex, 

and in each clinical condition-of-interest as part of the foundational work required to build a 

scientific edifice. Since the maximum obtainable validity cannot exceed the square root of 

reliability, reliabilities should be factored into realistic power estimations.

Default Mode Network Interference Hypothesis

In ADHD, the coincidence of low frequency fluctuations in response time variability (RTV) 

(102-104) with the low frequency interplay between DMN and networks involved in top-

down executive control (66;105;106) motivated formulation of the DMN interference 

hypothesis (59). This was initially examined indirectly in a pair of reports based on a pilot 

sample of adults with ADHD and controls (n=20/group) (107;108). Of three seeds 

previously associated with momentary lapses of attention in healthy adults (109), SBC of a 

spherical right dorsal ACC seed revealed a between-group difference in FC with PCC/

precuneus, i.e., decreased negative correlation magnitude in ADHD (107). Secondary 
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analysis using PCC/precuneus as a seed revealed significant attenuation in positive 

correlation strength between anterior (ventromedial PFC) and posterior DMN components 

(107).

Sun et al. sought to replicate and extend Castellanos et al. (107) in a study of 19 medication-

naïve boys with ADHD and 23 healthy controls (110). Using an anatomically-defined dorsal 

ACC seed and GSR, they found loss of the normative negative relationship between dorsal 

ACC and retrosplenial gyrus, lingual gyrus, dorsomedial PFC and PCC in ADHD (110).

In another explicit test of replicability, controls and individuals with persistent or remitting 

ADHD were contrasted 16 years after initial evaluation (111). Mattfeld et al. explicitly 

tested the finding of lower FC between DMN posterior and anterior nodes in adults with 

ADHD, using the same PCC seed as (107). They obtained the same result, even without 

GSR, but only in the 13 young adults with persistent ADHD (111). They also examined 

medial PFC, using a previously published seed, and observed negative FC with dorsolateral 

PFC in controls which was absent in both ADHD remitters and persisters (111).

The relationship between DMN and the Yeo-Krienen networks (65) – including the ventral 

attention network (112) – was examined ingeniously in ADHD-200 data by Sripada and 

colleagues. They selected subsets of 133 patients with ADHD and 288 controls for three 

studies (51;54;113). In the first (54), they computed FC among 907 seeds throughout cortex 

grouped per the seven Yeo-Krienen networks (65). They found lower within-DMN FC and 

between DMN and ventral attention, frontoparietal and visual networks. Functional 

connectivity between ventral attention and frontoparietal networks was also reduced in 

ADHD (54). They further identified lower FC between key ventral attention nodes and 

DMN which replicated the Castellanos et al. result (107), extended to anterior insula. 

Finally, abnormal internetwork FC with DMN was predominantly right lateralized, 

consistent with anatomic findings (114).

In another innovative contribution by the same group, joint ICA was used to test the 

hypothesis that structural deficits parallel altered FC (51). They found four components 

which linked lower magnitude anti-correlation between DMN and cognitive control 

networks co-occurring with structural abnormalities in dorsolateral PFC and dorsal ACC. 

They also observed altered intra-network FC in DMN, dorsal attention, and visual networks, 

again co-occurring with structural deficits (51). Their approach represents a model for 

integrating analyses across multimodal imaging data types, rather than continuing to 

examine them in isolation.

One study has focused on the DMN cerebellar component in adults with ADHD, finding 

increased FC to multiple cortical networks, including visual, dorsal attention, salience and 

sensorimotor (115). This effort was overdue, given extensive volumetric evidence of 

cerebellar involvement in ADHD (116).

In summary, although far from unanimous (e.g., 117;118;119;120), weaker within-DMN FC 

has been observed in adults (107;108;111) and in children (51;54;110;121;122) with ADHD. 

Decreased magnitude of negative FC between DMN and dorsal ACC has also been 

repeatedly noted (51;54;107;110), but see (123). However, this rudimentary relationship may 
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be part of more complex inter-network relationships, as we suggest below, after first 

discussing dimensionality and putative age-relationships.

Emerging Models of Brain Functional Organization in ADHD

Dimensional Brain-Behavior Relationships

Barber et al. conducted the first R-fMRI study including RTV indices in children with 

ADHD (117). They performed SBC with seeds in DMN and cingulo-opercular network 

(124) (which overlaps with the ventral attention network (65) and the salience network 

(125)). They found increased FC within both networks in ADHD; for the cingulo-opercular 

network, this was localized to supplementary motor area; FC was also increased between 

DMN seeds and inferior OFC and temporal pole (117). In both groups, greater negative FC 

between DMN and occipital regions was associated with reduced variability on RTV indices, 

whereas greater negative FC between DMN and lateral PFC areas was related to fewer errors 

(117). This well-designed study (n=50/group) provides a template for incorporating both 

categorical (diagnostic) and dimensional perspectives.

In other examples of dimensional approaches, slower stop task inhibition was related to 

thalamus-ACC FC (126), impulsive responding on temporal discounting was associated with 

increased FC between nucleus accumbens and PFC (127), and spatial working memory 

performance was linked to thalamicputamen and thalamic-PFC FC (52), regardless of 

presence or absence of ADHD diagnosis. However, some relationships differ depending on 

diagnosis. Examples of both shared and distinct dimensional relationships between parent 

ratings and FC indices for children with ADHD and TDC were first illustrated in a 

moderately sized sample (37/group) (128) and extended beyond DMN in 300 children from 

the ADHD-200 initiative (50). A particularly innovative study combined symptoms, 

temperament scales, and electrocardiographic physiology measures to differentiate 247 

children with ADHD into “mild,” “surgent” and “irritable” phenotypes (129). R-fMRI data 

were only available for 39 children with ADHD (18 mild, 11 surgent and 10 irritable) and 15 

controls, but they still revealed intriguing differences in amygdala FC among the ADHD 

phenotypes as well as between controls and ADHD subgroups. Remarkably, in longitudinal 

follow-up, the data-driven irritable subtype developed a new comorbid disorder at twice the 

rate of the other subgroups (129).

Affective/limbic circuitry is increasingly being examined in ADHD (129-133). For example, 

amygdala SBC has been used to validate phenotyping (129), to dissociate emotional 

regulation and executive attention (130), in relation to aggressiveness and conduct problems 

(132), as a correlate of emotional lability (131), and of depressive symptoms (133). 

Similarly, striatum, long implicated in ADHD, has been targeted frequently 

(120;126;127;130;134-136).

Age-related Differences Consistent with Maturational Delay

Delay in cortical maturation was convincingly reported in the landmark NIMH longitudinal 

study of ADHD (137). Age-related abnormalities were found in meta-analysis of cross-

sectional studies of N-acetylaspartate in medial PFC (138). R-fMRI studies have also 

Castellanos and Aoki Page 7

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



yielded cross-sectional results interpreted as consistent with maturational lags in ADHD 

(56;98;113;121;122).

The most suggestive results have been obtained using ADHD-200 data because of its 

substantial size, despite the limitations of cross-sectional data for inferring developmental 

trajectories (58). For example, using the same ADHD-200 subsets (51;54), Sripada et al. 

used whole-brain connectomics methods (69) to focus on age-related differences in inter-

network FC (113). They found cross-sectional results consistent with maturational lag of FC 

within DMN and between DMN and frontoparietal and ventral attention networks (113). 

These results are compatible with longitudinal structural findings (137) and will likely 

become primary hypotheses-of-interest for the ABCD Study.

Tomasi and Volkow used ADHD-200 data (203 children with ADHD and 402 TDC), along 

with 704 healthy adults from the 1000 Functional Connectomes Project (139) to examine 

ventral tegmental area (VTA) and substantia nigra SBC (56). They found evidence of age-

related differences between children and adults: higher VTA FC in children with ADHD 

with thalamus and pallidum, and higher substantia nigra FC with amygdala and insula (56). 

Once again, these represent key hypotheses for longitudinal confirmation.

Finally, age-related factors were examined in a longitudinal follow-up of 129 adolescents 

with ADHD in childhood and 100 controls scanned at about age 17.5 years (120), with FC 

examined in relation to baseline and follow-up ADHD scores and their changes. Findings 

support the hypothesis that ADHD remission results from prefrontal maturation (140). 

Specifically, improvement in hyperactive/impulsive score was related to stronger correlation 

between ACC and executive control network as defined by (9). Lin et al. also focused on the 

bilateral frontoparietal network, finding decreased FC between anterior PFC and 

ventrolateral PFC in children with ADHD that was robust to three different preprocessing 

strategies (141).

Multi-network Models in ADHD

Despite the attractiveness of simple models consisting of dorsal ACC-DMN FC or within-

DMN FC, more complex alternatives have begun to be proffered. Menon proposed a triple 

network model (125) comprising frontoparietal central executive network (CEN), DMN, and 

salience network (142). Menon hypothesized that many psychiatric conditions, including 

ADHD, are characterized by inappropriate engagement of the salience network with CEN 

and DMN (125). A novel measure, the resource allocation index (RAI), represents cross-

network interactions (122). Quantitatively, RAI equals the difference in FC values between 

two sets of FC relationships: salience network and CEN, and salience network and DMN 

(47). The first application of the RAI was conducted by Choi and colleagues (122). This 

small study (n=20/group) found interactions between diagnostic group and age. Medication-

naïve children with ADHD did not show the increase in RAI with increasing age found in 

TDC (122). The same RAI was applied to ADHD-200 samples from three sites (47). Across 

all three sites, RAI was lower in ADHD, indicating a stronger correlation between salience 

network and DMN than between salience network and CEN in ADHD (47). By contrast, 

single network analyses or two-network interactions did not exhibit the same consistency 

(47). Determining RAI “transportability” across samples (i.e., replicability and sensitivity to 
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demographic, acquisition and analytical factors) should be a priority, as it could unify 

heretofore fragmented perspectives on ADHD and psychopathology more broadly (125).

A multi-network SBC examination in adults with ADHD differentiated four: salience, DMN, 

dorsal and ventral attention (143). The authors found decreased salience to dorsal attention 

network FC in ADHD, whereas dorsal and ventral inter-network FC was increased (143). 

Patients with ADHD also exhibited greater within-network FC in DMN and ventral attention 

network (143).

These reports (47;122;143) illustrate the obstacles posed by variations in nomenclature and 

network boundaries. Encouragement by reviewers and editors to use common frameworks, 

such as the Yeo-Krienen networks (65), at least for supplementary analyses, would hasten 

resolution of such ambiguities.

An impressive example of data-driven models of attention-related networks was provided by 

Rosenberg et al. (144). First, healthy young adults performed task-based fMRI with a novel 

continuous performance test. Their index of sustained attention, d’, was used to discern the 

most positively and negatively associated f-MRI edges in a connectome matrix of 268 nodes 

(144). The resulting high-attention and low-attention networks robustly predicted d’ values 

from the same individuals’ R-fMRI data (144). Remarkably, the high-attention and low-

attention networks defined in adults from fMRI task performance also predicted ADHD 

scores for children from a single ADHD-200 site. Finally, FC models defined on data from 

the ADHD-200 subjects predicted d’ in the original healthy adults. By contrast to the 

reduced models on which we have focused heretofore, this robust and apparently 

generalizable model comprises “wide swaths of cortex as well as subcortical regions and the 

cerebellum” (144). Once again, the extent to which these networks and approaches can 

generalize even more broadly will reveal whether the work of building a scientific edifice 

using R-fMRI has begun to “touch bedrock.”

Conclusions

ADHD R-fMRI investigators continue to innovate methodologically (e.g., 136;145;146;147) 

while increasingly addressing the nefarious effects of head micromovements (29;30). 

Although it is not yet possible to distill the mosaic of heterogeneous reports into a single 

conclusive story, several overarching hypotheses are emerging that are amenable to being 

tested in large-scale, longitudinal, prospective cooperative efforts, such as the forthcoming 

ABCD study. In ADHD, at a minimum these include decreased synchrony between the 

anterior and posterior nodes of the DMN (51;54;107;108;110;111;121;122); the interplay of 

DMN (including cerebellum), frontoparietal (i.e., executive control), and attention (ventral, 

dorsal and salience, depending on nomenclature) networks (51;54;107;110); the involvement 

of reward-related circuits (including OFC, ventral prefrontal, and ventral striatum) in 

hyperactivity/impulsivity (56;120;126;127;130;134-136); the role of amygdala FC in 

emotional regulation (129-133); and delays/alterations in maturational trajectories of all of 

these candidate systems (56;98;113;121;122). Voxel-wise measures have been more 

divergent, although decreased ReHo in medial PFC has been reported repeatedly (37;75;78).
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Still, the analytical search space remains vast, with innumerable options, each producing 

divergent results. Fortunately, the availability of open datasets is facilitating efforts to 

perform head-to-head comparisons of analytical strategies (148;149). Explicit replication of 

published results (e.g., 107) remains the exception (54;111); across-site comparisons have 

ranged from encouraging (47) to cautionary (49). As funding agencies increasingly require 

fast and open access to large-scale research data and emphasize reproducibility (150), the 

field has the opportunity to extend the metaphor of brain mapping into analytical 
topography. This entails quantifying reliability, and charting the “contours” of the analytic 

space to determine the sensitivities of brain-behavior relationships and group-differences to 

the myriad features (acquisition parameters, analytic strategies, demographic and phenotypic 

factors) that influence them. This is already occurring as reviewers and editors (ourselves) 

invite, encourage, and eventually require supplementary analyses with alternative 

preprocessing and conceptual frameworks. In so doing, we can hasten the advance toward a 

true science of brain function with clinical utility.
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	ADHDControlsMotionInclusionCriteriaPreprocessingAuthor *YearNAgeSDNAgeSDScanDurationEyesNuisanceCovariatesSoftware,pipeline, ifspecifiedScrubbing?ThresholdGSRRegions-of-interestMethod or indexResults Related to Intrinsic Brain ActivityGSCitesCommentsCao,Q. (72)20062313.41.52113.31.08minClosed2mm or 1°N/ASPM2, AFNINoNoWBAReHoReHo ↓ in frontal striatal cerebellar circuits, ↑ in occipital cortex in ADHD189Earliest use of ReHo, local connectivity index, in ADHDTian (123)2006813.90.4813.40.58minClosed1mm in 150 continuous volumesN/ASPM2, AFNINoNodACCSBC↑ FC between dACC and thalamus, cerebellum, insula, brainstem (all bilateral) in ADHD283dACC seed size/definition unclear; extremely small samplesZang (82)20071313.01.41213.10.68minClosed4SDN/ASPM2, AFNINoNoWBAALFFALFF ↓ in the R IFG, L sensorimotor cortex, and bilateral cerebellum and vermis; ↑ in R ACC, L sensorimotor cortex, and bilateral brainstem749First use of amplitude index ALFF in ADHD; small samplesCastellanos (107)20082034.99.92031.29.06.5minOpenN/A6 MP, CSF, WM, global signalsAFNI, FSLNoYesdACC, R IFG, R MFGSBC↓ negative FC between dACC and precuneus/PCC532Pilot study; highlighted FC between dACC and precuneus/PCCTian (147)2008813.51.11013.20.68minClosed1mm in 150 continuous volumesN/ASPM2, AFNINoNoWBAResting state activity index (RSAI)RSAI ↑ in bilateral visual cortex (BA 17/18/19), L sensory cortex (BA 3), L auditory cortex (BA 22), bilateral thalamus, L dorsal brainstem, and midbrain in ADHD94Same sample as Tian 2006 (112); RSAI is a unique measure = ReHo times the SD of ALFF. Not used since in ADHDUddin (108)20082034.99.92031.29.06min 34sOpenN/A6 MP, CSF, WM, global signals (confirmed w/ senior author)AFNI, FSLNoNoDMNNetwork homogeneity↓ network homogeneity in DMN242Same sample as Castellanos 2008 (97); introduced novel index of network homogeneity. Not used since in ADHDZhu (74)20089N/AN/A11N/AN/A8minN/A1.2mm or 1.2°N/ASPM2, AFNINoNoWBAReHoReHo in PFC and ACC discriminated ADHD; Fisher discriminative analysis (85% accurate) outperformed SVM (75%) and Batch Perceptron (55%) machine learning methods.146First instance of machine learning methods in ADHD. Extremely small sample.Cao,X. (134)20091913.31.42313.21.08minClosed3mm or 3°6 MP, CSF, WM, global signalsSPM5, RESTNoYesPutamenSBC↓ putamen FC with subcallosal gyrus, SFG, precuneus, STG, & declive; putamen FC ↑ in R globus pallidus/thalamus in ADHD109Medication naïve subset of subjects from Cao,Q. 2006 (64)Wang (93)20091913.61.52013.31.08minClosed2mm or 1.5°6 MP, global signalSPM5, AFNINoYes90 AAL regionsSmall world properties↓ global efficiency in ADHD; ↓ nodal efficiency in OFC, rectus gyrus, lingual gyrus, MTG, ITG, temporal pole; ↑ local efficiency in IFG, triangularis, and pallidum in ADHD241First graph theory study in ADHDFair (121)20102310.62.92310.02.62 * 5min or 3 * 3.5minOpen2mm6 MP, CSF, WM, global signalsIn-house pipelineNoYesDMN seedsSBC↓ integration of DMN; results interpreted as consistent with disruption of maturational processes16712 DMN seeds derived from previous study in adults; results interpreted as consistent with delayed maturation, although based on cross-sectional dataLiu (75)201023N/AN/A23N/AN/A8minClosedN/A (2 excluded)N/ASPM5, RESTN/AN/AWBAReHo based on coherence (Cohe-ReHo) compared to ReHo based on Kendall's coefficient of concordance (KCC-ReHo)CoHe-ReHo was more sensitive than KCC-ReHo to between-group differences in diagnosis47Introduced novel approach to measure ReHo based on spectral coherence; the novel measure was more sensitive, but has not been used again in ADHDQiu (146)20111512.71.81513.21.75min 20sClosedN/AN/ASPM5, FSL MELODICNoNoDMNMulti-modal (T1 structural, DTI, resting state fMRI)DMN FC ↓ in ACC, PCC, lateral PFC, L precuneus and thalamus, ↑ in bilateral posterior medial PFC in ADHD84All results uncorrected for multiple comparisons; small samplesYang (83)20111710.02.0179.71.66min 40sClosed3mm or 3°N/AAFNINoNoWBAALFFALFF ↑ in L SFG, sensorimotor cortex, ↓ in bilateral ACC, middle cingulate and R MFG36Medication-naïve patients; brief report of use of short TR (400ms) to improve temporal resolutionBohland (34)2012272N/AN/A482N/AN/A8 sites from ADHD-200BothNo6 MP, CSF, WM signals, low-order polynomialsFSL, AFNI, AthenaNoNoFreeSurfer structural indices; AAL parcellation yielded > 12,000 featuresMachine learningPredictability significantly greater than chance for both cross-validation analyses and held-out test data18Predictive features found diffusely throughout the brainBrown (35)201223911.72.942912.43.38 sites from ADHD-200Both108 participants excluded but criteria unspecified6 MPSPM8, in-houseNoNoRobust feature extractionMachine learningBest accuracy on hold-out dataset (62.5%) was obtained by predicting diagnosis using personal characteristic data, vs. 60.5% using fMRI data, both of which exceeded chance (55%)26Results highlighted challenges of real-world dataChabernaud (128)2012379.71.63710.22.06minBothN/A6 MP, CSF, WM, global signalsAFNI, FSLNoYesDMN seedsSBC & dimensional/categorical phenotypesConsistent dimensional relationships found between DMN FC and both internalizing and externalizing scores across groups; also some DMN FC relationships interacted with diagnoses38First identication of hybrid (categorical and dimensional) models of brain-behavior relationshipsChang (36)201221011.82.822612.43.06 sites from ADHD-200BothN/A6 MP, CSF, WM, global signalsIn-house software for structural index; AthenaNoNoSVM based on AAL, Craddock 200 parcellationsTexture-based feature extraction of structural MRI data: local binary patterns on three orthogonal planes vs. FCStructural index provided better discriminative power (max accuracy = 0.70) than resting state data (max accuracy = 0.58)14Only male subjects retained. Best results found for whole brain texture distribution; no advantage from more focal parcellationsCheng (37)20129812.12.014111.41.91 site from ADHD-200Both3mm or 3°6 MP, CSF, WM, global signalsAFNI, FSLNoYesCraddock 400 parcellationBrain-wise association study of multiple features including FC, fALFF, ReHoIn data from a single site, SVM classifier achieved cross-validated accuracy of 0.76, with most discriminative features associated with frontal and cerebellar regions28Cerebellar results unspecifiedCocchi (76)20121622.9-1822.8-8minN/A2mm or 2°6 MP, CSF, WM signals; multiple MP in analytical modelDPARSFN/ANo90 × 90 AAL connectivity matrixNetwork analysis and ReHo↑ nodal clustering coefficient in L OFC and R STG, ↓ path length in R MFC and superior occipital cortex in ADHD. Network-based analyses identified two multi-node cnetworks which also correlated with symptoms58Ingenious recruitment strategy: medication-naïve previously undiagnosed individuals with ADHD recruited from an entire medical school class; intriguing identification of multi-node networks; replicability uncertainColby (38)2012285N/AN/A491N/AN/A7 sites from ADHD-200BothNone6 MP, CSF, WM, global signalsAthenaN/ANoHarvard-Oxford, Craddock 400, and 90 functional units from Stanford FIND labStructural, functional and demographic data features selected and applied to test data from each site. Votes from multiple approaches used to assign class labelsDiagnosis of ADHD predicted with accuracy of 0.55 vs. 0.39 expected by chance32Sophisticated aproach to multi-site multi-modal data; sobering conclusions regarding modest effectsDai (39)201222211.6N/A40212.23.27 sites from ADHD-200Both2mmN/AREST, AthenaN/AN/ACraddock 400 parcellationRecursive feature extraction and multi-kernel learning applied to ReHo, FC and structural indicesFC showed higher accuracy of predicting ADHD than ReHo. Integrating multi-modal features through multi-kernel learning produced highest accuracy31Thoughful exploration of challenges of multi-site data, with particular focus on imbalanced samples across sitesDey (40)2012266N/AN/A468N/AN/A7 sites from ADHD-200BothN/A6 MP, CSF, WM signalsAthenaN/AN/A7 ROIs identified by the authorsPCA-linear discriminant analysis applied to network featuresClassification rates of 64% to 70% achieved with several network indices11Site-by-site results surprisingly consistentEloyan (41)2012274N/AN/A491N/AN/A8 sites from ADHD-200BothN/AMotion, CSF, WM signals1000 Functional Connectomes, Athena, DARTELN/ANoMotor networkFeature extraction and machine learning on CUR-decomposition of FC data; FC in motor cortexCUR decomposition feature extraction revealed motion artifacts which differed by diagnoses. Diagnostic accuracy 78% (specificity 84%, sensitivity 53%). Motor cortex analysis also revealed between-group and subtype differences, but not likely useful for individual-level results44Winning entry in ADHD-CompetitionMennes (126)20121711.01.31710.81.96.5minOpen4mm max displacement between consecutive timepoints6 MP, CSF, WM, global signalsAFNI, FSL0.5mmYes11 fronto-striatal seeds from prior Stop task studyRelation between FC matrix index and Stop task indices measured after the scanSlower inhibition associated with ↑ positive FC between R thalamus and ACC regardless of diagnosis; other relationships varied depending on diagnosis16Data lost from 46% of initial sample, possibly from fatigue, as Stop task performed after scanMills (52)2012948.70.81328.50.75 sites from ADHD-200Both1.5mm RMS6 MP, CSF, WM, global signalsN/A3SD+ mean signal changeYes5 thalamic ROIs, thalamo-striatal FCSBC↑ thalamic and basal ganglia FC in ADHD confirmed in independently collected ADHD-200 data45ADHD-200 group data used to replicate original findingsOlivetti (42)2012351N/AN/A572N/AN/A8 sites from ADHD-200BothNo6 MP, CSF, WM signalsAthena, DARTELN/ANoWBAStructural, ReHo, and spatial multiple regression of 10 intrinsic networks examined for batch effectsPrediction accuracy strongly affected by batch effects: decreased from 80% to chance level when such correlated effects removed5Cautionary framework regarding complex designs and multi-site analysesSato (53)20122136.57.14226.1N/A6.58minOpenN/AN/AFSLN/AN/APCC, dACCSpectral coherence analysis, one class-SVMADHD showed abnormal PCC/dACC coherence16Reanalysis of NYU data; includes subjects from Castellanos 2008 (97); Uddin 2008 (98)Sato (43)201238311.63.054612.33.58 sites from ADHD-200BothN/A6 MP, CSF, WM signalsAthenaNoNoCraddock 400 parcellationfALFF, ReHo, ICA defined DMN and task-positive networkCombining fALFF and ReHo modestly discriminated patients from controls; combining all three types of indices discriminated combined from inattentive type (67% accuracy). Regions conveying discriminative information distributed diffusely26Unexpectedly, DMN-task positive network did not contribute to discrimination of patients and controlsSidhu (44)2012245N/AN/A423N/AN/A7 sites from ADHD-200Both108 excluded per ADHD-200 Preprocessed Initiative criteriaIn-house; unspecified filtering used to remove noiseSPM8NoNoWBAFFT, kernel PCA over space and time, SVMAdding imaging after dimensionality reduction improved diagnostic discrimination slightly more than when limited to phenotypes21Accuracy improved by ~2-3%; proof-of-principle in a challenging “real-world” applicationSun (110)20121913.31.42313.21.08minClosed3mm or 3°6 MP, CSF, WM, global signalsSPM5, RESTNoYesdACC defined per AALSBC in medication-naïve sample↓ negative FC between dACC and anterior and posterior nodes of DMN in ADHD; for R MTG, ADHD had negative dACC FC vs. null in controls60First explicit replication and extension of Castellanos 2008 (97)Tomasi (55)201224711.2N/A30411.2N/A4 sites from ADHD-200BothMean FD < 0.3mm6 MP, CSF, WM signalsSPM2NoNoWBAFC density mapping; long-range and short-range↑ short-range FC density in reward/motivation areas (OFC, ventral striatum, superior frontal) in ADHD; ↓ short-range FC density in posterior DMN; ↓ long-range FC density in cerebellum and superior parietal cortex131First paper published from ADHD-200 sample; leveraged a computationally efficient approach for contrasting whole-brain FC; consistent with dual-pathway (reward/motivation and cognitive-control) model of ADHD pathophysiologyAn (77)20131913.31.42313.21.08minClosed3mm or 3°N/ASPM5, RESTNoNoWBAReHo and ALFFReHo more sensitive than ALFF in detecting between-group differences in fronto-cingulo-occipital-cerebellar areas18Medication-naïve sample; data are part of the dataset analyzed by Cao, Q 2006 (64), Zang 2007 (74), Tian 2006 (112); secondary uncorrected analyses of ALFF with more smoothing yielded some convergence with ReHo resultsAn (78)20132312.51.83211.81.88minClosed3mm or 3°N/ASPM8, RESTNoNoWBAReHo in double-blind placebo-controlled acute trial of methylphenidate↓ ReHo in bilateral SFG; ↑ in sensorimotor, motor, visual cortex in ADHD; all acutely normalized by methylphenidate20First placebo-controlled double-blind comparison of methylphenidate in ADHD; seven children rescanned after 8-weeks treatment; preliminary evidence of potential utility for tracking treatment benefitsChoi (122)20132010.22.72010.62.57minClosedN/AArtifact removel by ICAFSL, MELODICNoNoSalience (SN), DMN and Central Executive (CEN) NetworksICA; Resource Allocation Index (RAI) = subtraction of SN-DMN FC from SN-CEN FCADHD did not show age-related increment of FC observed in controls9Discussion focuses on age-related differences, although study is cross-sectional; group differences in anterior-posterior DMN (as in Uddin 2008 (98)) reported but not highlighted; RAI based on Menon's 2011 tri-network model (114); age-related group differences did not survive correction for multiple comparisonsCosta Dias (127)2013359.61.5649.211.23 *3.5 minOpen1.5mm RMS6 MP, CSF, WM, global signalsIn-house pipelineFD > 3SD + meanYesWBA with nucleus accumbens seedRelation between performance on delay discounting task and nucleus accumbens FCAtypical FC between accumbens and PFC related to impulsivity in ADHD51Categorical (ADHD diagnosis +/−) and dimensional (delay discounting) analyses converged; comendable incorporation of RDoC approachDi Martino (94)2013459.91.85010.11.83 * 3.5minBothMean FD < 0.3mm6 MP, CSF, WM global signalsAFNI, FSL0.2mmYesWBAThree group comparison of degree centrality (autism vs. ADHD vs. controls)Centrality ↑ in precuneus in both autism and ADHD, ↑ in R striatum/pallidum related to ADHD symptoms72Among first papers to address comorbidity of autism and ADHD; both shared and distinct abnormalities observedFair (13)201319210.8N/A45514.4N/A6 sites from ADHD-200Both1.5mm RMSCSF, WM global signalsIn-house pipelineNoYes160 ROIs from Dosenbach 2010160 × 160 correlation matricesAtypical connectivity is prominent in DMN and insular cortex in ADHD-C, which in the DLPFC and cerebellum in ADHD-I.122Intended to be the “consortium paper” announcing ADHD-200 sample; was in revision when concerns regarding micromotion artifacts arose; 10 distinct strategies implemented to mitigate such artifacts; final analyses incorporated various strategies and motion-matched, low-motion subsets for all 3 groupsMcCarthy (119)20131624.58.31624.48.07.2minN/A3mm or 3°CompCor for WM, CSF and motion componentsSPM8, CONNNoNoAffective network, ventral and dorsal attention, cognitive control network and DMNSBC for 5 networks; adults with ADHD previously diagnosed in childhood↓ FC in ventral and dorsal attention networks, ↑ FC in affective and DMN and R lateralized cognitive control network in ADHD25Small heterogeneous samples; results consistent with Tian 2006; contrary to Castellanos 2008, Fair 2010, Uddin 2008Posner (130)201322101.62010.51.42 * 5minClosed1.5mm RMSCompCor, 6 MP and head motion velocitySPM8, CONNNoNoBilateral DLPFC and ventral striatumRelation between SBC and executive attention and emotional regulationDouble dissociation: ↓ FC between R DLPFC and R dorsal caudate associated with deficits in executive attention but not in emotional regulation; ↓ FC between L ventral striatum and hippocampus, OFC; R ventral striatum and anterior PFC related to deficits in emotional regulation but not executive attention18Supports dual-pathway model of ADHD of dissociable cognitive and emotional deficitsSato (89)201315912.23.347912.23.3ADHD-200 (sites not specified)N/AN/A6 MP, CSF, WM signalsAthena, in-house pipelineNoNo351 ROIs, subset of Craddock 400 parcellationGraph spectral entropyGraph spectral entropy ↑ in ADHD in pre- and postcentral gyrus, STG and IFG8Entropy used to quantify greater network disorganization in ADHD; found more sensitive in revealing group differences than other graph theory indicesSokunbi (88)20131729.710.21329.78.45minN/AN/AN/ASPM8; sample entropy algorithmNoNoWBASample entropy↓ sample entropy (complexity) in ADHD in SFG, ACC, precuneus, cuneus13Small samples; entropy index applied to time series; indicated lower complexity in ADHDWang (79)20132335.19.72332.09.26min 24sOpen3mm or 3°6 MP, CSF, WM signalsAthena pipeline scripts; AFNI, FSLNoNoWBAReHo to classify ADHD vs. controls in NYU data shared by 1000 Functional Connectomes↑ ReHo in bilateral occipital lobes and L frontal lobe in ADHD. Classification accuracy 80%21Small sample results with leave one out cross-validation; may not replicateAnderson (46)201427612.4-47212.47 sites from ADHD-200BothN/A6 MP, CSF, WM signalsAthena pipeline scripts; AFNI, FSLNoNoMulti-modal features including FC matricesNon-negative matrix factorizationLatent “topics” across phenotypic, behavioral, structural and FC features identified the topic comprising DMN components as differing by diagnosis, although motion parameters and site also contributed17“Dismal classification accuracy” ascribed to many factors including marked heterogeneity across sitesde Celis Alonso (81)2014239.32.8239.33.57min 25sClosed3.5mm or 3°6 MP, CSF, WM signalsDPARSF0.5mmNoWBAReHo, ALFF and ICA↓ ReHo in precuneus, cuneus, L mid-occipital cortex, R putamen, L lingual and ventral pallidum; ↑ ReHo in cerebellum and PFC in ADHD81.5 T scanner used; brief session completed in < 15min; structural scans reported to use 0.36×0.36×4mm voxels; results difficult to assess because of apparent errorsDey (48)2014487N/AN/A307N/AN/A4 sites from ADHD-200BothNo6 MP, CSF, WM signalsAFNI, FSL, AthenaNoNoCraddock 200 parcellationMulti-dimensional scaling used to project network properties to a two-dimensional space on which SVM operatedHigh classification accuracies on training (70%) and test datasets (74%) reported when performed separately on males and females2Novel method for reducing data dimensionalitydos Santos Siqueira (49)201426911.62.934011.62.95 sites from ADHD-200BothNo6 MP, CSF, WM signalsAthenaNoNoCraddock 400 parcellationGraph theoretical measures, SVMSite-by-site analyses produced wide range of results, e.g., accuracy ranged from 42% to 73% for weighted betweenness centrality4Results null in sample as a whole; significant prediction observed in a single site; balanced sample (patients and controls) speculated as basisElton (50)201415511.72.514511.82.33 sites from ADHD-200BothNo6 MP, CSF, WM, global signalsAFNI0.5mm or 0.5% (DVARS)YesDorsal attention, salience, executive control and default networks; ADHD symptom ratings rescaled to max 1.0SBCAfter accounting for dimensional relationships that were congruent across groups, categorical effects of ADHD diagnosis on FC observed in DMN, salience network and executive control network10Replicated and extended Chabernaud 2012 that categorical, dimensional, and categorical by dimensional interactions observedHoekzema (118)20142232.810.82329.38.94minOpen3mm or 3°6 MP; CompCorSPM8, GIFT, CONNNoNoDMNICA and SBC in medication-naïve adults↑ FC of L IFG with DMN in ADHD; FC was positive in ADHD, negative in controls341.5 T scanner used; peak reported as “ventrolateral part of L DLPFC” but MNI coordinates -48, 26, 4 are in IFG (BA 45); interpreted as decreased segregation in ADHDHulvershorn (131)2014639.42.01910.51.96min 34sBothMax displacement > 3mm or mean FD > 0.25mm6 MP, CSF, WM, global signalsAFNI, FSLNoYesAmygdalaSBC w/ emotional lability ratings↑ emotional lability associated with ↑ positive FC between amygdala and rostral ACC in ADHD22Effects evident after controlling for inattention or hyperactivity/impulsivityKaralunas (129)20142479.21.31908.31.17-10minOpen1.5mm RMS6 MP, CSF, WM, global signalsIn-house pipeline0.5mmYesWBA, amygdala seedCommunity detection analyses based on matrix of child-by-child correlationsAmygdala FC differences contributed to validating subgroups within ADHD; among 39 children with ADHD, 18 classified as mild, 11 as surgent, and 10 as irritable32Tour-de-force depicting novel means of phenotyping based on physiology; however, imaging data only available for 39 children with ADHD and 15 controls; represents proof-of-concept pending replicationKessler (51)201413311.92.822812.83.27 sites from ADHD-200Both≤2SD+mean and ≥40% of volumes remaining after scrubbing6 MP, top 5 principal components extracted from WM and CSF masksSPM80.2mmNoDMN, task-positive network (TPN)Pearson correlations, Joint ICA↓ DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral PFC and ACC along with abnormal intranetwork FC in DMN, dorsal attention and visual networks8Selection criteria retained ~56% of available participants; same strategy used for Sripada (2014 a,b); first study to detect multi-modal structural and FC abnormalities in ADHDKong (24)201410212.12.014311.41.98minClosed2SD + group mean6 MP, CSF, WM, global signalsAFNI, FSLNoNoWBAALFF; head motion regressed outHead motion in scanner in 566 adults, measured in DTI data, and in 217 children, measured from R-fMRI data, associated with impulsivity trait. When head motion regressed out, ADHD and controls did not differ after correction for multiple comparisons11Provocative suggestion that head motion can be both source of artifact and reflectLi (84)20143310.12.63210.92.66min 40sClosed2mm or 2°6 MP, CSF, WM, global signalsSPM8NoYesWBAALFF↓ ALFF in L PFC and L ventral SFG, ↑ ALFF in bilateral pallidum and R dorsal SFG; ↑ FC in frontostriatal circuits, ↓ FC in long-range frontoparietal and frontocerebellar networks14Stimulant naïve patients; solid methodologyLin (92)20141934.99.81834.79.26min 24sN/AN/ACSF, WM signalsAFNI, FSLNoNo108 based on AALPearson correlations, graph theory (number of nodes and edges), network topological propertiesADHD group had ↓ global efficiency, ↑ local efficiency, longer shortest path, ↑ modularity and ↑ clustering; interpreted as ↓ brain network integration and ↑ brain network segregation in ADHD3Data from NYU sample; subset of Castellanos 2008 (97), Uddin 2008 (98); downloaded from 1000 Functional Connectomes (128); unclear if results would have been altered if head micromotion had been quantifiedMattfeld (111)20143528.45.71728.74.06minOpen3SD+mean or 0.5mm mean FD6 MP and first derivatives; aCompCorSPM8, CONNNoNoPCC and MPFC seeds from Castellanos 2008 and Fair 2010SBCPositive PCC-MPFC FC reduced only in 13 patients with persistent ADHD; negative MPFC-DLPFC FC reduced in both persistent and remitted (n=22) patients17Patients with ADHD diagnosed in childhood; explicit replication of Castellanos 2008 (97) & Sun 2012 (100)McLeod (136)20142112.52.92311.32.85minOpenN/A6 MP, CSF, WM signalsFSLNoNoMotor networkSBC w/ motor network in ADHD comorbid with developmental coordination disorder↓ FC between primary motor cortex and bilateral IFG, R supramarginal gyrus, angular gyri, insular cortex, amygdala, putamen, and pallidum in patients vs. controls23Demonstrated feasibility; findings are admittedly preliminaryOu (145)201423N/AN/A45N/AN/AN/AN/AN/A (6 excluded)N/AFSL, in-house pipelineNoNo358 Dense Individualized and Common Connectivity-based Cortical LandmarksBayesian connectivity change point modelingAtomic Functional Interacting Patterns introduced as novel method based on detecting sudden transitions in network interactions; 94% classification accuracy reported on 5-fold cross-validation; key network features include group differences in interhemispheric FC in prefrontal (↑ in ADHD, ↓ in controls) and dACC (↓ in ADHD than in controls)4Age range 8-14 yrs; mean±SD not provided; mathematically complex albeit rigorous approach; unclear how computationally accessible the approach would be for most investigatorsPosner (133)2014309.82.13110.82.05minClosedN/A (7 excluded)NoSPM8, CONN, Artifact Detection ToolboxYesYesWBA, hippocampus seedSBC and association between FC and depression symptoms↓ FC between L hippocampus and L OFC in ADHD vs. controls; also inversely correlated with depression symptoms in ADHD, as were L hippocampal volumes8Depressive symptoms relatively mild in most of the sample; longitudinal follow-up likely to be important to determine significance of the resultsRay (95)201419N/AN/A19N/AN/A3 * 5min (after scrubbing, ~11min)N/A< 50% frames removed and > 5min data remaining6 MP, CSF, WM, global signalsIn-house pipeline0.3mmYes219 cortical regionsRich-club networks, three-group comparison (autism vs. ADHD vs. controls)ADHD did not differ from controls in rich-club network FC. Within rich-club networks, FC ↓ for ADHD compared with autism (n=16)22Age range 7-13; mean±SD not provided in main text, and Supporting Information Table not available; proof-of-principle that autism and ADHD can be distinguishedSripada (54)201413312.02.928812.83.27 sites from ADHD-200Both≤2SD+mean and ≥40% of volumes remaining after scrubbing6 MP, top 5 principal components extracted from WM and CSF masksSPM8, DARTEL, FSL0.2mmNo907 densely distributed ROIs located within Yeo-Krienen 2011 seven large-scale networksPearson correlations, network contingency analysisADHD exhibited diminished anticorrelation between DMN and anterior insula, SMA; DMN hypoconnectivity; altered FC between DMN and ventral attention, frontoparietal, and visual networks. Abnormalities predominantly right lateralized33Based on same subset of ADHD-200 as Kessler 2014 (46) and Sripada 2014 (102); diminished anticorrelation, despite lack of GSR, replicates Castellanos 2008 (97) and Fair 2010 (110); DMN hypoconnectivity replicates Uddin 2008 (98) and Fair 2010 (110)Sripada (113)201413312.02.928812.83.27 sites from ADHD-200Both≤2SD+mean and ≥40% of volumes remaining after scrubbing6 MP, top 5 principal components extracted from WM and CSF masksSPM8, DARTEL, FSL0.2mmNo907 densely distributed ROIs located within Yeo-Krienen 2011 seven large-scale networksPearson correlations, maturational lag estimated for each functional connection; controls from ABIDE also used to confirm putative age effectsResults consistent with maturational lag in connections within DMN and in DMN interconnections with two task positive networks (frontoparietal and ventral attention networks) in ADHD22Leveraged age-related differences in FC strength in large, albeit cross-sectional datasets; reported results represent hypothesis to be confirmed in longitudinal studiesTomasi (56)20142031234021236 sites from ADHD-200Both≥75% of volumes remaining after scrubbing6 MP; voxels with poor SNR eliminatedSPM20.5mm or 0.5% (DVARS)NoVentral tegmental area, substantia nigraPearson correlations, orthogonalized to isolate unique variance for each seed↑ ventral tegmental area FC with thalamus, subthalamic nucleus, globus pallidus, and ↑ substantia nigra FC with L amygdala and insula in children with ADHD27Age-related differences also noted from contrasts with healthy adults from 1000 Functional Connectomes (128); despite large samples, should be interpreted as preliminary until confirmed longitudinallyBarber (117)2015509.81.35010.01.05min 20sOpen3mm or 3°CSF, WM signals, CompCorSPM8, in-house pipelineN/ANoCingulo-opercular network and DMNSBC; diagnoses & RT variability indicesADHD exhibited ↑ FC within cingulo-opercular network and within DMN; ↑ anticorrelation between DMN and occipital regions associated with ↓ RT variability; ↑ anticorrelation between DMN and R lateral PFC associated with ↓ omission errors; distinct brain-behavior relationships also found in diagnostic groups2First study to include RT variability indices, coefficient of variation and tau, as well as omission error rate; substantial sample size; comorbidity other than oppositional defiant disorder excluded; 35 of 50 children with ADHD medicated, with 48 hour washout; only medicated children showed anticorrelation between DMN and cingulo-opercular network, interpreted as potentially reflecting compensatory effectCarmona (98)201512012.12.212012.02.25 sites from ADHD-200N/A0.5mm FD6 MP, CSF, WM, global signalsAFNI, FSL, Athena0.5mmYesSensory, attentional and higher-order cognitive circuitsStepwise functional connectivity (SFC)ADHD exhibited ↓ SFC to executive processing areas and ↑ SFC to DMN regions1Novel network approach based on modeling FC as series of discrete relays, or link-step distancesFrancx (120)201512917.62.810017.13.09minOpenVisual inspection; 0.73mm RMSICA-AROMA; CSF, WM signalsFSL, ICA-AROMANoNoExecutive control, cerebellum, nucleus accumbens, caudate and putamen networksSBC↓ ADHD symptoms in longitudinal follow-up related with ↑ FC within ACC and paracingulate gyrus; no significant effects of subcortical networks1ICA-AROMA preprocessing asserted to enhance removal of motion artifacts; results interpreted as supporting hypothesis that ADHD symptoms remit as function of maturation of PFC networksHo (132)2015159.41.21210.32.34min 6s * 2Open90% of frames remainN/ASPM8, DARTEL, GIFT0.5mm FD & DVARS >6.5%NoAffective/limbic networkICA-based identification of affective networkADHD demonstrated ↓ integrated affective network (↑ bilateral amygdalar and ↓ L OFC connectivity with entire affective network) ↑ L amygdalar FC with the affective network was associated with ↑ aggressiveness and conduct problems in ADHD0Small sample sizes; 10 patients rescanned 3 months later; similar effects observed in this subset, consistent with their representing traitsHong (135)2015839.62.6229.82.66min 24sClosed2mm or 2°6 MP, CSF, WM, global signalsSPM8NoYesBilateral dorsal and ventral caudate, dorsal-caudal putamen and ventro-rostral putamenSBC comparison between ADHD and TD, and between good-responders and poor-responders to methylphenidate; CPT errors↓ FC between dorsal caudate and L superior frontal and R middle frontal cortex in ADHD; ↓ FC between ventral caudate with R rectal gyrus and R OFC in good-responders vs. poor-responders; striatal FC also related to CPT errors4Only positive FC examined because of concerns regarding GSR; medication response used to stratify ADHD group, suggesting therapeutic mechanismKucyi (115)20152324.33.92324.22.910min 8sOpenN/AaCompCor, 6 MP, CSF, WM signalsFSL, fMRISTATNoNoCerebellar DMN seedSBC↑ FC between cerebellar DMN and multiple networks, particularly visual, dorsal attention, salience, and sensorimotor in ADHD4Highlights relevance of cerebellar FC, which was previously ignored in ADHDLin (141)2015259.91.82510.02.16minClosed1mm max FDMultiple approaches, Friston-24, CSF, WM, global signals; also without GSR; CompCorDPARSF, CONN0.5mmYesCanonical seeds of the frontoparietal control network in anterior PFCWhole brain SBC↓ FC between R anterior PFC and R ventrolateral PFC was robust to all 3 preprocessing strategies; ↓ FC between L anterior PFC and R inferior parietal lobule also found; these abnormalities related with oppositionality and impulsive symptoms, respectively0Highlights frontoparietal executive control network; moderate sample sizeSidlauskaite (143)20151929.89.62327.28.76minClosedN/AaCompCor: motion, CSF, WM signalsSPM8, CONNNoNoAnatomic regions corresponding to DMN, ventral attention, dorsal attention, and salience networksSBC↑ FC found in ADHD between the two attention networks and within DMN and ventral attention network; salience network was hypoconnected to dorsal attention network in ADHD1Moderate sample sizes; highlights interplay among attention, salience and default networks per Menon 2011 tri-network hypothesis (114), although nomenclature may confuseSomandepalli (100)20154611.43.15712.536minBothMean FD < 0.2mmFriston-24, CSF, WM signals; also CompCor & with global signalC-PACNoNoWBAIntra-class correlations (ICC) for ALFF, fALFF, ReHo, voxel-mirrored homotopic connectivity, and PCC FCICC acceptable for all indices and mostly comparable across groups; circumscribed regional group differences always indicated ↓ reliability in ADHD2Examination of short-term (intrasession) test-retest reliability; results are mostly reassuring, but point to continuing importance of quantifying reliability, especially at longer intervalsWang (57)20153611.02.73511.82.95min 52sClosed3mm and 3° and < 20% “outlier” frames6 MP, Friston-24, CSF, WM, global signalsAFNI, FSLNo; FD> 0.5mm defined as “outliers”Yes20 networks from Biswal (2010)ALFF, Pearson correlations and absolute value of negative correlationsADHD exhibited ↑ network-wise ALFF in attention and default mode network; altered FC also observed in ADHD; ALFF also related to magnitude of FC correlations, inattention scores and performance IQ0Data downloaded from NYU ADHD-200 contribution; moderate sample sizes; results not controlled for multiple tests performed; novel element is joint examination of amplitude and FC; biological meaning unclearYu (80)20153010.21.73010.31.78minClosed3mm or 3°Friston-24, CSF, WM, global signalsDPARSFNoYesWBAFrequency-based analysis of ReHoSignificant interactions reported between frequency band and diagnosis in bilateral OFC, DLPFC, SFG, and L postcentral gyrus, parietal cortex, R fusiform, L thalamus, and R anterior cerebellum0Theoretical limit of spectral resolution is about 0.008 Hz, which is near frequency band (< 0.01 Hz) in which the greatest between-group differences were foundZhang (86)201523911.52.525111.82.52 sites from ADHD-200Both1.5mm or 1.5°6 MP, CSF, WM, global signalsDPARSFNoYes90 AAL regionsTriplet-ROI-based partial correlation to identify primary mediating regions for each pair of ROIsMost affected edges in ADHD included OFC, inferior and superior frontal gyrus, ACC, PCC, calcarine cortex and parahippocampus; across all 3 disorders, opposite hemisphere counterparts contribute 60–76% of variance to altered FC3Compared ADHD, major depression and schizophrenia; highlights the intriguing robustness of intrinsic homotopic synchrony and suggests that altered interhemispheric communication/integration may be a common motif in psychopathologyCai (47)20169011.4N/A9011.4N/A3 sites from ADHD-200Both1 voxelN/ASPM8, MELODIC0.2mmNoSalience network (SN), central executive network (CEN) and DMNResource allocation index (RAI; difference in correlation between SN and CEN time series, and correlation between SN and DMN time series)↓ RAI in ADHD, indicating ↓ cross-network interactions among SN, DMN, and CEN0Ingenious approach leveraging availability of open data to test replicability of the Menon 2011 tri-network hypothesis (114); highlights cross-network interactions as opposed to individual network differences, which did not replicate across sitesRosenberg (144)20163811.8N/A7511.8N/A1 site from ADHD-200Both0.06mm FD6 MP, CSF, WM, global signalsSPM8, in-house (BioImage Suite)NoYes236-region functional parcellation (Shen, 2010)Pearson correlations; index of sustained attention (d′ values) from novel CPTPerformance on sustained attention task used to identify high- and low-attention networks from task-fMRI data in 25 young adults; same networks also predicted sustained attention performance in resting state data from the same adults; same networks predicted ADHD ratings in resting data from an independent sample of children and adolescents1Availability of ADHD-200 allowed extension to a completely independent dataset; the data-driven derived Sustained Attention Network model comprised “wide swaths of cortex ... subcortical regions and cerebellum” rather than being limited to frontoparietal regions; data-driven method theoretically applicable to broad range of cognitive and clinical measuresAbbreviations: AAL: Automated Anatomical Labeling atlas; ABIDE: Autism Brain Imaging Data
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