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Abstract
The paper addresses hydrodynamic performance of a slender swimmer furnished with a

flexible small-aspect-ratio soft-rayed caudal fin. The recoil of the fin is found by solving the

coupled hydro-elastic problem, in which the structure of the fin is modeled by a cantilever of

variable cross section and the hydrodynamic forces acting on it are modeled using the elon-

gated body theory. It is shown that the recoil has practically no effect on the propulsion effi-

ciency of anguilliform swimmers, but has a profound effect on the efficiency of carangiform

swimmers, which can increase almost four-fold between low-speed (low-thrust) cruise and

high-speed (high-thrust) burst. Whilst the magnitude of this effect furnishes a plausible

argument in favor of burst-and-coast locomotion strategies, it also infers that carangiform

swimmers cannot rely on elastic recoil of the caudal fin to be efficient throughout the usable

speed range, and must actively flex it at low speeds.

1. Introduction

In order to swim efficiently using body-and-caudal-fin (BCF) propulsion, the caudal fin has to
flex in coordination with its lateral motion, turning left when moving right and vice versa. This
conjecture is actually inferred by the elongated body theory [1–3]–and it will be plainly recapit-
ulated in Section 4.1 below–but the fact is that the caudal fin does flex in all BCF swimmers.
The flex of the caudal fin can be active, reflecting the action of caudal muscles [4,5], or pas-

sive, reflecting the elastic deformation of the fin under hydrodynamic loads [6,7]. Although the
caudal muscles are indisputably active during slow swimming [4,5], whether the flex of caudal
fin is active or passive at all swimming speeds is still debatable [8]–furnishing an answer to this
question is one of the objectives of this study. It will be done by reductio ad absurdum; that is,
by accepting the hypothesis that the flex of the fin is passive and assessing its consequences.
Performance of a BCF swimmer furnishedwith a flexible caudal fin is another objective of this
study.
Because the thrust generated by the swimmer and the power needed to this end are periodic,

swimming performance is conveniently assessed using time-averaged quantities: speed, thrust,
power, etc. The averaging period can be as short as a single tail-beat or as long as numerous
tail-beats. The single-tail-beat averaged performance can be expressed in terms of propulsion
efficiency:the ratio between the power made good (the product of thrust and speed) and the
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power actually spent. It is determinedmainly by the morphology of the swimmer and its swim-
ming gait; as such, it is affected by flexibility of the caudal fin. The long-term averaged perfor-
mance can be expressed in terms of locomotion efficiency:the ratio between the energy needed
to drag the swimmer between the beginning and end of the course at the average swimming
speed, and the energy actually spent. It reflects the effective propulsion efficiencyof the swim-
mer along the course. Propulsion efficiency is addressed herein; locomotion efficiency is
addressed in the companion paper [9].
The single-tail-beat-averagedperformance can be evaluated only if the shape of the swim-

mer–and, in particular, the shape of its caudal fin–is known throughout the averaging period.
The shape of a passively flexing fin is determined by the balance between elastic, hydrodynamic
and inertial forces. Preferring simplicity to accuracy, the elastic forces will be found by repre-
senting the fin as an equivalent cantilever [10], whereas the hydrodynamic forces will be found
using the elongated body theory. Comparable combination has been used in Ref. [11] for the
study of a flexible slender propulsor.

2. Preliminaries

Consider a fish, swimming at constant speed v along a straight path–its body bending left and
right relative to that path. A right-handed reference frame will follow the fish as it swims, the
x- and y-axes pointing backwards, along the swimming path, and upwards, parallel to the flat
side of the caudal fin (Fig 1). The unbent fish will be assumed symmetrical with respect to both
the x-z (coronal) and the x-y (sagittal) planes. The projection of the fish, body and fins together,
onto the x-y plane starts with a point at x = xn, reaches the maximal span 2s1 at x = x1, and nar-
rows back to 2s2 at x = x2, the caudal peduncle. The caudal fin starts with the span 2s2 at x = x2,
and reaches the maximal span 2st at x = xt, the posterior end; the trailing edge of the fin is
straight. In between, the local semi-span of the fish is describedby a real-valued function s on
(xn,xt); in particular, s(xn) = 0, s(x1) = s1, s(x2) = s2, and s(xt) = st. s1 and st are small as compared
with the length of the fish, l = xt–xn; ds/dx is small as compared with unity on the widening seg-
ments, (xn,x1) and (x2,xt).
It will be assumed that cross-sections of the fish, caudal fin included, do not distort during

swimming;moreover, the caudal fin is vanishingly thin. The lateral displacement of the mid-
plane of the fish from the x-y plane will be describedby the real-valued function zb, defined on
(−1,1) × (xn,xt). The derivative of zb,

abðt; xÞ ¼ @zbðt; xÞ=@x; ð1Þ

will be assumed small for every time t and every x 2 (xn,xt); it can be interpreted as the angle
between the mid-plane of the fish and the swimming direction. zb and αb are known on
(−1,1) × (xn,x2), but not on (−1,1) × (x2,xt). Given that αb is small, the origin of the refer-
ence frame can be adjusted to have

x2 ¼ 0: ð2Þ

The left-right flex of the fin,

zf ðt; xÞ ¼ zbðt; xÞ � z
0

bðt; xÞ; ð3Þ

will be defined as the lateral displacement of the fin from the linear continuation of the mid
plane of the body beyond the caudal peduncle,

z0bðt; xÞ ¼ zbðt; x2Þ þ abðt; x2Þx: ð4Þ
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zb(t,x2) and αb(t,x2) will be abbreviated as z2 (t) and α2 (t); likewise, zb(t,xt) and αb(t,xt) will be
abbreviated by zt(t) and αt(t).

3. Flex of the Caudal Fin

Given that cross sections of the fin do not deform when the fin flexes left-right, we model the
fin as a cantilever, rigidly attached to the fish body at the caudal peduncle. Consequently, the
instantaneous flex of the fin can be found as the solution of differential equation

@2

@x2
EIðxÞ

@2zf ðt; xÞ
@x2

� �

¼ f?ðt; xÞ � mðxÞ
@2zbðt; xÞ
@t2

; ð5Þ

subject to edge conditions,

@

@x
IðxÞ

@2zf ðt; xÞ
@x2

¼ 0 and IðxÞ
@2zf ðt; xÞ
@x2

¼ 0 at x ¼ xt; ð6Þ

@zf ðt; xÞ=@x ¼ 0 and zf ðt; xÞ ¼ 0 at x ¼ x2: ð7Þ

Here, E is the effective Young’s modulus of the fin’s structural skeleton, I is the area moment of
the skeleton’s cross section, f? is the lateral component of the hydrodynamic force per unit
length acting on the fin, andm is the mass of the fin per unit length. The reader is referred to
Ref. [10] for details. The contribution of the in-plane component of the hydrodynamic force,
fk, has been tacitly neglected; the conditions under which this assumption is coherent are dis-
cussed in Appendix A.
Under the present set of assumptions, the hydrodynamic loads acting on the caudal fin can

be effectively found in the framework of the elongated body theory [1–3,12,13]. Notwithstand-
ing its simplicity, the practical implementation of this theory for analysis of a swimming fish is
hindered by the sheer number of free parameters. In fact, the hydrodynamic loads on the fin
depend on not only the shape and motion of the fin itself, but also on the shape and motion of
the fish body anteriad of it–see equations (S1)-(S8) in S1 File. This dependencemanifests the
hydrodynamic interaction between the caudal fin and the wake, released from the dorsal and
ventral edges of the converging segment of the fish, (x1,x2). If the vortices comprising this wake
were weak–as could have happened if the lateral displacement of the deepest section of the fish
were small–the loads on the caudal fin could have been assumed independent of the shape of

Fig 1. The reference frame and the notation.

doi:10.1371/journal.pone.0163517.g001
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the fish. Following Ref. [2], and invoking the same arguments in favor of simplicity that were
invoked thereat, this case will be the one assumed below; it is shown in S1 File, that it represents
a formal leading order approximation with respect to the lateral displacement of the deepest
section of the fish. Under these assumptions,

f?ðt; xÞ ¼ � pr
D
Dt

s2ðxÞ
Dzbðt; xÞ
Dt

� �

ð8Þ

for each x 2 (x2,xt). Here, D/Dt = @/@t + v@/@x is the convective derivative and ρ is the density
of water. This is Eq (16) in Ref. [12]; its derivation can be found in S1 File; the reader is referred
to the paragraph immediately following (S8). Introducing zb from (3), it takes on the explicit
form

f?ðt; xÞ ¼ � prv
ds2

dx
@zb
@t
þ v

@zb
@x

� �

� prs2
@2zb
@t2
þ 2v

@2zb
@t@x

þ v2 @
2zb
@x2

� �

¼ � prv2
ds2

dx
1

v
@zf
@t
þ
@zf
@x

� �

� prv2s2
1

v2

@2zf
@t2
þ

2

v
@2zf
@t@x

þ
@2zf
@x2

� �

� prv2
ds2

dx
1

v
dz2

dt
þ
x
v
da2

dt
þ a2

� �

� prv2s2
1

v2

d2z2

dt2
þ
x
v2

d2a2

dt2
þ

2

v
da2

dt

� �

;

ð9Þ

where the arguments, t and x of zb and zf, x of s, and t of z2 and α2, have been omitted for
brevity.
By interpretation, the coefficientπρs2 with @2zb/@2t, @2zf/@2t and @2z2/@2t is the addedmass

of the fin per unit length [2]. The physical mass of the fin per unit length is ρf2sθ, where ρf and
θ are the effective density and thickness of the fin. Because the density of the fin is almost the
same as that of water, and because the thickness of the fin is invariably small when compared
with its span, the mass of the fin turns negligiblewhen compared with its addedmass. Conse-
quently, the last term on the right-hand side of (5) will be neglected hereafter.
Substituting (9) for the remaining term, Eq (5) will be recast in dimensionless form:

�k
@2

@�x2
�I
@2�zf
@�x2

� �

þ
d�s2

d�x
@�zf
@�t
þ
@�zf
@�x

� �

þ �s2
@2�zf
@�t2
þ 2

@2�zf
@�t@�x

þ
@2�zf
@�x2

� �

¼ �
d�s2

d�x
d�z2

d�t
� �s2 d2�z2

d�t2
�
d�s2

d�x
d�a2

d�t
�x þ �a2

� �

� �s2 d2�a2

d�t2
�x þ 2

d�a2

d�t

� �

;

ð10Þ

where,

�x ¼ x=lt; �t ¼ tv=lt; ð11Þ

�k ¼
E

rv2

Ið0Þ
ps2t l2t

; ð12Þ

�zbð�t ; �xÞ ¼ zbðt; xÞ=lt; �zf ð�t ; �xÞ ¼ zf ðt; xÞ=lt; �z2ð�tÞ ¼ z2ðtÞ=lt; �a2ð�tÞ ¼ a2ðtÞ; ð13Þ

�sð�xÞ ¼ sðxÞ=st; ð14Þ

�Ið�xÞ ¼ IðxÞ=Ið0Þ; ð15Þ

and in which lt = xt–x2 is the length of the caudal fin. �k will be interpreted as the reduced stiff-
ness of the fin (note that it depends on the swimming speed).
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Because Eq (10) and its edge conditions, (6) and (7), are linear, substituting

�z2ð�tÞ ¼ Reðẑ2e
i �o�t Þ and �a2ð�tÞ ¼ Reðâ2e

i �o�t Þ; ð16Þ

implies

�zf ð�t ; �xÞ ¼ Reðẑ f ð�xÞe
i �o�t Þ; ð17Þ

and, in particular,

�ztð�tÞ ¼ Reðẑ te
i �o�t Þ and �atð�tÞ ¼ �a2ð�tÞ þ ð@�zf=@�xÞ�x¼�xt

¼ Reðâte
i �o�t Þ: ð18Þ

In (16–18), an over-hat denotes a complex-valued amplitude, whereas �o denotes the reduced
frequency, related with the ‘real’ frequency, ω, by

�o ¼ olt=v: ð19Þ

Substituting (16) and (17) for �z2, �a2 and �zf , Eq (10) becomes

�k
d2

d�x2
�I
d2ẑ f
d�x2

� �

þ
d
d�x

�s2
dẑ f
d�x

� �

þ i�o
d
d�x
ð�s2ẑ f Þ þ �s2

dẑf
d�x

� �

þ ði�oÞ2�s2ẑ f

¼ �
d�s2

d�x
þ i�o�s2

� �

i�oẑ2 �
d�s2

d�x
þ i�o �x

d�s2

d�x
þ 2�s2

� �

þ ði�oÞ2�x�s2
� �

â2;

ð20Þ

the edge conditions,

d
d�x

�I
d2ẑ f
d�x2

� �

¼ 0 and �I
d2ẑ f
d�x2
¼ 0 at �x ¼ �xt ¼ 1; ð21Þ

dẑ f=d�x ¼ 0 and ẑ f ¼ 0 at �x ¼ �x2 ¼ 0; ð22Þ

follow (6) and (7) by (11), (13) and (15).
Eq (20) has no closed-form analytical solution for ẑ f , but it can be solved numerically, for

example, by the Galerkinmethod [10]. To this end, ẑ f is written as

ẑ f ð�xÞ ¼
X1

m¼1

ẑmhmð�xÞ; ð23Þ

where h1, h2,. . . are basis functions on (0,1), each satisfying (21) and (22), whereas ẑ1, ẑ2,. . . are
yet unknown coefficients. Because�Ið�xÞ vanishes faster than ð1 � �xÞ2 as �x ! 1 (Appendix B),
viable basis functions are

hnð�xÞ ¼ �xnþ1: ð24Þ

If the sum in (23) is truncated, say, afterN terms, ẑ f will probably not satisfy (20) at every

point in the interval (0,1); nonetheless, the coefficients ẑ1; . . . ; ẑN can be chosen so as to make
the residual orthogonal to theN basis functions retained in (23). Practically, it yields ẑ1; . . . ; ẑN
as the solution of N algebraic equations,

XN

n¼1

ðði�oÞ2Mmn þ i�oCmn þ Kð0Þmn þ �kKð1ÞmnÞẑn

¼ � ẑ2ði�oAð0Þm þ ði�oÞ
2Bð0Þm Þ � â2ðAð0Þm þ i�oðA

ð1Þ
m þ 2Bð0Þm Þ þ ði�oÞ

2Bð1Þm Þ

ð25Þ
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(m = 1,2,. . .,N), obtained by integrating (20), subject to (23), with h1,h2,. . .,hN over (0,1). The
coefficientsMmn, Cmn, Kð0Þmn , K

ð1Þ
mn , A

ð0Þ
m , A

ð1Þ
m , B

ð0Þ
m and Bð1Þm can be found in Appendix C.

Given ẑ1; . . . ; ẑN , ẑ t and ât follow by (3), (4), (16–18) and (23):

ẑ t ¼ ẑ2 þ â2 þ
XN

m¼1

ẑmhmð1Þ; ð26Þ

ât ¼ â2 þ
XN

m¼1

ẑmðdhm=d�xÞ
�x¼1

; ð27Þ

both expressions will be needed in the next section.
The combination of (5) and (9) (that leads to (10)) is comparable with the combination of

Eqs (4) and (17) in Ref. [11]. Being linear, however, the present combination lends itself to a
much simpler solution that will prove invaluable to the analysis of the following section.

4. Hydrodynamic Performance

4.1. Propulsion efficiency

The tail-beat-period-averaged thrust and power generated by the fish are

hTi ¼ rv2s2t h�Ti; ð28Þ

hPi ¼ rv3s2t h�Pi; ð29Þ

where the angular brackets mark a period-averagedquantity, whereas

h�Ti ¼
p

4
ð�o2ẑ t~zt � ât~atÞ; ð30Þ

h�Pi ¼
p

2
ð�o2ẑ t~zt þ �oImð~ztâtÞÞ; ð31Þ

are the respective reduced thrust and power, and the tilde marks a complex conjugate. The
reader is referred to Appendix D (and to S1 File) for details. The key assumption underlying
(30) and (31) is that either no wake is shed from the body anteriad of the caudal peduncle, or
the vortices comprising that wake are weak. The propulsion efficiency follows (28–31) with

Z ¼
hTiv
hPi
¼
h�Ti
h�Pi
¼

1

2

�o2ẑ t~zt � ât~at
�o2ẑ t~zt þ �oImð~ztâtÞ

: ð32Þ

The way h�Ti and h�Pi have been definedmakes them explicitly independent of the geometry
of the fin; they depend on it implicitly, through ẑ t and ât –see (26) and (27). Thus, given ẑ2, â2,
�s, �I and �k, the combination of (30), (26) and (27) sets the reduced frequency needed to generate
thrust h�Ti; in turn, given the frequency, the combination of (32), (26) and (27) sets the effi-
ciency. Because the reduced stiffness changes with the swimming speed, the propulsion effi-
ciency changes with both speed and thrust. Limiting cases where �k ! 0 and �k !1 are
addressed in Appendices E and F.
If zt and αt are in phase, Imð~ztâtÞ in the denominator of (32) vanishes, and the propulsion

efficiency becomes ð1=2Þð1 � jât=�oẑ tj
2
Þ, less than one-half. To make a swimmer efficient,

Imð~ztâtÞ should be negative. Essentially, this is the basis of the conjecture made at the begin-
ning of the paper on the necessity of coordinated flex.
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4.2. Tail-beat frequency

The drag of a swimmer can be expressed as

D ¼
1

2
rv2SCD; ð33Þ

where S is an arbitrary reference area and CD is the respective drag coefficient. It will prove con-
venient to choose S as the maximal cross-section area. In combination with (28), Eq (33)
implies that in order to swimwith constant speed, the reduced thrust should satisfy

h�Ti ¼
S

2s2t
CD; ð34Þ

the case of accelerated swimming is addressed in Appendix G. Because the drag coefficient is
practically independent of speed (see S2 File), so is the reduced thrust needed to sustain it.
Consequently, if ẑ t and ât were independent of speed, the reduced tail beat frequencywould
have been independent of speed as well (by (30)), implying proportionality between the ‘real’
tailbeat frequency and the swimming speed. Changes in the reduced stiffnessmake ẑ t and ât ,
and hence the reduced frequency, speed dependent.

4.3. Swimming gaits

The swimming gait alters the way in which the propulsion efficiency is affected by flex of the
caudal fin. The swimming gait is reflected in ẑ2 and â2, or, to bemore specific, in the magnitude
and argument of the ratio between the two. The manifestation of the gait in these two quanti-
ties can be elucidated by (temporary) assuming zb(t,x) = z(x)cos(ωt – 2πx/λ); it represents a
backwards propagating wave of length λ, modulated by some function z. Under this assump-
tion, ẑ2 ¼ zð0Þ=lt and â2 ¼ ðdz=dx � 2piz=lÞx¼0

by (1), (13) and (16). Loosely following the
classification of Breder [14], an idealized anguilliform gait can be associated with a short wave,
(dz/dx)x = 0� 2π(z/λ)x = 0; an idealized carangiform gait can associated with a long wave, (dz/
dx)x = 0� 2π(z/λ)x = 0. In the first case, argðâ2=ẑ2Þ ! −π/2; in the second case,
argðâ2=ẑ2Þ ! 0. Realistic anguilliform, sub-carangiform and carangiform gaits span the range
between these two extremes.
The recoil of the caudal fin at low sustained speeds is invariably small, because the forces

acting on it are small. In this case, ât ¼ â2, ~zt ¼ ~z2 þ ~a2, and hence Imðât~ztÞ ¼ Imðâ2
~z2Þ. If

the swimmer were using a carangiform gait, for which argðâ2=ẑ2Þ ! 0, Imðât~ztÞ would have
vanished, and the efficiency (32) would have been less than one-half. If the swimmer were
using an anguilliform gait, for which argðâ2=ẑ2Þ ! −π/2, Imðât~ztÞ would have been negative,
and its propulsion efficiency could have been as good as this gait allows. Fin’s recoil can poten-
tially turn Imðât~ztÞ negative, which is a big asset for a carangiform swimmer, but not necessar-
ily an asset for an anguilliform one.

5. Results

5.1. Simulation parameters

As an example, consider a swimmer furnishedwith a flexible caudal fin, modelled after the
soft-rayed fin of the blue tilapiaOreochromis aureus (Steindachner). It has a trapezoidal plan-
form,

�sð�xÞ ¼ �s2 þ ð1 � �s2Þ�x; ð35Þ
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and its fractional area moment is

�Ið�xÞ ¼ ð1 � �xÞ3; ð36Þ

the choice is justified in Appendix B.
With (35) and (36), all the matrices in (25) could have been found analytically; they are

listed in Appendix C. The average thrust, power and propulsion efficiencyhave been computed
with (26), (27), (30), (31) and (32) over a dense grid of tail-beat frequencies (201 values
between 0.1 and 3) and reduced stiffnesses (101 values between 10−2 and 102). They were
recompiled a posteriori for three values of average reduced thrusts: 0.1, 0.4, and 1; the lowest of
the three probably just offsets drag (Appendix G). Additional parameters are specified in
Table 1. The results are shown in Figs 2–6. Fig 3 shows snapshots of four points from Fig 2; Fig
4 shows the effects of the caudal peduncle width; Figs 5 and 6 show the effects of the swimming
gait. The effects of changing the exponent in (36) (to 2 or 4) and of replacing (35) with�sð�xÞ ¼
ð�s2 þ ð1 � �s2Þ�xÞ

1=n (where n equals 2 or 3), turned unremarkable in any sense, and hence are
not shown.

Table 1. Numerical cases addressed in the text.

case S2
ĵa2
=ẑ2
j � argðâ2

=ẑ2
Þ ẑ2 hT i

1 0.5 0.5 0 1.0 0.1,0.4,1

2 0.5,0.75,1 0.5 0 1.0 0.1

3 0.5,0.75,1 0.5 0 1.0 0:1ð�s2=0:5Þ
2

4 0.5 0, 0.5, 1 0 1.0 0.1

5 0.5 0.5 0,π/3,π/2,7π/12,2π/3 1.0 0.1

6 0.5 0.5 π/3 1.0 0.1,0.4,1

7 0.5 0.5 π/2 1.0 0.1,0.4,1

doi:10.1371/journal.pone.0163517.t001

Fig 2. Reduced tailbeat frequency (a) and propulsion efficiency (b) of an idealized carangiform swimmer as functions of reduced stiffness at

three reduced thrusts, indicated next to the respective lines. Short lines adjacent to the left and right margins mark asymptotic values from

Appendices E and F. Circles mark the points shown in Fig 3. Conditions are those of case 1 in Table 1.

doi:10.1371/journal.pone.0163517.g002
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5.2. Carangiform gait

The effects of caudal fin flexibility on hydrodynamic performance of an idealized carangiform
swimmer (for which z2 and α2 are in phase) are shown in Figs 2–4. Perhaps the most conspicu-
ous is Fig 2B that shows the effect of recoil on the propulsion efficiencyat different fin loadings.
At constant reduced thrust, the efficiencyhardly changes when �k is below a few hundredths, or
above a few units; it drops almost four-fold between these two regimes. Recall that �k / v� 2 by
(12). Hence, for a given fin geometry, small and large values of �k correspond to high and low
swimming speeds respectively. Because the swimming speed of a fish can change from less
than 1 body length a second at cruise to roughly 10 body lengths a second at burst [15], the cau-
dal fin that is designed to reach the highest possible speed at maximum power, is necessarily
inefficient at low speed cruise. Increasing the thrust at low speed to the same thrust that would
have yielded �k ¼ 0:01 and h�T i ¼ 0:1 at the terminal speed, practically restores the propulsion
efficiency–see the line marked ‘hTi = const’. Thrust-dependent efficiency of a flexible fin may
explain the advantages of burst-and-coast locomotion strategies, where high thrust–and hence
more efficient–bursts are alternated with unpowered glides [9].

Fig 3. Simulated snapshots of the caudal fin during swimming. Direction of motion is from right to left. A dot marks the caudal peduncle. Conditions are

those of case 1 in Table 1. Particular data is shown to the left of the respective figures. To emulate the fish motion, it was assumed that the length of the fish l

equals 2πlt–under this assumption, the stride length, ls ¼ 2plt=�o ¼ l=�o, is one body length at �o ¼ 1.

doi:10.1371/journal.pone.0163517.g003

Fig 4. Propulsion efficiency as a function of reduced stiffness at three values of s2 (shown next to respective lines). Conditions are

those of cases 2 and 3 in Table 1. In (a), st is constant; in (b), s2 is constant. The thick lines are the same as in Fig 2. Short lines adjacent to the

left and right margins mark asymptotic values from Appendices E and F.

doi:10.1371/journal.pone.0163517.g004
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The four plates of Fig 3 show simulated fin shapes at four swimming conditions marked by
circles on Fig 2; the plates are arranged in the same order as the circles. Fig 3C reflects what can
be considered a high-speed burst. The reduced thrust is 0.1, which is probably just enough to
offset drag; the efficiency is 0.73. In Fig 3D, the reduced thrust is the same, but the stiffness of
the fin has been increased 64-fold, reflecting an equivalent 8-fold decrease in the swimming
speed. Because the thrust (‘real’ thrust, not the reduced one) is lower than in the previous case,
the fin flexes less and is less efficient. In Fig 3A and 3B, the respective reduced stiffnesses are
same as in Fig 3C and 3D, but the tailbeat frequency has been increased roughly two-fold to

Fig 5. Propulsion efficiency as a function of reduced stiffness at three values of jâ2=ẑ2j at argðâ2=ẑ2Þ ¼ 0 (a) and five values of argðâ2=ẑ2Þ at

jâ2=ẑ2j ¼ 0:5 (b). The thick line is the same as in Fig 2. Conditions are those of cases 4 and 5 in Table 1. Short lines adjacent to the left and right

margins mark asymptotic values from Appendices E and F.

doi:10.1371/journal.pone.0163517.g005

Fig 6. Propulsion efficiency as a function of reduced stiffness at three values of reduced thrust (indicated to the right of the respective

lines). 60 degrees phase lag is on the left (a); 90 degrees is on the right (b). The thick lines on the two figures are the same as those marked ‘60’

and ‘90’ in Fig 5B. Conditions are those of cases 6 and 7 in Table 1. Short lines adjacent to the left and right margins mark asymptotic values from

Appendices E and F.

doi:10.1371/journal.pone.0163517.g006
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obtain four times the respective thrusts; in both cases, the fish would have been accelerating.
The fin flexes more, and is more efficient.
The propulsion efficiencyof a carangiform swimmer with an infinitely rigid caudal fin

(�k !1) drops below 1/2 and becomes independent of the shape of the fin (Appendix F). One
may rightly ask why the propulsion efficiency of a carangiform swimmer with an infinitely soft
fin (�k ! 0), which can withstand no force, is better than the efficiency of the same swimmer
with no caudal fin at all? Under present set of assumptions, the latter should have been the
same as in the case �k !1. The answer lays in the leading edge suction–the force acting on
the dorsal and ventral edges of the caudal fin–and in limitations of the present theory. Vanish-
ing of the lateral loading does not imply vanishing of the leading edge suction. Since the latter
was not a part of hydrodynamic loads flexing the fin–it was deemed a higher order effect when
constructing Eq (5)–thrust could be obtained without collapsing the fin. The leading edge suc-
tion disappears when s2 = st (Fig 4A), and indeed the propulsion efficiency of a carangiform
swimmer furnishedwith a soft fin becomes the same as the efficiency of this swimmer with no
caudal fin at all. Cases with �k smaller than, say, 0.01, are inconsistent with the assumptions
underlying them (Appendix A) and hence are not shown in any of the figures.
Propulsion efficiency significantly increases with decreasing body angle at the caudal

peduncle (Fig 5A). An explanation can be based on (32). At small and moderate values of �k –
when the fin flexes appreciably–the efficiency dependsmainly on the sign and magnitude of
Imð~ztâtÞ in the denominator. To make a fin efficient Imð~ztâtÞ should be negative and large. To
make Imð~ztâtÞ negative αt should lag 90 degrees behind, and to this end the fin should flex.
Because in an idealized carangiform gait, α2 and z2 are in phase, the smaller â2 is, the more neg-
ative Imð~ztâtÞ can become for the same flex.

5.3. Anguilliform and subcarangiform gaits

Imð~ztâtÞ can be made more negative without flexing the fin at all by lagging α2 behind z2
through timely actuation of the tail muscles. Indeed, the propulsion efficiency dramatically
increases with the phase angle between z2 and α2 (Fig 5B). 90 degrees lag yields the best effi-
ciency with a soft fin; 120 degrees yields the best efficiencywith a stiff fin. Larger lag needed
with a stiff fin is formally justified in Appendix F, but can be accepted plausible because it is αt
that should lag 90 degrees behind zt, rather than α2 behind z2.
The propulsion efficiencyof an idealized anguilliform gait, where α2 lags 90 degrees behind

z2, is insensitive to the rigidity of the fin, and, concurrently, to thrust (Fig 6B). Consequently,
burst-and-coast strategies offer no advantage to anguilliform swimmers, and to the best of our
knowledge, no swimmer of this gait has been observedusing them. Reducing the phase angle
betweenα2 and z2 restores the dependence of the propulsion efficiencyon thrust (Fig 6A), and
hence some subcarangiform swimmers may benefit from burst-and-coast strategies.

6. Discussion

Anguilliform swimmers do not need a flexible caudal fin to be hydrodynamically efficient, and
elastic recoil of the fin has practically no effect on their propulsion efficiency. Carangiform
swimmers do need it. The hypothesis that the flex of the caudal fin is passive infers dependence
of their propulsion efficiencyon the fin loading.When thrust offsets drag–as happens when
swimming at constant speed–the propulsion efficiency can change almost four-fold over a ten-
fold change of speed. Accordingly, a passively flexing fin that is optimized to provide a carangi-
form swimmer with the best efficiency at high speeds will necessarily be inefficient at low
speeds, where the swimmer spends most of its time.
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In principle, the loss of propulsion efficiency at low speeds can be compensated by swim-
ming in short powerful (and hence efficient) bursts, alternated by effortless glides; nonetheless,
carangiform swimmers have been observed sustaining low swimming speeds [16,17]. It implies
one of the following: (i) they swim inefficiently at low speeds; (ii) their caudal fin is optimized
to provide the best efficiencyat low speeds–and hence is inefficient at high speeds; or (iii) the
flex of the fin is not passive.
The first two alternatives are possible, but hardly probable. We must therefore conclude

that carangiform and, possibly, some subcarangiform swimmers do have at least some control
over the flex of the caudal fin. Referring to [4], actinopterygian fish have a complex set of
(slow, aerobic) tail muscles, some connected to the distal raylets of the caudal fin, and some
connected to its left and right hemitrichia. The former can spread or fold the fin; the latter can
actively flex it [5,18].
Decreasing the span of the fin (2st) for given thrust and area moment increases both the

reduced thrust h�Ti and the reduced stiffness �k –see (28) and (12). The combined effect is
shown in Fig 4B. Folding the fin reduces the efficiency at high speeds, where �k is small, but
improves it at low speeds, where �k is large. The loss of efficiency at high speeds has can be justi-
fied by the loss of the leading edge suction on the anterior margins of the fin; the gain at low
speeds can be justified by the increase in the reduced thrust–see Eq (F8) in Appendix F. In any
case, the magnitude of this gain, albeit significant, cannot make a carangiform swimmer that is
optimized for high speeds, efficient at low speeds.
There is no doubt that the muscles that are directly attached to the hemitrichia can increase

the flex at low speeds by pulling against the structure of the fin, together with the hydrody-
namic forces. Significant activity of the tail muscles in slow swimming tilapia [4,5], occurring
ipsilateral with the displacement of the caudal peduncle during the beginning of a stroke seems
to support this conjecture.With proper flex, the propulsion efficiency can be fully restored and
kept independent of the swimming conditions. Nonetheless, being small and slow, the tail mus-
cles may lack the speed and power to flex the fin at high speeds.Whenever the proper flex of
the fin cannot be achieved, the propulsion efficiencywill return to increase with thrust; when-
ever the propulsion efficiency increases with thrust, burst-and-coast strategies become energet-
ically advantageous [9].

Appendix A–Applicability Limits

Eq (5) manifests a formal leading (linear) order approximation with respect to zb. The contri-
bution

Dðt; xÞ ¼ �
@2zbðt; xÞ
@x2

Zxt

x

fkðt; x
0Þdx0 ¼ �

@2zf ðt; xÞ
@x2

Zxt

x

fkðt; x
0Þdx0 ðA1Þ

of the in-plane component of the hydrodynamic force,

fkðt; xÞ ¼ � r
p

2

Dzbðt; xÞ
Dt

� �2 ds2ðxÞ
dx

; ðA2Þ

that has been tacitly omitted in (5), is formally a second order term with respect to zb. Eq (A2)
can be found in S1 File–see, in particular, Eq (S8) thereat.
To keep (5) coherent, Δ(t,x) should remain small relative to the only (linear with respect

to zb) term eventually retained on its right hand side, f?(t,x). In turn, if (5) is coherent, then
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f?ðt; xÞ ¼
@2

@x2
EIðxÞ

@2zf ðt; xÞ
@x2

� �

: ðA3Þ

To have |Δ(t,x)|� |f?(t,x)| one needs

r
p

2

@2zf ðt; xÞ
@x2

Zxt

x

Dzbðt; x0Þ
Dt

� �2 ds2ðx0Þ
dx0
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@2

@x2
EIðxÞ
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�
�

�
�
�
�
�
: ðA4Þ

Using (11–15) it can be brought into the dimensionless form

@2�zf ð�t ; �xÞ
@�x2

Z1

x

@�zbð�t ; �x 0Þ
@�t

þ
@�zbð�t ; �x 0Þ
@�x 0

� �2 d�s2ð�x0 Þ
d�x0

d�x0

�
�
�
�
�
�
�

�
�
�
�
�
�
�

� 2�k
@2

@�x2
�Ið�xÞ

@2�zf ð�t ; �xÞ
@�x2

� ��
�
�
�
�

�
�
�
�
�
: ðA5Þ

The expression on the left is of the order of @�zb
@�t þ

@�zb
@�x 0

� �2
j�zf j; the expression on the right is of the

order of �kj�zf j. In other words, Eq (5) is coherent if
@�zb
@�t þ �ab
� �2

� �k.

Appendix B–Caudal Fin of the Blue Tilapia

Caudal skeleton of the Nile tilapia Oreochromis niloticus (Linnaeus) was described in exhaus-
tive details in Ref. [18]. Particular measurements reported below were made using a caliper
on a specimen of the blue tilapia Oreochromis aureus (Steindachner), purchased at the local
market. The outline of the fin was practically trapezoidal, with s2� 17.5 mm, st� 35 mm,
and xt–x2� 70 mm. The thickness θ and the width w of each hemitrichion changed almost
linearly along the ray; θ was 0.8 mm at the proximal end and 0.02 mm at the distal end, w
was 0.8 mm at the proximal end and 4 mm at the distal end. The proximal parts of the hemi-
trichia were 1 mm apart, separated by a soft tissue; the distal parts were fused. For large part
of the fin, the distance h between the hemitrichia changed linearly along the fin. Formally,
these observations imply

hð�xÞ / 1 � �x; yð�xÞ / 1 � �x; wð�xÞ / �x þ b; ðB1Þ

where �x 2 ð0; 1Þ is the reduced coordinate along the fin and b> 0 is a certain constant.
The area moment of the fin can be roughly approximated as the area moment of a single ray

times the number of rays. In turn, because the soft tissue separating the hemitrichia allows
them to move one relative to the other, the area moment of a single ray should be less than the
area moment of the two hemitrichia held at a fixed distance one from the other, but more than
twice the area moment of one hemitrichion. The former is proportional to wθh2, the latter is
proportional to wθ3; in view of (B1) both behave as ð�x þ bÞð1 � �xÞ3, suggesting that the area
moment of the fin, �Ið�xÞ, should behave the same. Guided by computational convenience, the
behavior of �Ið�xÞ was approximated by ð1 � �xÞp, where p 2 (2,4).

Appendix C–Coefficients in (25)

The coefficients in (25) are:

Hydrodynamics of a Flexible Soft-Rayed Caudal Fin

PLOS ONE | DOI:10.1371/journal.pone.0163517 October 3, 2016 13 / 20



Kð0Þmn ¼
Z1

0
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d
d�x

�s2 dhn
d�x

� �

d�x ¼ hm
dhn
d�x

� �

�x¼1
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Z1

0

�s2 dhm
d�x

dhn
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d�x; ðC1Þ

Kð1Þmn ¼
Z1
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d�x2
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d�x ¼
Z1
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d2hn
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d�x; ðC2Þ

Cmn ¼
Z1

0

hm
d
d�x
ðhn�s

2Þ þ �s2
dhn
d�x

� �

d�x ¼ ðhmhnÞx¼1
þ
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0

�s2 hm
dhn
d�x
� hn
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d�x

� �

d�x; ðC3Þ

Mmn ¼

Z1

0

�s2hnhmd�x; ðC4Þ

AðkÞm ¼
Z1

0

d�s2

d�x
hm�xkd�x; ðC5Þ

BðkÞm ¼
Z1

0

�s2hm�xkd�x: ðC6Þ

(C1–C3) follow (20) by a few integrations by parts, which exploit the assumption that h1, h2, . . . satisfy
(21) and (22) identically, and that �sð1Þ ¼ 1 by (14).
When hnð�xÞ ¼ �xnþ1, �sðxÞ ¼ �s2 þ ð1 � �s2Þ�x and �Ið�xÞ ¼ ð1 � �xÞp, and in which n and p are

positive integers, the integrals in (C1–C6) can be evaluated analytically. The result is

Kð0Þmn ¼ nþ 1 � ðmþ 1Þðnþ 1Þ
�s2

2

mþ nþ 1
þ

2�s2ð1 � �s2Þ

mþ nþ 2
þ
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2

mþ nþ 3

� �

; ðC7Þ

Kð1Þmn ¼ ðmþ 1Þmðnþ 1Þn
Xp

k¼0

p

k

 !
ð� 1Þ

k

mþ nþ k � 1
; ðC8Þ

Cmn ¼ 1þ ðn � mÞ
�s2

2

nþmþ 2
þ

2�s2ð1 � �s2Þ

nþmþ 3
þ
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2

nþmþ 4

� �

; ðC9Þ

Mmn ¼
�s2

2

nþmþ 3
þ

2�s2ð1 � �s2Þ

nþmþ 4
þ
ð1 � �s2Þ

2

nþmþ 5
; ðC10Þ

AðkÞm ¼
2�s2ð1 � �s2Þ

kþmþ 2
þ

2ð1 � �s2Þ
2

kþmþ 3
; ðC11Þ

BðkÞm ¼
�s2

2

kþmþ 2
þ

2�s2ð1 � �s2Þ
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þ
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2
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: ðC12Þ
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Appendix D–Power, Thrust and Efficiency

Adopting the elongated body theory, and assuming that no wakes are released anteriad of the
caudal fin, the period-averagedpower and thrust are given

hPi ¼ rvps2t

*
@zb
@t
Dzb
Dt

+

x¼xt

; ðD1Þ

hTi ¼ r
p

2
s2t

@zb
@t

� �2

� v2 @zb
@x

� �2
* +

x¼xt

; ðD2Þ

whereD/Dt = @/@t + v@/@x is the convective derivative. Essentially, these are Eqs (26) and (25)
in Ref. [12]–under the present assumptions, the respective second and third terms in these
equations cancel out. (D1) and (D2) are formally derived in S1 File–see Eqs (S14) and (S20)
thereat.
The particular case that will be needed for this study is the case where the motion of the

swimmer, manifested in zb, is harmonic. Consistent with (11), (13), and (16–19) we set

zbðt; xÞ ¼ zbð�t lt=v; �xltÞ ¼ ltReðẑ bð�xÞe
i�o�t Þ; ðD3Þ

abðt; xÞ ¼
@zbðt; xÞ
@x

¼ Reðâbð�xÞe
i �o�t Þ: ðD4Þ

With these,
*
@zb
@t
Dzb
Dt

+

¼
1

2
v2 �oð�oẑ b~zb þ Imð~zbâbÞÞ; ðD5Þ

@zb
@t

� �2

� v2 @zb
@x

� �2
* +

¼
1

2
v2ð�o2ẑ b~zb � âb~abÞ; ðD6Þ

the tilde marking a complex conjugate. Consequently,

hPi ¼ rv3 p

2
s2t ð�o

2ẑ t~zt þ �oImð~zt âtÞÞ; ðD7Þ

hTi ¼ rv2 p

4
s2t ð�o

2ẑ t~zt � ât~atÞ; ðD8Þ

by (D1) and (D2). In these, ẑ t ¼ ẑ bð�xtÞ and ât ¼ âbð�xtÞ.
The propulsion efficiencywill be defined as the ratio of the power made good, hTiv, and the

power spent, hPi; that is,

Z ¼ hTiv=hPi: ðD9Þ

Its explicit form,

Z ¼
1

2

�o2ẑ t~zt � ât~at
�o2ẑ t~zt þ �oImð~ztâtÞ

; ðD10Þ

follows by (D7) and (D8).
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Appendix E–Case k ! 0

When �k ! 0, the left-hand side of (5) vanishes identically, leaving zb to be determined by

�f ?ðt; xÞ ¼ 0; ðE1Þ

subject to the edge conditions,

zbðt; 0Þ ¼ z2ðtÞ; ðE2Þ

@zbðt; xÞ
@x

� �

x¼0

¼ a2ðtÞ: ðE3Þ

In (E1),

�f ?ðt; xÞ ¼ �
p

s2t v2

D
Dt

s2ðxÞ
Dzbðt; xÞ
Dt

� �

ðE4Þ

by (8). As shown in Appendix A, this case is incoherent with the assumptions underlying (5),
but it serves to verify the numerical solution.
Introducing (11–14), and assuming

�zbð�t ; �xÞ ¼ Reðẑ bð�xÞe
i �o�t Þ; ðE5Þ

(E4) becomes

�f ?ðt; xÞ ¼ � pRe ei �o�t i�o þ
d
d�x

� �

�s2ð�xÞ i�oẑ bð�xÞ þ
dẑbð�xÞ
d�x

� �� �� �

: ðE6Þ

It can be verified by direct substitution that (E6) is equivalent to

�f ?ðt; xÞ ¼ � pRe ei �o�t � i�o�x d
d�x

�s2ð�xÞ
d
d�x
ðei�o�x ẑbð�xÞÞ

� �� �

: ðE7Þ

Consequently, (E1) will be satisfied if

d
d�x
ðei�o�x ẑbð�xÞÞ ¼

â
�s2ð�xÞ

; ðE8Þ

where â is a constant to be determined. Integrating (E8) on ð0; �xÞ, one will find that

ẑ bð�xÞ ¼ e
� i�o�x ẑ2 þ â

Zx

0

d�x0

�s2ð�x0 Þ

0

@

1

A ðE9Þ

satisfies both (E8) and the variant ẑ bð0Þ ¼ ẑ2 of (E2). Its derivative

âbð�xÞ ¼
dẑbð�xÞ
d�x

¼
âe� i�o�x

�s2ð�xÞ
� ioẑ bð�xÞ ðE10Þ

can be used in conjunction with (E3) to find â. The variant of (E3) to this end is âbð0Þ ¼ â2;
see (E5) and (16). Hence,

â ¼ �s2

2
ðâ2 þ i�oẑ2Þ ðE11Þ
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by (E10), and, consequently,

âbð�xÞ ¼
�s2

2
e� i �o�x

�s2ð�xÞ
ðâ2 þ i�oẑ2Þ � ioẑ bð�xÞ: ðE12Þ

Substituting (E12) and (E9) in (D7) yields

h�Pi ¼
p

2
�oImð~z2âÞ ¼

p

2
�s2

2
ð�oImð~z2â2Þ þ o2jẑ2j

2
Þ; ðE13Þ

as if the fish had no caudal fin; substituting them in (D8) yields

h�Ti ¼
p

4
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4
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2
Þ�oImðâ2

~z2ÞÞ;

ðE14Þ

which exceeds the thrust that could have been obtained with no caudal fin as long as �s2 < 1;
the two are equal (and hence the efficiencies are equal) only when�s2 ¼ 1. The difference is
attributed to the leading edge suction on the fin’s dorsal and ventral edges, neglected in (5).
The underlying notion is that thrust, power, and efficiency of a fish with no caudal fin are given
by the respective variants of (30), (31) and (32) with ẑ2 and â2 replacing ẑ t and ât .
The tail-beat frequency needed to generate thrust h�Ti is
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2

Imðâ2
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by (E14); the power needed to this end is:
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4
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2
jâ2j

2
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4
�s4

2
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~z2Þ
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by (E13) and (E14). To avoid obtaining an unwieldy expression, �o, which is given by (E15),
have been left unassigned in (E16).

Appendix F–Case κ!1
In this case, ât ¼ â2, and, consequently, ẑ t ¼ ẑ2 þ â2. The power, thrust and efficiency are
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2
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2
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2
þ �oImð~z2â2Þ

 !

ðF3Þ

by (30–32). Eq (F2) can be inverted to obtain the tailbeat frequency:

�o2 ¼
4h�Ti

pjẑ2 þ â2j
2
þ

jâ2j
2

jẑ2 þ â2j
2
; ðF4Þ
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in turn, introducing (F4) in (F3) yields the propulsion efficiency:

Z ¼
1

2
1þ

p

4

jâ2j
2

h�Ti
þ

Imð~z2â2Þ

jẑ2 þ â2jh
�Ti

p

4
h�Ti þ

p

4
jâ2j

2
� �� �1=2

� �� 1

: ðF5Þ

It can be somewhat simplified by replacing ẑ2 and â2 with

ẑ2 ¼ jẑ2je
i�z ; â2 ¼ jâ2je

ið�z � �Þ; ðF6Þ

where ϕz is an arbitrary phase and ϕ is the phase angle between â2 and ẑ2; the result is

Z ¼
1

2
1þ

p

4

jâ2j
2

h�T i
�
jâ2jsin�
h�Ti

jẑ2j
2 p

4

�
h�Ti þ p

4
jâ2j

2
�

jẑ2j
2
þ jâ2j

2
þ 2jẑ2jjâ2jcos�

0

@

1

A

1=2
0

B
@

1

C
A

� 1

: ðF7Þ

In an idealized carangiform swimming gait, ϕ = 0, in which case (F7) reduces to

Z ¼
1

2
1þ

p

4

â2
2

h�Ti

� �� 1

: ðF8Þ

It is less than 0.5, decreasing with the angle of the body at the caudal peduncle and increasing
with thrust.
The phase angle that maximizes the efficiency can be found by differentiating (F7) with

respect to ϕ and equating the result to zero. It yields

� ¼ cos� 1ð� jâ2j=jẑ2jÞ; ðF9Þ

in excess of 90 degrees. The respective efficiency is

max
�

Z ¼
1

2
1þ

p

4

jâ2j
2

h�Ti
�

p

4

jâ2j
2

h�T i
1þ

p

4

jâ2j
2

h�Ti

� �� �1=2
 !� 1

ðF10Þ

by (F7).

Appendix G–Excess Thrust

The reduced thrust needed to generate acceleration a is

h�Ti ¼
D

rv2s2t
þ
maa
rv2s2t

; ðG1Þ

it follows the secondNewton law by (28). Here, D is the hydrodynamic drag andma is the
apparent mass of the fish in the swimming direction. The apparent mass of a neutrally buoyant
fish can be expressed as

ma ¼ kakmrSl; ðG2Þ

where ka is the ratio between the apparent and real masses of the fish, S is its maximal cross sec-
tion area, l is the body length, and km is the prismatic coefficient, the ratio between the volume
occupied by the body and the minimal cylinder enclosing it. For a streamlined fish, ka is practi-
cally unity; for most fishes, km is not significantly different from 0.5 [19].
The drag of the fish is commonly expressed by (33). We rewrite it here as

D ¼
1

2
rv2SCD; ðG3Þ
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where S is set the same as in (G2). With this choice of the reference area, CD should be between
0.1 and 0.2 for most fishes (see S2 File); the exact value is inconsequential to the course of the
discussion. Substituting (G2), (G3) and (30) in (G1) yields

h�Ti ¼
S

2s2t
CD þ 2km

la
v2

� �

: ðG4Þ

Because S=2s2t is of the order of unity, h�Ti of the order of 0.1 will keep a fish swimming at con-
stant speed; h�T i of the order of unity should be enough to accelerate it.

Supporting Information

S1 File. Recapitulation of the slender body theory.
(PDF)

S2 File. Drag coefficientof a fish.
(PDF)
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