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Abstract: Objective: In a cohort of patients with young-onset Parkinson’s disease (PD), the authors
assessed (1) the prevalence of genetic mutations in those who enrolled in deep brain stimulation (DBS)
programs compared with those who did not enroll DBS programs and (2) specific genetic and clinical
predictors of DBS enrollment.
Methods: Subjects were participants from 3 sites (Columbia University, Rush University, and the University of
Pennsylvania) in the Consortium on Risk for Early Onset Parkinson’s Disease (CORE-PD) who had an age at
onset < 51 years. The analyses presented here focus on glucocerebrosidase (GBA), leucine-rich repeat kinase
2 (LRRK2), and parkin (PRKN) mutation carriers. Mutation carrier status, demographic data, and disease
characteristics in individuals who did and did not enroll in DBS were analyzed. The association between
mutation status and DBS placement was assessed in logistic regression models.
Results: Patients who had PD with either GBA, LRRK2, or PRKN mutations were more common in the DBS
group (n = 99) compared with the non-DBS group (n = 684; 26.5% vs. 16.8%, respectively; P = 0.02). In a
multivariate logistic regression model, GBA mutation status (odds ratio, 2.1; 95% confidence interval, 1.0–4.3;
P = 0.05) was associated with DBS surgery enrollment. However, when dyskinesia was included in the
multivariate logistic regression model, dyskinesia had a strong association with DBS placement (odds ratio,
3.8; 95% confidence interval, 1.9–7.3; P < 0.0001), whereas the association between GBA mutation status and
DBS placement did not persist (P = 0.25).
Conclusions: DBS populations are enriched with genetic mutation carriers. The effect of genetic mutation
carriers on DBS outcomes warrants further exploration.

Each year, approximately 9,000 patients with Parkinson’s disease

(PD) in the United States electively undergo deep brain

stimulator placement with the goal of improving their motor

symptoms.1 Up to 29% of patients who have PD and receive

deep brain stimulation (DBS) have a mutation in 1 of 3 genes:

glucocerebrosidase (GBA), leucine-rich repeat kinase 2 (LRRK2), and

parkin (PRKN).2 The reason for this may be that patients with

PD who receive DBS tend to have a younger age at onset

(AAO) than the general PD population, which leads to an over-

representation of genetic forms of PD in this population.2
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Specific mutations, like those in GBA, may be associated with

more rapid disease progression3; whereas other mutations, like

those in LRRK2, may be associated with slower disease pro-

gression.4 However, it is unknown whether specific mutations

influence the need for DBS, especially in young patients.

The Consortium on Risk for Early Onset Parkinson’s Disease

(CORE-PD)5,6 recruited 1136 participants with early onset PD,

defined as an AAO < 51 years, from 17 sites. We previously

reported the prevalence of GBA, LRRK2, and PRKN

mutations in this cohort.7 The aims of the current study were:

(1) to determine the prevalence of GBA, LRRK2, or PRKN

mutations in patients with PD who receive DBS compared with

those who do not receive DBS in the CORE-PD cohort; and

(2) to determine which variables were predictors of DBS in the

3 largest sites participating in this study.

Patients and Methods
Details of the CORE-PD study were described in previous

reports.5,8 In brief, patients with PD who were diagnosed by

movement disorders specialists were recruited from 17 sites

based solely on AAO < 51 years. A blood sample was sent to

the National Institute of Neurologic Disorders and Stroke

Human Genetics Resource Center DNA and Cell Line Reposi-

tory (http://ccr.coriell.org) for DNA extraction.

In total, 1136 participants were genotyped for PRKN, GBA,

LRRK2, phosphatase and tensin homolog-induced putative kinase 1

(PINK1), and DJ-1 (PD protein), as previously described.7–10

The analyses presented here focus on the most common genetic

forms of PD, namely, GBA, LRRK2, and PRKN mutation carri-

ers because 20% of our patients were of Ashkenazi Jewish (AJ)

ancestry. The frequency of DBS at individual sites ranged

between 0% and 90.9%. To reduce site-specific biases, data from

the 3 largest recruiting sites (Columbia University, Rush Univer-

sity, and the University of Pennsylvania) are presented. These

sites collectively enrolled 814 patients.

Demographic data and disease characteristics were collected

including AAO of PD, age at evaluation, disease duration, AJ

ancestry, ethnicity (white, African-American, Hispanic, other),

DBS status (at the time of entry into the CORE-PD), age at

DBS implantation, duration in years from AAO to DBS, and

duration in years from DBS to entry into the CORE-PD. Clin-

ical evaluation included an assessment of the motor subsection

of the Unified Parkinson’s Disease Rating Scale (UPDRS-III)

in the defined on-medication condition,11 the Mini-Mental Sta-

tus Examination (MMSE),12 and whether patients reported a

history of dyskinesia (at the time of entry into the CORE-PD).

Only those who had MMSE scores > 24 were enrolled. In the

majority of patients who received DBS, UPDRS-III scores

reflected postoperative assessments in 82 of 100 (82%).

Mutation carrier status, demographic data, disease characteris-

tics, UPDRS-III scores, and MMSE scores of patients in the

DBS and non-DBS groups were compared using the Student

t test, the v2 test, or the Mann–Whitney test, as appropriate.

Within the DBS group, demographic and disease and character-

istics of GBA, LRRK2, and PRKN mutation carriers and

noncarriers were compared using analysis of variance

(ANOVA), the v2 test, and the Fisher exact test, as appropriate.

A post-hoc Bonferroni procedure was used to perform pair-

wise comparisons and identify the source of significance in the

ANOVA. For replication purposes, nominal P values < 0.05

were considered statistically significant; and, for novel

associations, Bonferroni-corrected P values < (0.05/number of

comparisons) were considered statistically significant.

The association between mutation status and DBS placement

was assessed in logistic regression models. The association was

assessed first in a univariate model and then in a multivariate

model, adjusting for site, AJ ancestry, AAO, disease duration

(dichotomized, <15 years and >15 years), UPDRS-III score,

and MMSE score. Additional multivariate analyses were per-

formed with the addition of prior history of dyskinesia as a

covariate.

Results
There was no significant difference in the frequency of genetic

mutation carriers combined in the 3 sites compared with the

remaining 14 sites (18.1% vs. 17.5%; P = 0.38). Comparisons of

the individual genetic mutations in the DBS and non-DBS

groups are illustrated in Figure 1. GBA mutations were the

most common mutations in the DBS and non-DBS groups

(12.1% vs. 8.0%, respectively; P = 0.17). In the DBS group, 8

patients carried the GBA asparagine to serine substitution at

position 370 (N370S) variant, and 3 carried the GBA leucine to

proline substitution at position 444 (L444P) variant. In the non-

DBS group, 65% of GBA mutations were of the N370s variant

(n = 33), and 27% were of the L444P variant (n = 14). When

examining mutations in all 3 genes combined, mutation carriers

were more prevalent in the DBS group compared with the

non-DBS group (26.5% vs. 16.8%, respectively; P = 0.019)

(Table 1). GBA, LRRK2, and PRKN mutations were each

slightly more prevalent in the DBS group than in the non-DBS

group, although this difference did not reach statistical

significance (Fig. 2).

Demographic and disease characteristics of patients in the

DBS and non-DBS groups, including PD AAO, age at baseline

evaluation, disease duration, AJ ancestry, ethnicity, UPDRS-III

score, MMSE score, and prior history of dyskinesia, are pre-

sented in Table 1. Compared with the non-DBS group,

patients in the DBS group were significantly older at baseline

evaluation (56.7 � 7.9 years vs. 51.6 � 9.1 years; P < 0.0001)

and had longer disease duration (16.5 � 6.8 years vs.

9.9 � 7.8 years; P < 0.001). A greater proportion of those in

the DBS group, compared with the non-DBS group, reported a

history of dyskinesia (78% vs. 38%; P < 0.0001) and had a

higher UPDRS-III score (24.8 � 13.1 vs. 20.3 � 11.7;

P = 0.002).

Demographic and disease characteristics of GBA, LRRK2,

PRKN mutation carriers and nonmutation carriers with DBS

were compared using ANOVA, v2, and Fisher exact tests, as

appropriate (Table 2). Those who carried more than 1 mutation

were excluded from the analysis (n = 1; a carrier of GBA and
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LRRK2 mutations). There was a significant difference in the

AAO between the groups (P < 0.0001). PRKN mutation carri-

ers had the youngest AAO, followed by GBA mutation carriers,

while LRRK2 carriers had the oldest AAO. There was a signifi-

cant difference in age at DBS implantation between the individ-

ual mutation carrier groups (P = 0.005). The largest mean

difference in age at DBS implantation was between PRKN and

LRRK2 carriers (�13.8 � 4.4 years; P = 0.014). PRKN carri-

ers had the youngest age at DBS implantation

(47.0 � 11.5 years), and LRRK2 carriers were the oldest group

to undergo DBS surgery (60.8 � 9.0 years).

In a univariate logistic regression model, having a mutation

in any of these 3 genes was associated with DBS placement

(odds ratio [OR], 1.8; 95% confidence interval [CI], 1.1–2.9;
P = 0.021). This association between mutation carrier status

and DBS placement persisted when adjusted for site, AJ

ancestry, AAO, disease duration, UPDRS-III score, and MMSE

score (OR, 1.8; 95% CI, 1.0–3.2; P = 0.036). Additional analy-

ses for specific genes showed that GBA mutation status (OR,

2.1; 95% CI, 1.0–4.3; P = 0.05) and disease duration (OR, 1.1;

95% CI, 1.0–1.1; P < 0.001) were the main factors associated

with DBS surgery enrollment (Table 3). Thus, GBA mutation

carriers are 2-fold more likely to be identified in the DBS

group and are not more likely to be of AJ ancestry. Regarding

disease duration, every year increase in PD duration increases

the odds of DBS by a factor of 1.1. We repeated the same mul-

tivariate logistic regression model with history of dyskinesia as

an additional covariate. Our data regarding dyskinesia were not

complete, so the number of subjects included in the analyses

was reduced from 690 to 479. In this new model, the associa-

tion between GBA mutation status and DBS placement did not

TABLE 1 Demographic and Disease Characteristics of Subjects
with and Without Deep Brain Stimulation. Values reported are mean
� SD

Variable DBS Group
(n = 100)

Non-DBS
Group
(n = 684)

P

Age of onset 40.3 � 7.1 41.7 � 6.9 0.06
Age at baseline
evaluation

56.7 � 7.9 51.6 � 9.1 <0.0001

Disease duration, y 16.5 � 6.8 9.9 � 7.8 <0.0001
AJ ancestry, % of
subjects

15.0 15.8 0.81

Ethnicity, %
a

White 83.0 82.0 0.51
African-American 0.0 15.0
Hispanic 13.0 12.3
Other 4.0 3.51
UPDRS-III

b
24.8 � 13.1 20.3 � 11.7 0.002

MMSE
c

28.8 � 1.9 28.9 � 2.1 0.22
Prior history of
dyskinesia,
% of subjects

d

78.3 37.9 <0.0001

Prevalence of
mutation
carriers, %

e

26.5 16.8 0.019

aNon-DBS, n = 683.
bDBS, n = 89; non-DBS, n = 641.
cDBS, n = 97; non-DBS, n = 664.
dDBS, n = 83; non-DBS, n = 475.
eDBS, n = 98; non-DBS, n = 661.
SD, standard deviation; DBS, deep brain stimulation; AJ, Ashkenazi
Jewish; MMSE, Mini-Mental Status Examination; UPDRS-III, the
motor subsection of the Unified Parkinson’s Disease Rating Scale.

LRRK2
5%

GBA
12%

PRKN
10%

WT
73%

DBS
LRRK2
4%

GBA
8%

PRKN
6%

WT
82%

Non-DBS

Figure 2 Frequency of mutation carriers in the deep brain
stimulation (DBS) and non-DBS groups. LRRK2, leucine-rich
repeat kinase 2; GBA, glucocerebrosidase; PRKN, parkin; WT,
wild-type (GBA: DBS vs. non-DBS, P = 0.26; LRRK2: DBS vs.
non-DBS, P = 0.58; PRKN: DBS vs. non-DBS, P = 0.13).

CORE-PD SITES 
(n=1136 subjects)

GBA
(n=12/99)

12.1%

LRRK2
(n=5/99)

5.1%

PRKN
(n=10/98)

10.2%

Columbia Univ, 
Rush Univ, 

UPenn (n=814)

Excluded sites 
(n=322)

DBS (n=100) Non-DBS 
(n=684)

Missing DBS 
status 
(n=30)

GBA
(n=53/663)

8.0%

LRRK2
(n=26/662)
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N=26*
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Missing n=22
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Figure 1 Consortium on Risk for Early Onset Parkinson’s
Disease (CORE-PD) enrollment and frequency of mutation
carriers in the deep brain stimulation (DBS) and non-DBS
groups. GBA, glucocerebrosidase; LRRK2, leucine-rich repeat
kinase 2 (all individuals with LRRK2 had the glycine-to-serine
mutation at codon 2019 [G2019S]); PRKN, parkin. Asterisks
indicate values that reflect the total number of unique sub-
jects with mutations.
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persist (P = 0.25), but disease duration (OR, 1.1; 95% CI,

1.0–1.1; P = 0.001) and history of dyskinesia (OR, 3.8; 95%

CI, 1.9–7.3; P < 0.0001) were associated with DBS placement.

Discussion
Our results demonstrate that carriers of mutations in specific

genes present with characteristic phenotypes and provide insight

into disease progression. In the multivariate logistic regression

model, GBA mutation carrier status was significantly associated

with DBS surgery. The reason for this may be that GBA muta-

tions are the most common genetic risk factor for PD.13 Inter-

estingly, the time from disease onset to DBS was shortest for

GBA carriers (10.9 � 6.0 years), which may suggest that GBA

mutation carriers have a more rapid disease progression

compared with other mutation carriers and nonmutation

carriers,14–16 ultimately resulting in GBA mutation carriers pur-

suing DBS earlier. However, the difference in disease duration

among GBA mutation carriers did not reach statistical signifi-

cance compared with other groups, which may be due to the

small sample size, so additional studies are needed to elucidate

this finding. It is important to note that, when prior history of

dyskinesia was included as a covariate, the association between

GBA mutation status and DBS placement did not persist.

Instead, a history of dyskinesia was strongly associated with

DBS placement. This is not surprising considering that dyskine-

sia is 1 of the key reasons patients with PD obtain DBS. This

highlights the need for additional studies to explore predictors

of DBS and the correlation between mutation status and DBS

outcomes.

Our results provide additional insight into disease progression

based on genotype. We infer that all individuals who received

DBS were not significantly cognitively impaired before surgery,

because the inclusion criteria at the 3 assessment centers

required successful cognitive screening to qualify for surgery

and because inclusion criteria for the CORE-PD required an

MMSE score of 24. Because PRKN mutation carriers had long

disease duration at the time of DBS, these data suggest that such

mutation carriers may be resistant to cognitive decline. This

observation is consistent with recent reports of long-term

cognitive outcomes in PRKN carriers.8

The strength of our study is that we have examined the asso-

ciation between genotype and DBS placement in the largest

cohort to date. In these young-onset PD subjects, we

documented that the frequency of mutations in 3 genes (GBA,

LRRK2, and PRKN), considered collectively, was higher in

those who received DBS compared with those who did not.

This finding is consistent with a prior study that reported a high

prevalence of genetic mutation carriers in the DBS population.2

It has been hypothesized that, because PD genetic mutation

carriers are relatively young in age, respond to dopaminergic

therapy, and have motor fluctuations and/or dyskinesia, they

are more likely to pursue DBS.2 Given the high prevalence of

PD with mutations in these 3 genes in the DBS population

(particularly in those with an AAO < 51 years), large studies are

needed to assess whether particular genetic mutations are

associated with DBS outcomes. However, our study had some

limitations. Because this study was retrospective, we did not

have pre-DBS clinical data (such as UPDRS-III scores), which

precludes our ability to fully compare the impact of DBS in the

different mutation carriers and nonmutation carriers. As such,

compared with the non-DBS group, patients in the DBS group

had higher UPDRS-III scores, which may be attributed to

more advanced disease, but this remains unclear. Although all

GBA carriers were initially screened for common mutations and

then carriers of any of 10 mutations were subsequently fully

sequenced to look for additional mutations,7 not all patients

TABLE 3 Multivariate Logistic Regression Model Predicting Deep
Brain Stimulation Placement (N = 690)

Variable OR 95% CI P

GBA 2.1 1.0-4.3 0.05
LRRK2 0.6 0.2-2.0 0.50
PRKN 0.7 0.5-1.2 0.29
Site 1.1 0.9-1.7 0.17
AJ ancestry 0.9 0.5-1.6 0.74
Age of onset 1.0 1.0-1.1 0.19
Disease duration 1.1 1.0-1.1 <0.001
UPDRS-III 1.0 0.9-1.0 0.18
MMSE 1.0 0.9-1.2 0.56

OR, odds ratio; CI, confidence interval; GBA, glucocerebrosidase;
LRRK2, leucine-rich repeat kinase 2; PKRN, parkin; AJ, Ashkenazi
Jewish; UPDRS-III, the motor subsection of the Unified Parkinson’s
Disease Rating Scale; MMSE, Mini-Mental Status Examination.

TABLE 2 Demographic and Disease Characteristics of Subjects with Deep Brain Stimulation.* Values reported are mean � SD

Variable GBA (n = 11) LRRK2 (n = 4) PRKN (n = 10) Nonmutation Carriers (n = 72) P

Age of onset, y 41.6 � 5.3 47.5 � 2.4 30.6 � 9.1 41.2 � 5.3 <0.0001
Age at baseline evaluation, y 54.9 � 2.6 64.3 � 11.0 51.0 � 10.6 57.4 � 7.6 0.019
Age at DBS implantation, y 53.9 � 2.6 (n = 9) 60.8 � 9.0 47.0 � 11.5 55.2 � 7.0 0.005
Disease duration, y 13.3 � 4.9 16.8 � 10.3 20.4 � 7.3 16.1 � 6.3 0.09
AJ ancestry, % of subjects 36.4 25.0 0.0 16.1 0.29
UPDRS-III score 27.4 � 14.5 30.8 � 11.7 33.8 � 20.5 (n = 6) 23.4 � 12.1 (n = 65) 0.37
MMSE score 28.7 � 1.3 28.3 � 2.4 28.2 � 1.8 28.6 � 2.0 0.90
Age of onset to DBS, ye 10.9 � 6.0 (n = 9) 13.3 � 8.5 16.4 � 7.7 13.7 � 5.7(n = 62) 0.29
DBS to current age, y 1.6 � 3.0 (n = 9) 3.5 � 2.4 4.0 � 4.2 2.4 � 2.6 (n = 62) 0.28
Prior report of dyskinesia,
% of subjects

100.0 (n = 6) 66.6 (n = 3) 80.0 (n = 8) 75.4 (n = 61) 0.55

*One subject who carried both GBA and LRRK2 mutations was excluded.
SD, standard deviation; GBA, glucocerebrosidase; LRRK2, leucine-rich repeat kinase 2; PKRN, parkin; DBS, deep brain stimulation; AJ, Ashke-
nazi Jewish; UPDRS-III, the motor subsection of the Unified Parkinson’s Disease Rating Scale; MMSE, Mini-Mental Status Examination.
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underwent full sequencing for GBA mutations in our study.

Sidransky et al.22 reported that full sequencing of GBA can

increase the detection rate by up to 50% in the non-AJ popula-

tion, a group that composed roughly 80% of our cohort. In the

DBS group, the prevalence GBA mutation in non-AJ patients

was 9.5%. Full sequencing of GBA may increase this prevalence

to as much as 18%. Thus, the prevalence of GBA mutation

reported here may be an underestimate. Furthermore, our study

was limited to the young-onset PD population with an AAO <
51 years. Studies are needed to assess mutation prevalence in

subjects with an AAO ≥ 51 years but < 70 years, because DBS

is considered in individuals up to age 75 years.21,23 Also, only

patients with MMSE scores > 24 were included in the study;

thus, it is possible that mutation carriers who developed demen-

tia after DBS were missed in our cohort. A prospective study is

needed to capture the prevalence of mutation carriers in the

DBS candidate population and the impact of DBS in these

individuals. Finally, there was a wide range in the frequency of

DBS surgeries based on site, which may also be due to the

retrospective nature of the study and to site-specific practices

regarding DBS. We tried to limit this site-specific bias by

selecting only the 3 largest recruiting sites from the CORE-PD

cohort.

Because there is increasing emphasis on performing DBS ear-

lier in the course of PD, the enrichment of genetic forms of

PD may increase, because patients will be younger, underscor-

ing the urgent need to define the safety and efficacy of DBS in

mutation carriers. Subjects in the EARLYSTIM trial had a

mean age at DBS of 52 years,24 which is comparable to the age

at DBS implantation in the GBA and LRRK2 groups in our

cohort. GBA carriers are vulnerable to cognitive decline,13,17,19

and variants such as N370S are specifically associated with cog-

nitive impairment.20,25 The N370S variant was the most com-

mon GBA mutation identified in our cohort, regardless of DBS

status. Thus, whether these patients have different cognitive

outcomes after DBS based on the target (subthalamic nucleus

vs. globus pallidus interna) remains to be explored18. There also

are implications regarding DBS implantation in LRRK2 and

PRKN carriers. Because these patients remain relatively cogni-

tively intact despite long disease duration, they may have a

longer window of opportunity regarding DBS and early implan-

tation may not be critical. Our long-term research goal is to

define the best groups for DBS, and these genetic studies offer

the potential to define candidates with a high likelihood of suc-

cess and those at higher risk for long-term decline.
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