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Abstract
The potential for human exposure to manufactured nanoparticles (NPs) has increased in

recent years, in part through the incorporation of engineered particles into a wide range of

commercial goods and medical applications. NP are ideal candidates for use as therapeutic

and diagnostic tools within biomedicine, however concern exists regarding their efficacy

and safety. Thus, developing techniques for the investigation of NP uptake into cells is criti-

cally important. Current intracellular NP investigations rely on the use of either Transmis-

sion Electron Microscopy (TEM), which provides ultrahigh resolution, but involves

cumbersome sample preparation rendering the technique incompatible with live cell imag-

ing, or fluorescent labelling, which suffers from photobleaching, poor bioconjugation and,

often, alteration of NP surface properties. Reflected light imaging provides an alternative

non-destructive label free technique well suited, but not limited to, the visualisation of NP

uptake within model systems, such as cells. Confocal reflectance microscopy provides opti-

cal sectioning and live imaging capabilities, with little sample preparation. However confo-

cal microscopy is diffraction limited, thus the X-Y resolution is restricted to ~250 nm,

substantially larger than the <100 nm size of NPs. Techniques such as super-resolution

light microscopy overcome this fundamental limitation, providing increased X-Y resolution.

The use of Reflectance SIM (R-SIM) for NP imaging has previously only been demon-

strated on custom built microscopes, restricting the widespread use and limiting NP investi-

gations. This paper demonstrates the use of a commercial SIM microscope for the

acquisition of super-resolution reflectance data with X-Y resolution of 115 nm, a greater

than two-fold increase compared to that attainable with RCM. This increase in resolution is

advantageous for visualising small closely spaced structures, such as NP clusters, previ-

ously unresolvable by RCM. This is advantageous when investigating the subcellular traf-

ficking of NP within fluorescently labelled cellular compartments. NP signal can be

observed using RCM, R-SIM and TEM and a direct comparison is presented. Each of these
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techniques has its own benefits and limitations; RCM and R-SIM provide novel complemen-

tary information while the combination of modalities provides a unique opportunity to gain

additional information regarding NP uptake. The use of multiple imaging methods therefore

greatly enhances the range of NPs that can be studied under label-free conditions.

Introduction

Naturally occurringnanoparticles (NPs) have always existed in the environment, derived from
sources including volcanic dust, soil and sediment [1]. However, recent years have seen an
increase in the incorporation of man-made NPs into commercial goods, including sun screen,
chewing gum, tennis rackets, and wrinkle-free shirts, in addition to their use as additives in
industrial processes, such as cerium dioxide NPs or nanoceria use in diesel fuel [2–5]. The use
of NPs within biomedicine for diagnostics and intracellular delivery of therapeutics is a key
application of nanotechnology. NPs offer unique properties such as large surface area to mass
ratio, quantum properties and ability to adsorb, carry and release therapeutic payloads. Several
drugs have been combined with NPs, particularly for cancer therapy, including paclitaxel,
doxorubicin and methotrexate [6–8]. These NPs can be targeted, passively and actively, to spe-
cific sites of interest, decreasing off-target toxicity associated with conventional chemotherapy.
In addition, super-paramagnetic iron oxide NPs (SPIONs) can be used as Magnetic Resonance
Imaging contrast agents and for magnetically guided drug delivery and release [9–11]. Despite
the advantages they offer, a large majority of NPs fail to increase drug efficacy in the clinic [12].
A crucial factor limiting the success of these NP is the inadequate understanding of NP-cell
interactions, and little is known about the short and long term health effects of NP exposure
[13]. Therefore there is an increasing drive for the development of research methods with
throughput sufficient to facilitate safe use of these NPs and to deliver their full potential as
diagnostics and therapeutic agents. Development of research methods that can be applied to
further the understanding of NP-cell interactions, including potential mechanisms of NP entry
and toxicity, is therefore a critical research priority.

TEM remains the current gold standard for NP imaging. ElectrodenseNPs, such as gold,
have often been used to increase contrast within TEM micrographs, such as in immunogold
labelling of proteins of interest [14,15]. TEM provides ultrahigh resolution capable of distin-
guishing individual mono-disperse intracellular NPs, and therefore provides a means of quan-
tifyingNP number; this quantification has been applied to multiple NPs including SPIONs,
silica, zinc and gold [16–20]. Despite the advantages that TEM offers, conventional sample
preparation is extensive and leads to the alteration of cellular structure and morphology during
the dehydration and resin embedding processes, and limits investigation to fixed samples.
TEM is therefore limited in its capacity to provide the high throughput studies necessary for
the investigation of NPs cellular interactions, and data interpretation is complicated due to
poor contrast arising from soft materials [21].

Alternatively, fluorescent NP labelling and subsequent imaging can be used for investigation
of NP internalisation and location of intracellular NPs. This method requires little sample
preparation; however the use of fluorescent tags has known limitations, including low sensitiv-
ity, difficult bioconjugation, low quantum efficiency and photobleaching effects, in addition to
potential alteration of NP surface chemistry if the label is surface-attached, a factor known to
influence biological activity [22–24]. Fluorescent tags can also dissociate from the NP following
uptake, complicating the experimental analysis and results [25]. An alternative technique that
can be used in conjunction with fluorescent imaging is reflected light imaging, in which

Comparison of Reflectance Microscopy Techniques

PLOS ONE | DOI:10.1371/journal.pone.0159980 October 3, 2016 2 / 26

in the Biomedical Sciences (PSIBS) Doctoral

Training Centre (EP/F50053X/1).

Competing Interests: LC is an employee of Nikon

Instruments. Although Nikon had no role in the

funding or oversight of the studies presented, this

could be indicative of an indirect COI. This does not

alter our adherence to PLOS ONE policies on

sharing data and materials.

Abbreviations: CB, Cacodylate Buffer; CLSM,

Confocal Laser Scanning Microscopy; CPD,

Coherent Point Drift; CREM, Correlative

Reflectance Electron Microscopy; CTO, CellTracker

Orange; DAPI, 4’,6-diamdino-2phenylindeo; EM,

Electron Microscopy; FFT, Fast Fourier Transform;

FWHM, Full Width at Half Maximum; IRM,

Interference Reflectance Microscopy; ICP, Iterative

Closest Point; NP(s), Nanoparticle(s); NA,

Numerical Aperture; PB, Phosphate Buffer; PBS,

Phosphate Buffered Saline; RCM, Reflectance

Confocal Microscopy; RI, Refractive Index; SCM,

Supplemented Culture Media; SEM, Standard Error

of Mean; STD, Standard Deviation; SIM, Structured

Illumination Microscopy; SPIONs, Super

Paramagnetic Iron Oxide Nanoparticles; SNR,

Signal to Noise Ratio; TEM, Transmission Electron

Microscopy; TIRM, Total Internal Reflectance

Microscopy.



metallic NP give rise to significant contrast [26]. Thus, the use of reflectance imaging obviates
the need for fluorescent NP labelling, and provides an alternative platform for visualising these
NPs [26]. Reflectance imaging can be performedwith a variety of modalities including wide-
field illumination, Confocal Laser Scanning Microscopy (CLSM), Total Internal Reflectance
Microscopy (TIRM), Structured Illumination Microscopy (SIM) and Optical Coherence
Tomography [27–31]. CLSM uses pinhole optics to block out-of-focus signal from reaching
the detector, effectively de-blurring images, while ReflectanceConfocalMicroscopy (RCM)
provides a simple contrast enhancement method for interrogation of a variety of unlabelled
samples, including those containing metallic NPs [31–36].

RCM provides a quick acquisition with little sample preparation and is therefore applicable
to both fixed and live cells. The key function of CLSM and RCM is the optical sectioning capa-
bility, providing increased resolution, compared to epifluorescence, with depth selectivity. The
optical section thickness depends upon the excitation laser wavelength, numerical aperture
(NA) and the refractive index of the sample medium. This allows semi-thick samples to be
imaged throughout, providing a 3D volume of the area of interest. A key benefit of CLSM
reflectance imaging is the potential correlation with Fluorescence ConfocalMicroscopy (FCM)
data [36]. The use of the same sample preparation and acquisition instrumentation allows fur-
ther information to be obtained than with either modality on its own. This provides an oppor-
tunity to visualise NP uptake using reflectance, in conjunction with fluorescent labelling to
assess the compartment localisation or cell perturbations resulting from exposure, such as
alteration of cell viability [37–39]. Fluorescent compartment labelling provides an important
technique often used to elucidate cellular traffickingmechanisms of NPs; determining these
routes of uptake is critical in ensuring the subsequent success of NPs in personalised therapies
[37]. Despite the advantages CLSM methodologies provide, the resolution is fundamentally
constrained due to the finite wavelength of the incident light, and therefore NPs and NP clus-
ters appear as blurred spots [40–42]. Light microscopes, such as RCM can resolve objects lat-
erally that are separated by roughly 250 nm, and axially by approximately 600 nm. This,
however, relies on perfect experimental conditions and the concept of an infinitely small pin-
hole, and therefore will not be achieved in practice, particularly in fluorescencemicroscopy
where light intensity is a limiting factor [43]. Therefore, structures separated by less than the
resolution limit of the system will not be resolved. To overcome this limitation, novel methods
are necessary for accurate NP studies.

There are methods available that can be used to increase the resolution of light microscopy,
collectively referred to as “super-resolution microscopy”, that bridge the gap between light and
electron microscopies [44–46]. One method, first proposed by Neil et al, called Structured Illu-
mination Microscopy (SIM), uses grid projections to effectively increase the resolution limit
imposed by diffraction [44]. In a conventional SIM acquisition, a grid pattern is projected onto
the sample in several different orientations, and the emitted fluorescence signal is detected and
reconstructed in the Fourier domain into the final image [44]. SIM can increase resolution
two-fold or more, enabling the identification of previously unresolvable cellular structures such
as individual nuclear pore complexes [47,48]. SIM can therefore provide the necessary advan-
tages / resolution for imaging NP-cell interactions; however, while super-resolution reflectance
techniques have been described they are currently limited to custom built microscopes, limiting
widespread use [27].

The increasing use of NPs in a range of consumer and medical applications has driven the
need for an in-depth understanding of their biological behaviours and effects following cellular
exposure, for both safe and efficacious use. Reflectancemicroscopy provides a unique opportu-
nity for the investigation of these particles and, in conjunction with fluorescence compartment
labelling, can provide insights into their cellular entry, trafficking, fate and toxicity [37,38,49].
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Optimisation of the imaging procedures for reflectancemethods is describedherein, and a
workflow for the visualisation of NP uptake, via the sequential acquisition of RCM images and
super-resolution R-SIM images followed by processing and TEM imaging, is described.Despite
the advantages offered by RCM, such as fast acquisition of large sample areas with optical sec-
tioning capabilities, the resolution is not as high as super-resolution techniques. This paper
presents the first utilisation of a commercial N-SIM module to acquire reflectance imaging
data with greater than 2-fold increase in resolution compared to RCM, applied to the investiga-
tion of NP uptake and cellular localisation. This allows clusters of NP separated by ~115 nm to
be resolved. This is a necessity for accurate internalisation and colocalisation studies to deter-
mine the precise uptake, localisation and trafficking route of NPs. Within this study, cancer
cell models are employed, which are an important model system for understanding cancer
diagnostics and drug delivery. The potential for quantification of uptake, visualization of traf-
ficking and the ultimate destination of particles, as well as for assessment of potential removal
and/or degradation/dissolution of the NPs will be instrumental in the development of thera-
peutic NP agents. R-SIM as a method is validated by the comparison to RCM and TEM, con-
firming cellular entry of electrodenseNPs and their subcellular localisation and fate. Together,
the combination of imaging techniques maximises the information gained from a sample
regarding NP uptake route, uptake form (single NPs or NP clusters) and sub-cellular
localisation.

The studies presented here have made use of two different metallic NPs of significant bio-
medical and environmental interest, SPIONs and cerium dioxide NPs, and we have been able
to visualize both NPs through all three means, revealing information about the cellular uptake
of these NPs as well as insights into the relative merits of these different imaging techniques.

Results and Discussion

Transmission Electron Microscopy

Fig 1 shows imaging of intracellular NPs using TEM. Traditionally, ultrathin (70 nm sections)
are imaged using TEM, generally to achieve the highest possible definition and contrast at the
boundaries of organelles present in the cell cytoplasm (Fig 1 top panel). Thick sections (150
nm) can also be obtained and imaged with high power TEMs (Fig 1 bottom panel). This leads
to acquisition of a TEM slice with increased density of particles in a particular location, but
additionally increased density of cellular constituents. ElectrodenseNPs, such as iron oxide
and cerium dioxide give rise to contrast within the electron micrograph, alone or inside cells
on both thick and thin sections (Fig 1 and S1 Fig).

Reflectance Microscopy

The innately different optical densities or refractive indices (RI) within non-homogeneous
samples introduce contrast into the acquired RCM image [50,51]. Fig 2 shows the CLSM reflec-
tance and fluorescence images of SPION and cerium dioxide NPs when utilising a 100X objec-
tive with Nyquist sampling rates to achieve maximal resolution. Both NPs provide a substantial
RI difference compared to the surrounding media and therefore provide excellent contrast,
allowing detection in cancer cell models (Fig 2). When comparing imaging media, we found
Vectashield mounting medium (RI 1.44) rather than hard set media (Prolong Gold) or aqueous
buffers such as Phosphate Buffered Saline (PBS) (RI 1.33) improved the signal-to-noise ratio
(SNR) in fixed samples. When utilising lower magnification objectives RCM can allow acquisi-
tion of large sample areas which permits multiple cells to be imaged simultaneously. This can
be done using large image tiling to prevent loss of resolution (0.5mm2 in 40 minutes). There-
fore, RCM provides a unique opportunity to investigate the cellular effects of NP uptake in a
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time efficientmanner critical for high throughput investigation. Fig 2 shows representative
results of the processed RCM images, following the use of Gaussian smoothing and intensity
clustering and segmentation, providing assessment of uptake of NPs relative to untreated con-
trol cells (S2A Fig). Although there appears no observableNP signal in the control cells auto-
mated algorithms, such as those demonstrated here, can detect regions of contrast arising from
cell constituents otherwise undetectable by eye (Fig 2 and S2 Fig, white arrow). This is evi-
denced by the slightly higher than ‘zero’ regions of intensity detected in control cells when a
sample of cells are analysed. It is therefore crucial that untreated cells (Fig 2) are employed as a
baseline negative control in order to compare NP-based signal relative to inherent cellular
reflection (Fig 2 and S2 Fig).

Reflectance structured illumination microscopy

SIM is an established super-resolution microscopy technique that provides more than two-fold
increased resolution relative to conventional light microscopes [44,46]. A typical SIM acquisi-
tion consists of 9 or 15 (2D or 3D) acquisitions at different grid angles and phases. These
images can be processed in reciprocal space to reconstruct the Fourier transform (FT) image
with high resolution information, the inverse of which is the super-resolution image. The the-
ory of SIM is described in detail in references [44,46]. Reflectance imaging of NPs has previ-
ously been demonstrated using a custom made SIM [27]. We have found that the collection of
reflected light can be achieved on the commercially available Nikon N-SIM system (Fig 3).

Fig 1. Electron micrographs of A) cerium dioxide NPs, B) SPIONs, and C) Non-treated cells. The top panel

depicts 70 nm ultrathin sections, the standard TEM mode, while the bottom panel uses 150 nm sections. Ultrathin

and semi-thick sections can thus be successfully imaged. Thin sections give rise to a crisper image, with increased

contrast visible at organelle boundaries. Thick sections have slightly less contrast due to the denser area being

imaged but allow alignment with confocal slices (see below).

doi:10.1371/journal.pone.0159980.g001
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In a typical fluorescence SIM acquisition, the filter cube placed within the light path consists
of an excitation filter, emission or barrier filter and a dichroic mirror. This filter cube separates
the fluorescent light emitted from the specimen for detection, from the light used to excite the
specimen. This enables detection of emitted fluorescent light from the sample. However, for
reflectance imaging this type of spectral separation is not employed. Instead, we utilized a filter
cube that contains a half-mirror in place of the dichroic, which permits passage of light that is
reflected back from the sample to the detector, rather than selectively allowing passage of a par-
ticular wavelength of emitted light. This provides the first report of a commercial SIM micro-
scope being used for super-resolution imaging of intracellular reflectant (NP) structures,
utilising the half-mirror filter cube. This is advantageous particularly for the imaging of non-
fluorescent NP, such as SPIONs and cerium dioxide NPs, which would otherwise be undetect-
able using fluorescent SIM, and therefore negates the need for fluorescent modification and

Fig 2. RCM allows visualisation of NP uptake within cancer cell models. NP uptake can be visualised in HeLa

cells treated with cerium dioxide NPs (65 cells) or SPIONs (51 cells) comparted to untreated control cells (25 cells).

Images show maximum intensity Z-projections of cells stained with Cell Tracker Deep Red (CTDR) (red),

4’,6-diamdino-2phenylindeo (DAPI) nuclear stain (blue) and NP reflectance signal (grey). Control cells show no

high intensity reflective spots. The raw intensity reflectance images show background reflectance in both control

and treated cells (top panel). Following post processing, regions of high intensity signal are segmented from

background signal (middle panel). Overlay of fluorescence stains and segmented reflectance NP signal (grey)

(bottom panel).

doi:10.1371/journal.pone.0159980.g002
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labelling of the NPs. R-SIM has been successfully used to image four different NPs including
two types of SPIONs, polystyrene and cerium dioxide NPs (data not shown), indicating the
breadth of application for this technique. However, despite the advantages SIM offers for label
free imaging, it currently lacks the ability to differentiate between different types of relfectant
objects.

When optimizing parameters for R-SIM imaging, we obtained our best SNR with 488 nm
incident light and use of Vectashield mounting media relative to alternative approaches such as
aqueous imaging media. Thus, R-SIM can be performedwith the same sample preparation
conditions as RCM. However, like RCM, there will still be small amounts of detectable signal
arising from the inherent cellular reflection, therefore untreated control cells must be employed

Fig 3. R-SIM allows visualisation of NP uptake at increased resolution. Reflectant signal was visualised in

HeLa cells treated with cerium dioxide NPs (86 cells), SPIONs (32 cells) or untreated (25 cells). Images show

maximum intensity Z-projections. Fluorescence images show conventional widefield epi-fluorescence of cells

stained with CTDR (red) and DAPI nuclear stain (blue). Reflectance images show 2D SIM acquisition of

reflectance NP signal (grey). Control cells show no high intensity reflective spots. The raw intensity reflectance

images (top panel) show background reflectance in control and treated cells. Post processing and segmentation

can isolate regions of high intensity reflectance (NPs) from background signal (middle panel). Overlay of cells

stained with CTDR (red), DAPI nuclear stain (blue), and segmented reflectance NP signal (grey) (bottom panel).

doi:10.1371/journal.pone.0159980.g003
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to visualise baseline reflectance to draw accurate comparisons and conclusions. Fig 3 shows the
raw and processed R-SIM images of intracellular SPIONs, cerium dioxide NPs and untreated
control cells. Segmentation was achieved using intensity based clustering to segment signal and
assess the detection and uptake of NPs relative to control cells (S2A Fig).

In order to make qualitative conclusions regarding the advantages offered by R-SIM, cells
were imaged sequentially with RCM, and then R-SIM following incubation with NPs as
detailed in the methods section; and subsequently processed for TEM. S1 and S2 Boxes provide
a summary of the experimental conclusions determined for RCM and R-SIM acquisitions;
Table 1 provides numerical values regarding the various acquisition specifications, indicating
the pros and cons of each method.

The dramatically increased resolving power of the R-SIM technique is evidenced by the
appearance of multiple smaller structures on the R-SIM image, where RCM shows single corre-
spondingly larger structures at the same locations when using both the 60X (S3 Fig) and the
100X objectives for RCM (Fig 4C and 4D). Thus, the higher resolution allows separation of
regions that would otherwise be non-resolvable using RCM alone. This is also evidenced in the
line intensity profiles (Fig 4E and 4F) of the selected region depicted on the raw intensity
images (blue arrow in white box; depicted in Fig 4A and 4C). The RCM line-scan shows a sin-
gle broad peak (Fig 4E), where the R-SIM line scan displays two peaks at the same location (Fig
4F). The decrease in the width of the detected R-SIM peaks indicates a decrease in the FWHM,
which is often used as a measure of resolution. The FWHM for regions detected by RCM using
the 100X 1.49 NA objective with Nyquist sampling is 345 nm +/- 83 nm averaged over 100
regions. The average FWHM for regions detected by SIM reflectance is 115 nm +/- 21 nm aver-
aged over 125 regions. This is substantially better than the theoretical maximal X-Y resolution
offered by confocal systems: ~250 nm.

When comparing images obtained with RCM using the 100X objective to those taken with
RCM using the 60X, the 100X performs substantially better; regions detected using the 100X
objective with RCM align to those detected by R-SIM with little to no offset, indicating the
power of utilising the same objective (Fig 4 and S3 Fig). R-SIM did not appear to reveal as
many isolated regions as RCM. This is evident in the image shown where the majority of
regions detectedwith R-SIM correspond to a region detected by RCM (Fig 4). This can be
quantified as a percentage of total ‘objects’ detected. Pixel basedmethods are not appropriate
due to the difference in resolution. Objects that are detectedwithin R-SIM images are also
observedwith RCM with an average of 74% across 27 analysed cells (Fig 4H). Conversely, 54%
of regions detected on RCM correlate to regions detectedwith R-SIM (Fig 4H). Although vol-
umes of approximately the same regions were acquired with corresponding Z-step size, the
identical volumes cannot be directly compared, likely leading to some of the discrepancies
seen. The perceived centre of the detected region is not perfectly aligned in all cases; this may,

Table 1. Comparison of the image acquisition specifications for each modality. Table 1.provides a comparison of the image acquisition specifications

for each modality.

Max observed X-Y

Resolution

Max observed Z–

Resolution

Theoretical Optical

thickness

Live Large Image 3D volume

RCM >340 nm 1077 nm ~480 nm Yes Yes (~ 1 hour) Z-Stacks

R-SIM >115 nm 685 nm ~685 nm* Yes Yes (~24

hours)

Z-Stacks

TEM >4 nm NA ~70–150 nm No No Serial Sections /

Tomography

*Approximated by the Z-PFS as this greatly depends on the RI of the sample and the extent of out of focus light.

doi:10.1371/journal.pone.0159980.t001
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in part, relate to the different reflected rays that are collected from irregular shaped NP and
agglomerates under the different illumination patterns. Agglomerate shape, size and orienta-
tion with respect to the optical axis are all known factors that contribute to the angle of reflec-
tance, and therefore the perceived centre of detection [52–54]. Additionally, problems may
arise from the dish not being completely flat during acquisitions. Thus although SIM provides
better resolution, RCM permits identification of more NP positive structures.

The total signal detectedwhen imaging cerium dioxide NPs is increased with R-SIM when
compared to RCM (S2 Fig). This is expected if a resolution increase is observed, due to the
resolving of smaller structures previously detected as one with RCM. Interestingly, the detec-
tion of SPIONs remains roughly the same. It is likely that this discrepancy results from the low
intensity reflectance signal generation associated with these particular SPIONs. The core size of
the SPIONs used in this study is small (4 nm) and irregularly shaped, as seen on the TEM

Fig 4. Correlation of data obtained from RCM and SIM reflectance. Maximum intensity Z-projection images of

a HeLa cells treated with cerium dioxide NPs, acquired with RCM and R-SIM using identical 100X, 1.49 NA

objective. RCM imaging volume is 3.6 μm and SIM 4 μm. Images A) (RCM) and B) (R-SIM) show CTDR (red)

cytoplasmic stain, DAPI (blue) nuclear stain and NP signal (grey). Overlay of the cerium dioxide NP regions show

particles detected in RCM (blue) and SIM (grey) in both the raw (C) and processed (D) images. White boxes

display a sample of regions where RCM detects one spot and SIM detects multiple spots, illustrating the enhanced

resolution of SIM. Intensity line scans of RCM (E) and R-SIM (F) show the decrease in peak width in SIM and the

detection of two peaks where RCM detects one. The average total number of regions detected via each technique

was computed (47 and 68 for RCM and R-SIM respectively) (G). The percentage of ‘regions’ or ‘connected

components’ visualised with each modality, RCM and R-SIM, that are also seen in the other modality (54% and

74% respectively), were computed automatically using MATLAB as detailed in the methods section using 27 cells

from multiple experiments performed on separate days (H). The means and STD are plotted. Comparison of the

size distribution of the FWHM of 100 / 125 regions for RCM and R-SIM respectively are shown (I), with a fitted

probability density function.

doi:10.1371/journal.pone.0159980.g004
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micrograph (S1 Fig). These results indicate that particle material, size and homogeneity, in
part, determine their detection capacity with R-SIM. Therefore it would be of interest to
synthesise NPs of varyingmaterial, size, shape and homogeneity and subsequently systemati-
cally compare the detection of these with RCM and R-SIM. This could be used to infer conclu-
sions regarding the limitations of R-SIM in terms of NP physical properties. The difference in
detection can somewhat be explained by the different scattered light collectionmethods used
in each optical sectioning technique. In RCM, out-of-focus light is filtered by the conjugate
pinhole system, resulting in an increase in image quality, greater depth of field and increased
particle detection. SIM, however, utilises widefield illumination at multiple angles and phases,
and therefore suffers from the detection of out–of-focus blur; only high contrast in focus signal
will be successfully reconstructed, leading to a narrower plane of particle inclusion [44]. The
reconstruction algorithm used for performing the reconstruction is part of proprietary Nikon
software designed primarily for fluorescence imaging, which cannot readily be replaced or
modified by the user. Reflected light images can include high levels of background scattering
from cellular components, which the reconstruction software is not designed to deal with.
Thus, it is likely that this background scatter leads to obscuring of signal, especially in the case
of the smaller, irregularly shaped SPIONs. This can limit particle identification. Potential
future changes to the image processing and reconstruction algorithm may lead to increased
image quality and increased detection.Despite this limitation, these analyses indicate the
increased detection power of RCM, relative to the significantly improved resolution of SIM,
suggesting that their combined application on a single sample will provide maximal
information.

To further demonstrate the applicability of R-SIM, we applied the technique to the study
the intracellular trafficking of NPs within HeLa cancer cells. Understanding of the uptake and
trafficking of NPs is crucial to their future success in biomedicine as drug delivery agents and
as successful diagnostic tools. NPs are typically internalized in vesicles and transported into the
cell through a variety of endocytic pathways. It had previously been demonstrated that the size
of the NP itself can influence the pathway employed for internalisation [55]. Clathrin mediated
and macropinocytosis pathways are known to accumulate internalisedNP in compartments
with low pH (such as the lysosome), a property that may be exploited in the drug delivery pro-
cess for pH sensitive drug release [56]. When used in conjunction with fluorescence staining,
reflectance imaging can be used to determine the localisation of NP within various compart-
ments. These colocalisation investigations are often used to investigate particle internalisation
routes, however the sensitivity and accuracy is limited by the resolution of the imaging modal-
ity. As demonstrated in S4 Fig and S1 Video, trafficking of cerium dioxide NPs into lysosomal
compartments can be visualized in live cells in real time using RCM. The NPs under investiga-
tion within this workflow have reflectant core sizes of 4 and 6 nm respectively, this is signifi-
cantly smaller than the maximal resolution available with RCM and individual NPs will not be
resolved within NP clusters. RCM can only realistically distinguish between clusters of NP and
labelled compartments that are separated by ~340 nm or more in the X-Y and 800 nm in the
Z-direction [40–42]. R-SIM can provide increased accuracy for colocalisation studies, due to
the greater than two-fold resolution increase relative to RCM. Fig 5 shows RCM (Fig 5A–5C)
and SIM (Fig 5D–5F) images of NP uptake (grey) in cells with labelled lysosomes (red). Coloca-
lisation of SPIONs within the lysosome can be seen in both cases. R-SIM provides increased
resolution and therefore increased assurance that the signal seen is true colocalisation (Fig 5C
and 5F white box). However some regions in the image that appear colocalisedwith RCM do
not actually appear colocalisedwhen imaged using R-SIM, and are likely to be contained within
other membrane bound structures (such as endosomes). This technique can be applied to fluo-
rescent labelling of various compartments, to elucidate the NP trafficking and fate within target
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cells; information that can be used to aid the subsequent design of therapeutic NPs [37].
Despite the increase in resolution offered by R-SIM, individual NPs within clusters will still not
be distinguished, due to the small core size of the NP used in this study.

Both reflectance techniques offer different advantages and disadvantages for NP imaging;
RCM provides a fast acquisition of large sample regions, allowing high throughput investiga-
tions. R-SIM provides the increased resolution necessary for accurate cell trafficking studies,
approaching the resolution of single NPs although for ultrasmall particles such as used here
there is room for further improvement. TEM remains uniquely able to visualise individual par-
ticles and clusters along with other intracellular organelles (Fig 1 and S1 Fig). TEM imaging
can therefore be performed following reflectance imaging to not only confirm the uptake of
NPs within cells, but also to confirm that reflectance imaging does not damage the cell ultra-
structure during the intensive imaging procedures.

Transmission Electron Microscopy

The TEM image allows visualisation of NPs and NP clusters localisedwithin the cell, thus con-
firming that NP uptake has indeed occurred. TEM also provides information regarding subcel-
lular localisation, and identity (composition) of the detected reflectant signal if coupled to EDX
[57]. TEM images of HeLa cancer cells treated with cerium dioxide NPs were acquired follow-
ing reflectance imaging allowing visualisation of the preserved ultrastructural detail within the
cell and intracellular NPs. In some cases, the intracellular localisation of NPs inside vesicular
structures can be seen, providing additional information regarding the subcellular trafficking
and localisation of these NPs within the endocytic transport system (Figs 6 and 7 and S7 Fig).

Fig 5. Colocalisation of NP signal with the lysosome following 24 hour NP incubation. Single optical slice

images of a HeLa cell treated with cerium dioxide NPs, acquired with RCM (A:C) and R-SIM (D:F). The theoretical

slice thickness for RCM is ~480 nm. Theoretical optical slices for R-SIM are approximately the theoretical FWHM

~685 nm. Images A) (RCM) and B) (R-SIM) show CTDR (green) cytoplasmic stain, DAPI (blue) nuclear stain,

LysoTracker Red DND-99 lyosomal stain (red) and NP signal (grey). Increased zoom of RCM (B:C) and R-SIM (E:

F) show colocalisation of NP signal with fluorescent lysosomal signal (red). It is difficult to discern colocalisation

with the RCM image; however the use of SIM provides proof of colocalisation in some cases (white boxes).

doi:10.1371/journal.pone.0159980.g005

Comparison of Reflectance Microscopy Techniques

PLOS ONE | DOI:10.1371/journal.pone.0159980 October 3, 2016 11 / 26



In order to obtain the most accurate comparison possible it is important that the areas
being compared are roughly equivalent. When serial sections are imaged, adjacent sections can
be registered and merged using a minimum projection; the TEM image in Fig 7 is thus a min-
projection of thick serial TEM sections (total thickness 300 nm) (S5 Fig) to create a single
image. This TEM ‘composite image’ can then be co-alignedwith RCM and SIM optical slices

Fig 6. Cellular uptake and localisation of cerium dioxide NPs visualized by RCM, FCM, SIM and TEM. Reflectance and TEM

overlays of HeLa cells treated with cerium dioxide NPs. The ultrastructure of the cell is preserved and the sub-cellular localisation of

NPs is evidenced by the lysosomal fluorescence stain (D). The TEM image has a section thickness of 150 nm. RCM overlay has a

theoretical optical thickness of ~480 nm. R-SIM has an optical thickness of approximately the measured FWHMaxial which is 685 nm.

Adjacent image sections were combined so that the thickness across modalities was as consistent as possible. Reflectance intensity

arising in both RCM (A: Green) and SIM (B: Red) corresponds to regions detected by TEM. Overlays of DAPI nuclear and CTDR

cytoplasmic stain (C) are shown. LysoTracker DND-99 stain (D: Blue) shows the localisation of detected NPs in lysosomes. White

boxes show regions of correlation between all three modalities with increased magnification.

doi:10.1371/journal.pone.0159980.g006
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that contain equivalent data. The RCM overlays consist of one optical section of a confocal
stack, with a theoretical optical thickness of 480 nm (Figs 6 and 7). The observedFWHM in
the Z direction is 1077 nm (S8 Fig). The optical slice for SIM is approximated by the measured
Z-PSF, and is larger than the theoretical optical slice thickness of RCM. However, the SIM
reconstruction algorithm will only successfully reconstruct high contrast (in-focus) signal near
the centre of the plane, leading to a Z-FWHM that is smaller than the Z-FWHM of RCM (685
nm and 1077 nm respectively) when measured over 20 regions (S8 Fig). The effect this has on
NP inclusion within the imaged plane was concluded by comparing the number of consecutive
planes that particles are present within on matching R-SIM and RCM images. Particles
appeared for an average of 7 consecutive optical slices with 0.2 micron increments in RCM,
and an average of 4 consecutive optical slices with 0.2 micron increments in R-SIM. For this
reason it is beneficial to include multiple optical sections from SIM to ensure that the informa-
tion is consistent with that provided by one optical slice from RCM. Following alignment, cor-
relation between reflectance signal, both RCM and R-SIM, and TEM signal can be visualised in
HeLa cancer cells treated with cerium dioxide NPs (Figs 6 and 7 and S7 Fig).

Fig 7. Cellular uptake and localisation of cerium dioxide NPs (Sigma-Aldrich) visualized by RCM, SIM and TEM. Reflectance

and TEM overlays of HeLa cells treated with cerium dioxide NPs. The cell outline in both TEM and reflectance microscopy is highly

preserved, facilitating identification of the same cell. The ultrastructure of the cell is preserved and the sub-cellular vesicular localisation

of NPs is evident. Individual NPs can be visualised at high magnification with TEM. RCM has a theoretical optical thickness of 480 nm.

R-SIM has optical thickness approximated by the FWHMaxial calculated to be 685 nm. Adjacent image sections were combined so that

the thickness across modalities was as consistent as possible. Reflectance intensity arising in both RCM (green; A and C) and SIM

(red; B and D) correspond to regions detected by TEM. White boxes show regions of correlation between all three modalities with

increased magnification. Black boxes show regions that are presented in S6 Fig.

doi:10.1371/journal.pone.0159980.g007
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The signal detectedwith R-SIM appears to correlate with increased accuracy, in part due to
the increase in resolution that allows the separation of nearby clusters (Figs 6 and 7). The signal
detected across all three modalities co-occurswith signal from fluorescent lysosomal stain,
indicating the localisation of the NPs within the cell (Fig 6). In some cases reflectance signal
does not co-occurwith signal on the TEM image, this likely corresponds to TEM signal from
neighbouring sections; despite the increase in section thickness used in this study the volume is
not exactly the same and particles from up to 7 ‘optical slices’ may be included into the 1 RCM
slice. Therefore, for further quantifiable correlative studies imaging of multiple serial sections
in TEM would be beneficial to create an imaged volume. It would be of interest, in such an
experiment, to utilise 3D Correlative ReflectanceElectron Microscopy (CREM) to systemati-
cally evaluate the number of NPs per reflectance spot, in order to evaluate the sensitivity of
each technique.

At magnifications such as 1900X it is difficult to distinguish betweenNP regions and elec-
trodense cellular matter. When looking at images with higher magnification it becomesmore
apparent that some of the regions not detected by reflectancemethods do not actually contain
NPs (S6 Fig). In other cases, small NP clusters may be masked by larger nearby clusters. The
light scattered by an object within a sample is dependent upon physical properties such as size
and density [53,54]. It is therefore possible that regions not detected on SIM or RCM, but
detected on TEM are not sufficiently agglomerated or aggregated and therefore do not give rise
to a detectable signal in the reflectance techniques. Additionally, the presence of cellular struc-
tures with increased inherent reflectance above or below NPs may effectivelymask the signal,
in particularwith SIM imaging. This effect could be examined further by comparing reflectance
and TEM images of cells treated with NPs coated in a dispersing surfactant, thereby decreasing
agglomeration, in order to identify a potential decrease in correlation between the reflectance
techniques and TEM. It would be important to determine the extent of this masking effect, if it
is indeed occurring, as it could prove to be a limitation of this technique for translation to other
samples, such as tissue.

Matching image planes were co-alignedusing multimodal affine registrations in MATLAB.
Fully automated alignment is hindered by alterations in cellular morphology, such as shrink-
age, that arise due to the sample preparation methods involved in TEM processing [58,59].
This imposes constraints on the correlation between reflectance image data with high resolu-
tion TEM data; cells with irregular shapes or large sizes have areas that may experience shrink-
age at different rates compared to the bulk of the cell. In some cases this can limit the
realignment of samples. Further post-processingmethods can be explored to fully automate
the procedure. Semi-automated methods, such as user input of defined points on the images,
such as on the cell cytoplasm or nuclear regions, can facilitate increased accuracy for realign-
ment, in addition to simplified processes using MATLAB built in functions, such as CPSelect
and imwarp, or ImageJ plug-ins such as TurboReg. Fully automated methods could also be
explored, using segmentation and registration of DAPI nuclear regions to decrease alignment
time and lead to more accurate conclusions. Coherent Point Drift (CPD) allows registration of
point clouds and when applied to cellular features, may facilitate automated alignment of intra-
cellular regions with compensation for shrinkage, however this is currently limited to images
that contain distinct features (such as multi nuclear cells) (S9 Fig) [60].

Conclusions

Metal oxide NPs have wide scale applications from investigative research and the inexpensive
in vivo detection and screening of diseases such as cancer (e.g. SPIONs) to use in vehicle fuel
efficiency (e.g. cerium dioxide NPs) [8,26,61]. Understanding the cellular uptake and potential
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for toxicity of NPs is critical to ensure successful, effective and safe applications. Reflectance
imaging provides a label free method for visualisingNP uptake, and metal oxide NPs, such as
cerium dioxide and SPIONs, introduce significant contrast into reflected light images, provid-
ing opportunity to elucidate the cellular interactions that occur during NP uptake [39]. Reflec-
tance imaging is a time effective investigative method that requires little sample preparation
and can readily be used in conjunction with fluorescence imaging. RCM allows acquisition of
large amounts of 3D data with apparent increased detection sensitivity when compared to
R-SIM. RCM can also be performedwith live cells. R-SIM, however, provides a substantial
increase in resolving capabilities compared to RCM and distinguishes betweenNP clusters
with an average FWHM of 115 nm compared to 354 nm with RCM. This distinguishes clusters
previously unresolvable by other reflected light techniques, such as RCM, affording more accu-
rate investigations and conclusions regarding the presence and location of NP clusters within
cells, and permits the superresolution imaging of unlabelledNP that would not be possible
with current fluorescent SIM acquisitions. The relatively long effective exposure time of SIM
however, ~3 seconds, makes it less compatible with living samples, however it is possible.
Together, the combination of RCM and R-SIM techniques can highlight important informa-
tion regarding the cellular uptake and localization of NPs, with no additional sample prepara-
tion needed to transition between the two modalities.

Compared to reflectance imaging, TEM provides superior NP detection capabilities and
remains uniquely able to resolve NPs and NP clusters. However, resolution and absolute quantifi-
cation of individual NPs inside cells requires ultrahighmagnificationwith TEM and data inter-
pretation is complicated with some materials due to low contrast [21]. TEM involves technically
demanding sample preparation steps and long acquisition times, rendering it unsuitable for live
or high throughput investigative studies. Thus, the use of reflectancemethods provides a cheaper,
faster, alternative technique, with detection rates approaching that attained with the gold stan-
dard method of TEM. Reflectance imaging is well suited to both fixed and live cell imaging and is
capable of optical sectioning through samples and super-resolution investigation (R-SIM). The
combination of reflectance image acquisition and subsequent correlation to ultrahigh resolution
TEM imaging can increase the confidence that the signal detected by each modality is originating
from NP internalisation within cells, and not an artefact from processing and imaging.

The automated analysis we have employed within this study offers significant benefit for
NP investigations. The analysis consists of two stages: 1) the automated cell-segmentation facil-
itated by CellTracker Orange or CellTracker Deep Red, through a process of denoising (Gauss-
ian smoothing) and intensity clustering (K-means) and 2) NP segmentation, consisting of
denoising (Gaussian smoothing), background subtraction and intensity clustering. The proper-
ties (such as detected spot area, detected spot size, number of spots present and cell intensity)
of the resultant segmented cell regions can then be collated to give a thorough picture of NP
behaviour following cellular internalisation. This provides an automated, consistent and robust
solution for determining reflectance signal within treated cells compared to control cells. The
analysis determines the exact number of regions detected, providing major benefit for large
scale experiments with ranges of conditions and treatments, crucial for the identification of
specific factors involved in NP uptake. The software can also be extended to co-occurrenceor
colocalisation analysis. This can involve images from two modalities (as shown here with RCM
and R-SIM) or can include endosomal segmentation, facilitating quantification of co-occur-
rence of NP within labelled cellular compartments (such as Pearson correlation values, M1 and
M2 coefficients and object overlap). This facilitates a range of analyses of sample sizes of hun-
dreds of cells within minutes indicating the time efficient nature of the technique, and
highlighting the significant advantages of the proposed methods for large scale, high through-
put NP-cell investigations.

Comparison of Reflectance Microscopy Techniques

PLOS ONE | DOI:10.1371/journal.pone.0159980 October 3, 2016 15 / 26



This manuscript focuses on the acquisition and associated analyses of reflectancemicroscopy
(RCM and R-SIM) applied to the investigation of SPIONs and cerium dioxide NP uptake into
cancer cell models. This is primarily due to biomedicalmotivations in both diagnostics and can-
cer therapy. SPIONs and cerium dioxide offer potential candidates for drug delivery to cancer
cells. SPIONs also hold great potential for contrast enhancedMRI, to enable early diagnosis and
therefore enhance prognosis, hyperthermia treatment, and magnetic targeting and controlled
release of therapeutic agents [9–11]. Despite the huge potential NPs offer, they sometimes failed
to perform in the clinic [12]. The continued research into the behavior of NPs following cellular
uptake will no doubt contribute to better drug design rational and lead to the production of suc-
cessful therapies in the future. Cancer cell culture can therefore provide valuable insight into
these behaviours in 2D monolayers, as shown here, and also in 3D tumour micro-environments
using specialiseddishes such as nano-imprinted culture plates (JSR micro) [62]. These multicel-
lular tumour micro-environments can be investigated using reflectancemicroscopy to under-
stand if and how NP uptake and translocation occurs in a 3D environment, and subsequently
guide therapeutic NP design to hopefully facilitate efficacious results in clinical trials [12]. For
example, the use of R-SIM in this case allowed us to identify precise correlation of NP with the
lysosome, which could in turn facilitate nanodrug carrier designs that incorporate pH triggered
drug release to allow therapeutic payloads to reach their target.

The strategies describedhave also been applied to lung cells, which can give insight into the
effects following airborne exposure, important for NPs such as cerium dioxide that are released
from vehicle exhausts. In this way, in vitro, models can give indications on the deleterious effect
of NPs on cells originating from various organs. However, the issue of NP monitoring within
whole organisms, not just in vitro cultures, is an area of high priority. A whole organism is sig-
nificantly more complex than a single cell and therefore a host of parameters need to be
assessed to systematically evaluate the health effects associated with NP exposure [63]. In vivo
toxicity studies usually involve the inhalation, ingestion or injection of NP dose, followed by
isolation of potential target organs and histopathological staining of resulting tissue sections
[64]. Reflectancemicroscopy has been demonstrated for imaging of metallic quantum dots in
ex-vivo epidermis and therefore may offer opportunities to investigate the specific target organ
and associated effects of NP exposure in tissue sections [65].

Although the application documented here is directed towards nanosafety and nanomedecine,
reflectancemethods offer value for a broad range of investigations spanning multiple fields. RCM
has been applied to the imaging of the focal contacts formed by cells attached to a surface, the
morphology of red blood cells and the in vivo clinical diagnosis of a variety of pathologies, includ-
ing skin, oral mucosa and cornea disease [31,32,66,67]. RCM has also been used to investigate the
vesicle transport system in developing drosophila oocyte providing a real-time imagingmethod
for innately reflective cellular constituents [68]. The availability of super-resolution reflectance
(R-SIM) could provide valuable additions to investigations relating to these reflective samples
with higher precision and detail. Furthermore, adopting a correlative workflow could potentially
provide a means of combining dynamic live reflectance and fluorescence imaging data of pro-
cesses such as disease pathogenesis, endocytosis, vesicle trafficking and ligand/receptor interac-
tions with super-resolution imaging and localisation in reference space with TEM imaging.

Materials and Methods

Cell Culture and Maintenance

All cell culture techniques were performed under a sterile tissue culture hood (SterilGard, The
Baker Company, Sanford, Maine, USA). All solutions and equipment were bought sterile or
sterilised by autoclave when required.
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ImmortalizedHeLa cervical carcinoma cells (ATCC) and A549 lung carcinoma cells
(ATCC) were cultured at 37°C in a humidifiedCO2 incubator (Nuaire NU-5100 E/G Air Jac-
keted Automatic CO2 Incubator; Minnesota) at 5% CO2 in 10 cm petri dishes (Corning,New
York, USA), containing Gibco Dulbecco’s Modified Eagle’s medium (DMEM) (Corning,New
York, USA), supplemented with Foetal Bovine Serum (10% v/v) (FBS), penicillin (Corning,
New York, USA), and streptomycin (100 μg/ml, Corning,New York, USA). This is subse-
quently referred to as Supplemented Culture Medium (SCM). Cells were grown to confluence
and passaged using a standard trypsin-EDTA (0.25%: 0.2%) protocol (Invitrogen, UK).

Nanoparticles

For the purpose of this proof of concept / workflow development, two representative NPs,
known to show reflectance, were selected: SPIONs (Endomagnetics, Sysmex UK) and cerium
dioxide synthesized and characterised as previously described.The core sizes are 4 nm and 8
nm respectively as measured by TEM (S1 Fig) [69]. Particles were sonicated for 15 minutes and
subsequently dispersed in cell culture media containing 10% FBS at concentrations of 280 μg/
ml (SPIONs) / 500 μg/ml (Ceriumdioxide). Particles were applied to cells immediately upon
preparation. Characterisation of the particle sizes in cell culture media has also been conducted
to confirm that the particles were not agglomerated under the exposure conditions. Summary
data on the particle characteristics is given in S1 Table.

Cellular uptake of NPs

HeLa or A549 cells were cultured in 35mm gridded glass bottom dishes (MatTek Corporation,
Maryland, USA) and incubated overnight in SCM (2 mL). At 50% confluence cells were treated
with reflectant NPs, prepared as described, for 1 hour then incubated with CellTracker Orange
(CTO) (Invitrogen, UK) diluted 1:1000 using the manufacturer’s standard protocol (Invitro-
gen, UK) for 30 minutes or Cell Tracker Deep Red (Invitrogen, UK) diluted using the standard
protocol (Invitrogen, UK) for 30 minutes. LysoTracker was added to cells 30 minutes prior to
the incubation end point following the standard protocol (Invitrogen, UK). Cells were then
washed twice with PBS followed by SCM incubation for 30 min.

Cellular fixation

Cells were washed 3 x 0.1 M Cacodylate Buffer (CB) and then fixed with 2% gluteraldehyde/
4% paraformaldehyde in 0.1 M CB for 60 minutes, followed by 3 x 0.1 M CBB wash. MatTek
dishes were then either left in CB for imaging, or mounted with Vectashield containing DAPI
(Vector Laboratories Ltd, Peterborough, United Kingdom).

Confocal Imaging

Images were taken on a Nikon A1R inverted confocal microscope (Nikon Corp, Japan). To set
up the reflectance optical configuration in NIS elements the first dichroic mirror was set to
B520/80 to allow light transmission, the fourth channel was set up for reflectance using the 488
nm laser, and all channel light paths were set to through. CTO was excited using the 561 nm
laser and the 405 nm laser was used for DAPI imaging. Where present, lysosomal stain was
excited using a 561 nm laser and cytoplasm stain (CTRD) replaced CTO, and was excited
using the 640 nm laser. Grid squares were visualised and located using a 10X Plan apo λ 0.45
NA objective. Grid squares for imaging were picked based on certain criteria including central
location within the grid and sparse cell density. Z-stacks from the coverslip to the top of the
cell at a step size of 200 nm were acquired using a 60X apo 1.4 NA or a 100X apo 1.49 NA
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objective. Entire grid squares were imaged using large image capture (0.6mm squared) and
stitching or single cells, picked based upon distinctive features and shapes for identification in
subsequent imaging modalities, were imaged.

Super-resolution reflectance Structured Illumination Microscopy (SIM)

imaging

Following, or prior to, RCM imaging cells mounted in PBS or Vectashield were imaged with
reflectance Structured Illumination Microscopy (SIM) (N-SIM, Nikon Corp., Japan) with an
EM-CCD camera iXon3 DU-897E (Andor Technology Ltd.). To facilitate R-SIM a half mirror
was placed in the light path by utilizing a filter cube that contains a half-mirror in place of the
dichroic. The 488 nm laser was used to illuminate the sample using 2D-SIM imaging. CTO was
excited using a 561 nm laser. Where present lysosomal stain was excited using a 561 nm laser
and cytoplasm stain (CTRD) replaced CTO, and was excited using the 640 nm laser. First, the
grid square was located on a 10X Plan apo λ 0.45 NA objective and the area of interest centred.
The objective was switched to the 100X apo 1.49 NA and images were acquired either as entire
grid squares (by use of the X-Y multipoint acquisition) or single cells were picked based on
confocal location using the previously acquired images. Due to the high magnification and
small field of view, acquisition of 0.5 mm2 in 15 focal planes using the N-SIM leads to acquisi-
tion, reconstruction and stitching times totalling over 24 hours; the final reconstruction pro-
vides a large amount of high resolution data, but also regions of blank reconstructed space
where no cells are localised.Acquiring Z-stacks (200 nm Z-step) of individual cells provides a
time efficient data acquisition, allowing reconstruction parameters to be tailored on a per cell
basis, improving the finally reconstructed images. Z-stacks of the cells were therefore acquired
to facilitate alignment with the correct plane in other modalities (RCM and TEM) with a step
of 200 nm. Images were reconstructed using NIS elements SIM reconstruction software.

Acquiring RCM data first minimises photobleaching effects in the fluorescence channels
that can occur during SIM acquisitions. Glass bottom Petri dishes with an etched alpha-
numeric grid pattern allow successful cell relocation across modalities. A region of interest can
be located using a low magnification objective lens (10X), followed by a high magnification
acquisition of the specific region (RCM: 100X/100X. SIM: 100X). Z-stack acquisitions provide
3D information from RCM and R-SIM; however, the optical thickness of sections obtained will
differ betweenmodalities. The theoretical optical thickness in RCM is ~480 nm, whereas for
SIM it is 685 nm. However, while RCM utilizes pinhole optics to exclude out of focus light
from optical sections, SIM suffers from out of plane haze due to the widefield illumination path
employed. Acquiring Z-stacks (200 nm Z-step) of individual cells provides a time efficient data
acquisition, allowing reconstruction parameters to be tailored on a per cell basis, improving the
finally reconstructed images.

Processing for transmission electron microscopy (TEM)

Following light microscopy, cells were washed with 0.1 M PB buffer before a second fixation
with 2.5% gluteraldehyde / 2% paraformaldehyde (EMS, Hatfield, Pennsylvania) in 0.1 M
Cacodylate Buffer (CB) (1h –overnight) then washed with 3 x 0.1 M CB buffer. Cells were then
stained with 2% osmium tetroxide (OsO4) (EMS, Hatfield, Pennsylvania) (1 hour) followed
with 3 x dH2O washes. Cells were then fixed with uranyl acetate (1 hour) followed by washing
with 3 x dH2O. Cells were then dehydrated with a series of ethanol washes x 2 (50%, 60%, 70%,
80%, 90% and 100%) before infiltration with 50:50 absolute alcohol:EmBed812 (1 hour).
EmBed 812 was made up as per the standard protocol for hard resin (EMS, Hatfield, Pennsyl-
vania). Two subsequent infiltrations were performed (45 min) with EmBed 812 alone, before
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inverting and mounting on resin-filled embedding BEEM1 capsules (EMS, Hatfield, Pennsyl-
vania) with care taken to remove all bubbles from within the capsule. Samples were then baked
overnight at 60°C in an oven (Thelco Laboratory Apparatus by Precision ScientificCo., India).
Coverslips were separated from BEEM capsules by plunging into liquid nitrogen, and samples
were then allowed to re-equilibrate with room temperature. The area of interest (0.5 mm2) was
visualised, and trimmed and isolated with a sharp single edge razor blade (EMS, Hatfield,
Pennsylvania) under a light microscope (Leica UltraCut UCT, Leica Microsystems Inc., IL,
USA). Following trimming, 70 nm or 150 nm serial sectionswere cut using a Diatome diamond
knife (EMS, Hatfield, Pennsylvania). Sections were then collected onto 200 mesh copper (Cu)
grids or slotted grids (EMS, Hatfield, Pennsylvania) that had been pre-treated with alcohol.
Samples were then stored for staining.

Grids containing sections were stained by inverting on top of small blobs of 2% uranyl ace-
tate (10 minutes) (EMS, Hatfield, Pennsylvania) inside petri dishes; grids were then washed
with dH2O and air dried before repeating this step with Reynolds lead citrate (CaCO3 crystals
used to remove air from within the chamber). Following this, grids were washed with dH2O
and left to dry before TEM imaging.

TEM imaging

TEM imaging was carried out on an FEI Tecnai G2 Spirit at 80 KeV (FEI, Center for Advanced
Microscopy, Northwestern University, Chicago, IL). Images were taking with a Gatan imaging
camera. TEM grids were loaded and cells of interest from RCM and/or SIM experiments were
located on low (690 x) magnification, and then imaged at higher magnification (up to 49,000
x) to visualise individual NPs, and clusters of NPs.

Image analysis

MATLAB R2011b was used in the analysis of both RCM and R-SIM images. Maximum
intensity Z- projections were created with MATLAB using Z-stack multi-plane acquisitions.
RCM and R-SIM overlays were made using MATLAB using the point selection tool ‘cpselect’
and the ‘imregister’ function. Pixel size was equalised and rigid body realignments allowed
the channels to be combined as overlays. Cell segmentation was achieved using Gaussian
smoothing followed by K-means clustering (nClusters = 2) of CTO cytoplasmic stain. NP
segmentation was achieved by forming a 3-dimensional matrix of images including treated
and control images, normalised together, and then segmented using K-means clustering and
intensity thresholding. Quantifications were then performed in loops for automation, using a
binary overlay of the cell onto the NP channel, and parameters were assessed such as con-
nected component number and connected component area. This information was then visu-
alised graphically using MATLAB. For the comparison of detected regions, binary images
created from SIM and RCM NP segmentations were analysed. The binary image gave the
total ‘number of connected components’; using the bwconncomp function in each image.
The images were then multiplied together and the number of connected components that
appear in both images was computed, and subsequently the percentage of the total detected
(Number in multiplied image divided by the number in initial binary image) that correlate
was calculated and presented graphically.

Image registration

Co-alignments of TEM and reflectance images were performed in MATLAB. For the reflec-
tance image coalignment (SIM and RCM max intensity projections), between 3 and 6 points
pairs, were selected on images that correspond to one another. Following user selection of
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points, MATLAB calculates the transformation matrix that best aligns the pairs, using ‘rigid’
registration. Alternatively, MATLAB has a built in function called ‘imregister’. This can be ini-
tialized using the ‘multimodal’ configuration setup. ‘Imregister’ can successfully automate the
alignment of RCM and R-SIM images using an intensity basedmethod, however, in order to be
successful images must first be smoothed and background subtracted (to negate the contribu-
tion of background reflectance to the intensity registration). Overlays were created using
MATLAB, however pseudocolourwas created in ImageJ. Coalignment of adjacent TEM slices
was achieved using an intensity based registration function (imregister) as a ‘rigid’ transforma-
tion with parameters that facilitated alignment. Coalignment of reflectance and TEM images
was achieved using the cpselect functionwith between 3 and 10 matching points. The transfor-
mation matrix was then calculated and applied as an ‘affine’ transformation, to cope with cell
shrinkage. The CPD algorithm was explored for the fully automated realignment of matching
slices based on nuclear segmentation from light and electron microscopy.

Statistical analyses

Statistical significancewas determined by Students T-tests. � P<0.05, �� P =<0.01,
��� P<0.001.

Supporting Information

S1 Table. Properties of nanoparticlesused in this study. S1 Table displays information
regarding the size of the NPs used (SPIONs and cerium dioxide). Core size is the size of the
metallic NP core. Nominal size is the size that is given by the manufacturers and Size in SCM is
the size measured in DLS (NP + protein corona). Zeta potential is the charge in DI water.
(PNG)

S1 Fig. TEMmicrographs of SPIONs and cerium dioxide NPs deposited onto grids.TEM
micrographs of A) SPIONs (Sigma-Aldrich) B) SPIONs (Sienna+, Endomagnetics) and C)
cerium dioxide NPs [69].
(TIF)

S2 Fig. Semi-quantitative analysis of NP uptake. Result of automated analysis of NP uptake
in cells. Quantification of NP uptake is displayed as the number of connected components. A
connected component refers to a cluster of NPs detected as intensity in the reflected light
image. Uptake is seen using RCM of cells exposed to SPIONs (69 cells) and cerium dioxide (68
cells) NPs, and not in the control cells (58 cells). SIM analysis of cells exposed to SPIONs (12
cells) and cerium dioxide (12 cells) NPs also demonstrate uptake with no uptake seen in the
controls cells (10 cells). Results are a combination of 3 or more experiments carried out on sep-
arate days. The mean number of connected components and STD is plotted; students T-Test
gave P value<0.001.
(TIF)

S3 Fig. Comparison of data obtained from RCM using a 60X objective and SIM reflectance.
Maximum intensity Z-projection images of a HeLa cell treated with cerium dioxide NPs,
acquired with RCM (60X 1.40 NA) and SIM reflectance (100X 1.49 NA). RCM imaging volume
is 8.4 μm and SIM 6.8 μm. Images show CTO (red) cytoplasmic stain, DAPI (blue) nuclear
stain and NP signal (grey). Overlay of the cerium dioxide NP regions shows particles detected
on RCM (blue) and SIM (grey). White boxes display a sample of regions where RCM detects
one spot and SIM detects multiple spots, illustrating the enhanced resolution of SIM.
(TIF)
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S4 Fig. Live cell reflectanceconfocal time lapse stills indicating the colocalisationof cerium
dioxide NPs with lysosomes in A549 cells. Images show reflectant NPs (grey), DAPI nuclear
stain (blue) and LysoTracker Red stain (red). Time lapse videos were taken to visualise NP
uptake and trafficking into vesicles over the course of 15/30 minutes. Stills from 1, 10 and 19
minutes are shown. NPs are evident and in some cases can be seen to colocalisewith red lyso-
somal stain (white arrows).
(TIF)

S5 Fig. TEM images showing the individual sections that comprise the composite shown in
Fig 7. Sections are 150nm thick and can be combined to create a minimum intensity projection
of 300 nm thick to better represent the thickness of RCM. A section at 1900X magnification is
also used to allow visualisation of the entire cell, with increasedmagnification at regions of NP
uptake in the centre of the cell.
(TIF)

S6 Fig. TEM images showing regions of electrodensity in HeLa cell treated with cerium
dioxide NPs. Images showing NPs within HeLa cells (A) and regions where no NPs are
detected but electron density appears to be observed at low magnification (B and C).
(TIF)

S7 Fig. Cellularuptake and localisationof SPIONs (Sigma-Aldrich)visualizedby RCM and
TEM.CREM (RCM and TEM) using fixed A549 cells treated with SPIONs. The cell outlines in
both TEM and RCM are highly preserved facilitating identification of the same cell. The ultas-
tructure of the cell is preserved and the sub-cellular vesicular localisation of NPs is evident.
Individual NPs can be visualised at high magnification of 30000X with TEM. Reflectanceover-
lay is one optical section of a confocal stack, with optical thickness being approximately the
FWHMaxial calculated to be 954 nm. Black arrows indicate regions where NP localisation to
vesicles can be observed.
(TIF)

S8 Fig. FWHM and Z-PSF of intracellular cerium dioxide NPs. Z-Y and Z views of R-SIM
Z-stacks (A) and RCM (B) showing the Z-PSF of the same NP signal using each technique.
R-SIM has a narrower Z-PSF despite the larger optical slice thickness. Identification of multiple
regions on images from both RCM and R-SIM indicated the effect this has on particle inclusion
across imaged Z-planes. Intensity line scans were plotted along the Z axis at these regions and
the FWHM measured. The graph (C) represents 20 regions with the STD plotted. Students
T-Test gave P-Value of 5.2x12-12 indicating the groups are significantly different to one
another. The FWHM of line intensity scans can be used to measure Z-PSF, examples of the line
intensity plot on R-SIM (D) and RCM (E) are shown.
(TIF)

S9 Fig. Automated affine transformation for image realignment using coherent point drift.
Example of automated affine transformation accurately registering images from different
modalities (TEM and RCM (A) and TEM and SIM (B)). Segmentation of DAPI nuclear regions
from TEM and FCM facilitate fully automated alignment using CPD algorithm. This is cur-
rently restricted to specific images with well-defined features to register to, such as a double
nuclei [60].
(TIF)

S1 Video. Live cell reflectanceconfocal time lapse indicating the colocalisationof cerium
dioxide NPs with lysosomes in A549 cells. Images show reflectant NPs (grey), DAPI nuclear
stain (blue) and LysoTracker Red stain (red). Time lapse images were taken in 1 minute
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increments to visualise NP uptake and trafficking into lysosomes over the course of 20 minutes.
S4 Fig shows stills from this video.
(AVI)

S1 Box. Summaryof experimental conclusions for RCM.
(PNG)

S2 Box. Summaryof experimental conclusions for R-SIM.
(PNG)
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