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Abstract

The involvement of miRNA in mesial temporal lobe epilepsy (MTLE) pathogenesis has
increasingly become a focus of epigenetic studies. Despite advances, the number of
known miRNAs with a consistent expression response during epileptogenesis is still small.
Addressing this situation requires additional miRNA profiling studies coupled to detailed
individual expression analyses. Here, we perform a miRNA microarray analysis of the hip-
pocampus of Wistar rats 24 hours after intra-hippocampal pilocarpine-induced Status Epi-
lepticus (H-PILO SE). We identified 73 miRNAs that undergo significant changes, of which
36 were up-regulated and 37 were down-regulated. To validate, we selected 5 of these
(10a-5p, 128a-3p, 196b-5p, 352 and 324-3p) for RT-qPCR analysis. Our results confirmed
that miR-352 and 196b-5p levels were significantly higher and miR-128a-3p levels were
significantly lower in the hippocampus of H-PILO SE rats. We also evaluated whether the 3
miRNAs show a dysregulated hippocampal expression at three time periods (0Oh, 24h and
chronic phase) after systemic pilocarpine-induced status epilepticus (S-PILO SE). We
demonstrate that miR-128a-3p transcripts are significantly reduced at all time points com-
pared to the naive group. Moreover, miR-196b-5p was significantly higher only at 24h post-
SE, while miR-352 transcripts were significantly up-regulated after 24h and in chronic
phase (epileptic) rats. Finally, when we compared hippocampi of epileptic and non-epileptic
humans, we observed that transcript levels of miRNAs show similar trends to the animal
models. In summary, we successfully identified two novel dysregulated miRNAs (196b-5p
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and 352) and confirmed miR-128a-3p downregulation in SE-induced epileptogenesis. Fur-
ther functional assays are required to understand the role of these miRNAs in MTLE
pathogenesis.

Introduction

Mesial temporal lobe epilepsy (MTLE) is a common and often medically intractable chronic
disease, characterized by spontaneous and recurrent seizures (SRS) [1]. It may develop as a
result of a strong cerebral insult, such as status epilepticus (SE) an prolonged epileptic seizure
of greater than five minutes or more than one seizure within a five-minute period without the
person returning to normal between seizures [2]. SE can cause permanent structural and physi-
ology alterations in the brain, leading to the establishment of an epileptogenic state [3, 4].
These changes include neurodegeneration, neurogenesis, gliosis, axonal damage or sprouting,
dendritic plasticity, and inflammation in hippocampus and other limbic structures [5-10].
Although our understanding of epileptogenesis is incomplete, previous research indicates that
it is associated with a network-wide reorganization of gene expression in the affected brain
[11-20]. Therefore, uncovering the specific factors that lead to the dysregulation of several
genes may provide important insights into the epileptogenic process. Recent studies have iden-
tified transcription factors driving up- and down-regulation of protein-coding genes after SE
[21-24]. Moreover, evidence is emerging that MTLE pathogenesis is controlled by epigenetic
factors, including chromatin methylation and small noncoding RNAs [25-29].

MicroRNAs (miRNAs) represent an evolutionarily conserved class of small (22-24 nucleo-
tides) double-strand non-coding RNAs that regulate the expression of target mRNAs by induc-
ing degradation or a reduction in its translational efficiency [30]. Each miRNA can bind to
several different transcripts, regulating more than 60% of protein-coding genes [31]. Genes
encoding miRNA are transcripted by either RNA polymerase II or III, producing a primary
miRNA which is further processed by a Drosha microprocessor complex into stem-loop pre-
cursor miRNA (pre-miRNA). After export to the cytoplasm, the pre-miRNA undergoes a final
processing by the RNase III enzyme Dicer, generating mature double-stranded miRNA (22-24
nt). One strand is selected and loaded onto the RNA-induced silencing complex (RISC), where
Argonaute (Ago) proteins mediate the base-pairing interactions between the miRNA and the
3’ untranslated region (3’ UTR) of target mRNAs resulting in selective post-transcriptional
inhibition [32-34].

miRNAs are involved in numerous physiological processes and evidence is emerging that
they are dysregulated in acute and chronic diseases of the nervous system such as epilepsy [35-
39]. Indeed, since the first report of a change in miRNA expression (miR-132) after a seizure
[40], the involvement of miRNAs in epilepsy pathogenesis has become a focus for epigenetic
research. Recent work suggests that interfering with miRNA biogenesis increases neuronal
excitability and seizure severity [41]. This is consistent with the results of profiling studies,
showing that miRNAome undergoes changes in expression during epileptogenesis in both TLE
human and animal models [42-57]. However, despite this progress the detailed mechanisms
underlying changes in miRNAs and their functional effects during MTLE pathogenesis remain
unclear. Part of the reason for this might be the limited number of miRNAs so far identified
that show a conserved expression response [58]. Thus, additional miRNA profiling studies are
needed to support the cross-comparison of data and to elucidate the role of miRNA in MTLE
epileptogenesis. Here, we directly address this shortfall by employing a miRNA microarray
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approach to screen miRNAs in acute phase of the PILO-induced SE. Furthermore, by using
RT-qPCR, we extend expression analysis to other epileptogenic phases, including the chronic
phase of epilepsy in human patients.

Materials and Methods
Ethics statement

All procedures were performed according to the appropriate ethical guidelines and were
approved by the ethical committees of the institutions enrolled. The Brazilian Society for Neu-
roscience and Behavior approved the experimental model studies, according to international
guidelines for ethical use of animals in research, such as those from the Society for Neurosci-
ence. Research Ethics Committee of the Federal University of Alagoas (#011462/2010-83) and
Ribeirdo Preto Medical School of the University of Sao Paulo (#195/2005) approved all
research protocols performed. All efforts were made to reduce the number of animals used and
to avoid unnecessary suffering.

All TLE patients or next-of-kin (for control cases) enrolled in this study read and signed a
written Informed Consent Term, previously approved by the Research Ethics Committee. The
collection and evaluation of human samples followed the principles of the Declaration of Hel-
sinki, were registered in Brazilian’s Health Ministry and approved by the Research Ethics Com-
mittee of the Hospital das Clinicas, where samples were collected (processes HCRP 1781/2010,
15703/2011 and 9370/2003).

Animal

Experiments were conducted on 48 male adult Wistar rats (200-250 g): 36 were designated for
systemic pilocarpine (S-PILO) and respective control groups and were sourced from the main
breeding stock of the Federal University of Alagoas; 12 rats were designated for the intra-hip-
pocampal PILO (H-PILO) injection and respective control group and were sourced from the
main breeding stock of the University of Sao Paulo (Ribeirdo Preto campus). Rats were kept at
22°C in groups of four per cage with free access to food and water, in a 12-h light/dark cycle
(lights on at 08:00 am). Animal health was monitored throughout the experimental period as
described previously [59]. No animals presented clinical/behavioral signals of pain or unex-
pected distress used as humane endpoint criteria for euthanasia.

S-PILO SE induction

Animals were injected intra-peritoneally (ip) with scopolamine butyl bromide (1 mg/kg) in
order to minimize peripheral effects, followed by S-PILO (320 mg/kg; ip) after 30 min. SE was
defined as self-sustained seizure behavior or intermittent seizures of less than 5 minutes. PILO
administration (110 mg/kg) was repeated after 45 min if the rat did not display seizure behav-
ior. Animals were kept in SE for 90 min before seizure interruption with diazepam (5 mg/kg;
ip). All rats presented seizures higher than stage 3 according to the Racine scale [60].

For the chronic group, animals were individually placed in acrylic cages and their behavior
was recorded for up to 8 hours per day, during 10 weeks. All the videos were analyzed by two
independent observers and the severity of spontaneous seizures was classified according to
Racine scale [60]. All of these animals showed two or more spontaneous recurrent seizure with
severity scores equal or greater than 3.

In total, three groups of rats were subjected to S-PILO induced SE: i) animals euthanized
immediately (Oh) after SE reversion (n = 6); i) animals euthanized 24h after SE reversion
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(n = 6), and; iii) animals euthanized 11 weeks after SE (Chronic group, n = 6). Naive rats were
used as the control group (n = 6).

H-PILO SE induction

Surgery and microinjections were performed according to Marques et al. [61]. The experimen-
tal group (n = 6) was injected with pilocarpine (1.2 mg/ul, 1 pl) and the control group (n = 6)
was injected with saline (0.9%; 1 pl). The H-PILO injected animals had 90 minute duration SE,
after which seizures were stopped with diazepam (DZP; 5 mg/kg; ip). Control animals were
also injected with DZP under the same conditions. These animals were euthanized 24h after SE
reversion and only the contra lateral hippocampus was used for gene expression analysis.

Euthanasia

All the animals were euthanized by decapitation using a guillotine. Hippocampi were immedi-
ately removed,dissected on an ice-chilled plate and stored in liquid nitrogen until RNA
isolation.

MTLE patients and controls

All patients were referred for pre-surgical assessment due to drug-resistant epilepsy. Patients
were evaluated at the Ribeirdo Preto Epilepsy Surgery Program using standardized protocols.
Pre-surgical investigation at the Epilepsy Monitoring Unit included detailed clinical history,
neurological examination, interictal and ictal video-electroencephalography (Video-EEG), and
neuropsychology evaluation. The definition of MTLE followed Engel’s criteria [62]. Clinical
data from the MTLE patients were obtained from medical records, and included the following
information: presence and age of initial precipitant injury (IPI); estimated monthly frequency
of seizures; epilepsy duration; global IQ; verbal and non-verbal memory performance. MTLE
specimens were derived from 14 drug-resistant MTLE patients who underwent a standard en
bloc anterior temporal resection for seizure control.

Age- and sex-matched tissue from non-epileptic controls (Ctrl, n = 4), obtained in necrop-
sies, were processed and analyzed in the same manner as the surgical cases. All control tissue
was collected between 4 + 1.6 hours after death (maximum of 6 hours postmortem). Underly-
ing diseases causing death were cardiomyopathy, sepsis, or hepatic failure, with no history or
evidence of brain pathological abnormalities on postmortem examination of the mesial tempo-
ral structures. Surgical and necropsy specimens were cut into 1 cm thick slices, in the coronal
plane, immediately frozen and stored at -80°C.

RNA purification

Total RNA was purified using mirVana total RNA isolation kit (Ambion, Austin, TX, USA) for
microarray experiment or Trizol reagent (Invitrogen, CA, USA) for RT-qPCR, following the
manufacturers protocol. The quality of total RNA was assessed by analysis of the ratio of 28S to
18S ribosomal RNAs after electrophoresis in 1% agarose gel. For microarray experiments, the
miRNA fraction was isolated from 50 pg of total RNA using a flashPAGE Fractionator System
(Ambion).

miRNA microarray analysis

For miRNA labeling, microarray hybridization and data analysis, we followed the procedures
described in [63]. The oligo microarray was prepared by spotting the mirVana miRNA Probe
Set (Ambion AM 1564V 2) on Schott Nexterion E-Scho-1064016 slides (Schott, Mainz,
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Germany) using a Generation III Array Spotter (Amersham Biosciences-Molecular Dynamics,
Sunnyvale, CA, USA). Cy3 labeled miRNAs (for microarray hybridization) were generated
using the mirVana miRNA Labeling Kit protocol (Ambion). Labeled miRNA were hybridized
with the microarray slides in salt solution for 15 h at 42°C in an Automated Slide Processor
ASP (Amersham Biosciences, Sunnyvale, CA, USA). After washing, the slides were scanned
using a Generation III array scanner (Amersham Biosciences-Molecular Dynamics) in associa-
tion with the ArrayVision microarray quantification software (Imaging Research Inc., GE
Healthcare, Buckinghamshire, UK). Normalization of data was performed by quantile in the R
environment (version 2.11.0) using the AROMA light package (http://www.bioconductor.org).
Statistical data were analyzed using the Multiexperiment Viewer (MeV) software (version 3.1
available online at http://www.tm4.org/mev.html). The paired significance analysis of microar-
rays analysis (SAM available online at http://www.stat.stanford.edu/tibs/SAM), with a false dis-
covery rate (FDR) of 0.05, were used as statistical method to identify the differentially
expressed miRNAs [64]. Cluster-TreeView was used to perform the cluster analysis and to con-
struct the miRNA expression profiles [65]. The Microarray data are available in the ArrayEx-
press database (http://www.ebi.ac.uk/arrayexpress) under accession number E-MEXP-4633.

RT-gPCR

The RT-qPCR was performed by using TagMan MicroRNA Assay (Life Tech) to assess the
expression of miR-128a-3p (2216 Assay ID); miR-196b-5p (2215 Assay ID); miR-352 (1339
Assay ID), miR-324-3p (579 Assay ID), miR-10a-5p (387 Assay ID). In the reverse transcrip-
tion (RT) step, cDNA was generated from 1 pg of total RNA using Tagman MicroRNA reverse
transcription kit (Life Tech) according to manufacturer’s instructions. Real-time PCR was car-
ried out on a StepOnePlus PCR System (Applied Biosystems) by using TagMan Universal PCR
Master Mix (Life Tech) according to the supplier’s instructions. miR expression was normal-
ized by the combination of U6snRNA and snoRNA for animal analysis as described previously
[66], and with U6snRNA and RNU24 for human analysis. Relative fold change was determined
by the 2DDCt method [67]. The absence of contamination was confirmed by PCR amplifica-
tion in the absence of cDNA. Each assay was performed in triplicate and mean values were
used for further analysis.

Statistical Analysis

Statistics were performed using GraphPad Prism 5.00 (GraphPad Software, Inc. San Diego,
CA, USA). Unpaired Student’s t-test or Mann Whitney tests were used for comparison of RT-
qPCR results related to: i) the microarray validation step (24h versus control), and ii) the
human epileptic and non-epileptic analysis. A parametric ANOVA with Bonferroni’s Multiple
Comparison Test was used to compare among the different epileptogenesis time points for the
expression analysis. For TLE patients, Spearman’s correlation test was used to evaluate the
associations between clinical characteristics and microRNA levels, and Student’s t-test were
used to evaluate differences in microRNA levels regarding memory scores, surgical outcome
(remission vs no-remission), occurrence of initial precipitating injury (IPI), epilepsy focus
(right vs left temporal lobe), and sex. Mean differences were considered statistically significant
when P<0.05.

Bioinformatics analysis

Experimentally validated targets of hsa-miR-128a-3p and 196b-5p were compiled from the
MicroRNA Target database (miRTarBase)(http://mirtarbase.mbc.nctu.edu.tw/). Pathway
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analysis was performed by Gene Ontology (GO) to determine the biological significance of
these targets, and evaluate their representation (p-value <0.05).

Results

microRNAs microarray profile coupled to RT-qPCR validation in
hippocampus of rat 24h after H-PILO induced SE

We used the mirVana miRNA Probe Set covering over 662 miRNAs to identify novel dysregu-
lated miRNAs in rat hippocampi 24h after SE. The miRNA microarray data from the control
versus PILO-induced SE experiment showed clear hierarchical clustering (Fig 1). We identified
73 significantly dysregulated microRNAs: 36 (Fig 1A) up-regulated (p < 0.05, FC > 1) and 37
miRNAs (Fig 1B) down-regulated (p < 0.05, FC < 1).

To verify the accuracy of microarray results we chose a selection of miRNAs from up-regu-
lated (miR-10a-5p, miR-196b-5p, miR-352 and miR-324-3p) and down-regulated (miR-128a-
3p) categories for confirmation using the RT-qPCR method. These miRNAs were selected
because of their consistent profile among the replicates of each experimental group. We
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Fig 1. Hierarchical clustering of the 73 miRNA with significantly different expression in 24h post-SE hippocampus
versus control experiment. Rows represent individual genes, and columns represent individual samples. The colorgram
depicts high (red), average (black) and low (green) expression levels. A) Upregulated microRNAs. B) Downregulated
microRNAs. (n = 5 for both H-PILO and control groups).

doi:10.1371/journal.pone.0163855.9001
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Fig 2. RT-qPCR validation of microarray results. miRs 196b-5p and 352 were significantly increased and miR-128a-3p was significantly

reduced in 24h post-SE hippocampus compared with control group. miRs 10a-5p and 324-3p did not show statistically significant
differences. (values are mean+SEM, n = 5-6 in each group, *p < 0.05, Unpaired t test).

doi:10.1371/journal.pone.0163855.g002

observed that the relative levels of miRs 196b-5p and 352 were significantly higher while the
level of miR-128a-3p was significantly reduced in the hippocampi of SE-induced rats in com-
parison with the control groups (Fig 2). For these miRNAs, the RT-qPCR results were consis-
tent with the microarray analysis.
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However, there were no statistical differences between the RT-qPCR for miRs 10a-5p and
324-3p, and the results observed in the microarray analysis could therefore not be validated.

Expression Patterns of miR-128a-3p, miR-196b-5p and miR-352 in
three Stages of S-PILO-SE induced epileptogenic process

We evaluated whether the selected miRNAs also show a dysregulated hippocampal expression
at different time points after S-PILO-induced SE. The analysis was performed by RT-qPCR
using tissue samples of control rats and rats that were euthanized immediately (0h), 24h, and
10-12 weeks (chronic phase) after SE (Fig 3). miR-128a-3p transcripts were found to be signifi-
cantly reduced in post-SE rat hippocampi for all three time points compared with the naive
group. For miR-196b-5p transcript levels, the only significant change was a large increase in
the 24h post-SE group compared with all other groups. Finally, miR-352 transcripts were sig-
nificantly up-regulated in the 24h group compared with naive, and in the chronic phase group
compared with naive or Oh groups.

Evaluation of miR-128a-3p and miR-196b-5p expression in the
hippocampi of epileptic and non-epileptic humans

Since that only miR-128a-3p and miR-196b-5p are conserved in human and to strengthen the
clinical relevance of our study, we assessed whether these miRs expression are dysregulated in
human tissue samples. To achieve this, we compared hippocampal specimens from TLE
patients with hippocampal sclerosis (HS) against hippocampal samples from non-epileptic
individuals. Although the RT-qPCR results were not significantly different for the two
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Fig 3. Expression patterns of miR-128a-3p, miR-196b-5p and miR-352 during S-PILO-SE induced
epileptogenesis. RT-gPCR measurements of the relative miRs levels (hippocampus) in three different time
points after SE-induction (values are mean+SEM, n = 5-6 in each group, *p < 0.05, Bonferroni’s Multiple
Comparison Test.

doi:10.1371/journal.pone.0163855.9003
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Fig 4. Relative expression of miR-128a-3p and miR-196b-5p in hippocampi from epileptic and non-
epileptic humans. RT-gPCR analysis (values are meanSEM, biopsy specimens from TLE-HS patients
(n=10-14) and non-epileptic autopsy samples (n = 4), Mann Whitney test).

doi:10.1371/journal.pone.0163855.9004

miRNAs, transcript levels showed similar downward (miR-128a-3p) or upward (miR-196b-
5p) trends to those observed in the animal model (Fig 4).

In TLE patients, there was no correlation between miR-128a-3p or miR-196b-5p levels and
age at surgery, seizure frequency, age at first seizure, age at seizure recurrence, or global IQ (S1
Table). Moreover, there was no difference in the expression of miR-128a-3p or miR-196b-5p
when comparing surgical outcome, verbal memory score, non-verbal memory score, IPI, epi-
leptic focus, or sex (S2 Table).

Bioinformatics analysis of miR-128a-3p and 196b-5p targets

To gain insights into functional links between changes in the expression of miR-128a-3p and
196b-5p and epileptogenesis, we performed an analysis of cellular pathways potentially
enriched in these miRs targets. We identified 490 and 139 validated targets of hsa-miR-128a-
3p and 196b-5p, respectively, deposited in miRTarBase (53 and S4 Tables). The pathways sig-
nificantly over-represented in these miRNA targets are listed in Tables 1 and 2, where enrich-
ment test p values for each GO term are indicated.

Discussion

Emerging data show that status epilepticus (SE) triggers a reorganization of miRNA expression
in the brain [58, 68, 69]. We employed microarray analyses to identify dysregulated miRNAs

in SE-induced epileptogenesis, detecting 73 miRNAs (37 downregulated and 36 upregulated)
with differential expression in 24h post-SE rat hippocampi (Fig 1).To strengthen the discussion
of our own data in the context of previously published studies, we performed a cross-compari-
son using data from large-scale profile of miRNA responses during the epileptogenic process,
which are available in the EpimiR database [70]. Only 15 of the miRNAs identified in our anal-
ysis (miRs 518¢-3p, 516b-3p, 518b, 524-5p, 518a-3p, 362-5p, 517¢c-3p, 409-3p, 20b-3p, 372-3p,
507, 421-5p, 518f-5p, 373-5p, 201-5p) had not yet been linked to epilepsy/seizure. In order to
identify which of our miRNAs had a conserved response in acute phase of SE-induced epilepto-
genesis, we further restricted the comparison to studies with profiled miRNA responses in the
24 h after SE induction [47, 49, 54, 57]. A total of 24 miRNAs detected in our study have also
been identified in previous studies. Moreover, 14 of our miRNAs showed a change in expres-
sion that was in the same direction in at least one of these profiling studies. Interestingly,
despite the acknowledged difficulties of cross-comparing data derived from different experi-
mental protocols, most of the miRNAs (22-3p, 139-5p, 144-3p, 203-3p, 326-3p, 431-5p, 196b-
5p, 25-3p, 337-3p, 495-3p, 34b-5p, 542-3p) showed overlap with other post-SE models such as
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Table 1. GO Pathway significantly overrepresented among the miR-128a-3p validated targets.

Term

(P06959
(PO0027
(PO0047
(PO0059
(PO004
(P06664
(P00032
(P04398
(P00020
(PO000
(P05911
(P0O0033
(P0O0034
(P00029
(P04385
(PO0056
(PO0049
(P04380
(P00018)

(o]

o

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Description

CCKR signaling map

Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway
PDGF signaling pathway

p53 pathway

PI3 kinase pathway

Gonadotropin-releasing hormone receptor pathway

Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade
p53 pathway feedback loops 2

FAS signaling pathway

Angiogenesis

Angiotensin Il-stimulated signaling through G proteins and beta-arrestin
Insulin/IGF pathway-protein kinase B signaling cascade

Integrin signalling pathway

Huntington disease

Histamine H1 receptor mediated signaling pathway

VEGF signaling pathway

Parkinson disease

Cortocotropin releasing factor receptor signaling pathway

EGF receptor signaling pathway

doi:10.1371/journal.pone.0163855.t001

P-value

3.20E-04
8.51E-04
1.04E-03
1.38E-03
2.22E-03
4.67E-03
8.34E-03
9.20E-03
9.23E-03
1.03E-02
1.46E-02
1.72E-02
1.78E-02
1.92E-02
2.16E-02
2.98E-02
3.35E-02
4.15E-02
5.00E-02

lithium-PILO, kainite or electrical stimulation. These common miRNAs are particularly attrac-
tive for further functional investigation because they likely to be disease, rather than model-
specific. On the other hand, the response of certain miRNAs (e.g. miR-146 and miR-134) fol-
lowing SE contrasts with results from other studies, probably due to specificities of the H-PILO

or technical limitations inherent in the use of a large-scale experimental approach. Indeed,
there are few overlaps among miRNAs profiles generated by using high-throughput platforms,

Table 2. GO Pathway significantly overrepresented among the miR-196b-5p validated targets.

Term

(PO0010)
(P00028)
(P06664)
(P06959)
(PO0006)
(P00053)
(P00026)
(P02773)
(P00047)
(PO0019)
(P05911)
(PO0036)
(P04378)
(P04377)
(P04373)
(P00034)

Description

B cell activation

Heterotrimeric G-protein signaling pathway-rod outer segment phototransduction
Gonadotropin-releasing hormone receptor pathway

CCKR signaling map

Apoptosis signaling pathway

T cell activation

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway
S-adenosylmethionine biosynthesis

PDGF signaling pathway

Endothelin signaling pathway

Angiotensin |I-stimulated signaling through G proteins and beta-arrestin
Interleukin signaling pathway

Beta2 adrenergic receptor signaling pathway

Beta1 adrenergic receptor signaling pathway

5HT1 type receptor mediated signaling pathway

Integrin signalling pathway

doi:10.1371/journal.pone.0163855.t002

P-value

1.70E-04
1.99E-04
1.44E-03
1.48E-03
1.80E-03
4.88E-03
6.25E-03
2.08E-02
2.14E-02
2.31E-02
3.11E-02
3.22E-02
4.19E-02
4.19E-02
4.19E-02
4.70E-02
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even considering those from the same model. One reason for this is that miRNA microarray
data need to undergo an individual validation step. We observed that, from the subset of five
miRNAs (10a-5p, 128a-3p, 196b-5p, 324-3p and 352) selected for individual RT-qPCR analy-
sis, three (miRs-128a-3p, 196b-5p and 352) presented consistent results with the microarray
analysis (Fig 1). These were consequently chosen for more extensive expression analysis during
the epileptogenic process.

We used RT-qPCR to measure changes in expression of miR-128a-3p, 196b-5p and 352
expression at three time periods (Oh, 24h and 10-12 weeks) after S-PILO induced SE. We
observed: i) down-regulation of miR-128a-3p in the three stages of epileptogenesis; ii) up-regu-
lation of miR-196b-5p only at 24h post-SE, and; iii) up-regulation of miR-352 in both 24h and
chronic post-SE time points. It is important to highlight that the results obtained with S-Pilo
model were similar to those observed for the H-Pilo model. Thus, the potential differences
between the activated/suppressed pathways in the induction of seizures in these two models do
not seem to have a differential impact on the expression of these miRs.

Despite of miR-128a-3p expression is dysregulated in hippocampus of epileptic rats
(chronic group), we did not observe a statistical significant differences of its levels in hippo-
campal biopsy specimens from TLE-HS patients comparing with non-epileptic autopsy sam-
ples. This finding could be a consequence of the fundamental physiological differences
between rats and humans. Alternatively, it could be due to various confounding factors that are
common in the analysis of differential expression using human specimens, such as ethnicity,
BM]J, lifestyle, and other individual characteristics. Tissue origin (i.e. biopsy or autopsy) is also
a critical issue because autopsy delay would tend to confound the difference between control
and TLE hippocampal biopsy samples [42, 46]. Indeed, this could explain why our RT-qPCR
results show that miR transcript levels tend to change in a similar direction to that observed in
the animal model. However, whether dysregulation of miRs 128a-3p and 196b-5p can be
extended to epileptic patients requires further clarification.

In favor of that is our finding of hsa-miRs 128a-3p and 196b-5p target genes enrichment in
common signaling pathways that have been associated to the molecular mechanisms underly-
ing seizures and epilepsy. For instance, we observed that the integrin signalling pathway that
was found significantly over-represented for both miR-128a-3p and 196b-5p targets (Table 3)
plays a role in several neuropathological processes of epileptogenesis [71-74].

It is also known that miR-128 is highly enriched in adult mouse and human brains, and has
recently been linked to epilepsy [75]. Similar to our observation, prominent down-regulation
of miR-128 has been recorded in the acute and chronic phase of Litio-PILO induced epilepto-
genesis [75]. Moreover, it has been shown that the absence of miR-128 expression in miR-128-
2—/— mice causes seizure-induced death, which is prevented by its overexpression [76].
Although the mechanism of action remains a source of speculation, these data strongly suggest
an anti-epileptogenic role for miR128a. In fact, the bioinformatics analysis of the validated

Table 3. GO Pathway commonly overrepresented among the miR-128a-3p and 196b-5p validated
targets.

GO Description

(P06959) CCKR signaling map

(P00027) Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway
(P00047) PDGF signaling pathway

(P06664) Gonadotropin-releasing hormone receptor pathway

(P05911) Angiotensin ll-stimulated signaling through G proteins and beta-arrestin

(P00034) Integrin signalling pathway

doi:10.1371/journal.pone.0163855.t003
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targets of hsa-miR-128 showed a significantly over-representation of pathways such as P53,
Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (Table 1),
which are enhanced after SE insult.

In contrast, the involvement of miR-196b-5p in epileptogenesis and epilepsy is unknown.
miR-196b has been identified as a regulator of tumorigenesis and its overexpression may be
associated with the occurrence of preoperative seizures in low-grade gliomas [77]. Significantly
over-represented signaling pathways for miR-196b-5p include apoptosis signaling (Table 2). A
negative regulation of anti-apoptotic genes, by the up-regulation of miR-196b, could contribute
to the cell death seen after the SE. In fact, the MiRTar tool indicated BCL2 as a potential target
of miR-196b-5p by imunohistochemical-based validation. The anti-apoptotic BCL2 gene is
down-regulated in the hippocampus of rats 48 hours after KA-induced SE [78], which may
contribute to neurodegeneration occurring during epileptogenesis. However, the potential
involvement up-regulation of miR-196b-5p in MTLE pathogenesis by regulating the BCL2 will
require further study. On the other hand, a recent study showed that the expression of PI3K/
AKT/mTOR proteins and mRNAs were increased following upregulation of the expression of
miR-196b-5p in cancer cells [79]. Interesting some member of this pathway (P-Akt and
p70S6K) are also increased in the hippocampi of children with MTLE and the negative modu-
lation of the PI3K/Akt/mTOR signaling pathway has been suggested as a novel therapeutic tar-
get for the treatment of MTLE [80]. Further study may show whether the up-regulation of
miR-196b-5p contribute to activation of PI3K/Akt/mTOR signaling pathway in MTLE
pathogenesis.

Identifying a potential link between miR-352 and epilepsy is challenging because the biolog-
ical role of this miR is unknown. An additional complication is the absence of an experimen-
tally validated target for miR-352. The only functional assay indicated that this miRNA targets
the HEXB gene and may regulate lysosomal-associated proteins following ischemic stroke [81].
Hexb is the beta subunit of the lysosomal enzyme beta-hexosaminidase. When mutated, this
gene can cause Sandhoff disease—a progressive neurodegenerative disorder characterized by
accumulation of GM2 gangliosides that can correlate with seizures [82]. This suggests that an
investigation of HEXB and the identification of other direct targets would be a productive next
step towards uncovering the role of miR-352 in epileptogenesis. A recent study showed that SE
results in significant accumulation of autophagosome- and lysosome-associated proteins in
neurites [83]. The authors suggested that lysosomal/autophagic mechanisms reflect an attempt
to survive the epileptic insult by breaking down non-essential components. Further functional
studies are required to investigate the miR-352 involvement in autophagy dynamics during
epileptogenesis.
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