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Abstract

In the context of the Human Toxome project, mass-spectroscopy-based metabolomics 

characterization of estrogen-stimulated MCF-7 cells was studied in order to support the untargeted 

deduction of pathways of toxicity. A targeted and untargeted approach using over-representation 

analysis (ORA), quantitative enrichment analysis (QEA), and pathway analysis (PA) and a 

metabolite network approach were compared. Any untargeted approach necessarily has some 

noise in the data owing to artifacts, outliers, and misidentified metabolites. Depending on the 

chemical analytical choices (sample extraction, chromatography, instrument and settings etc.) only 

a partial representation of all metabolites will be achieved, biased by both the analytical methods 

and the database used to identify the metabolites. Here, we show on the one hand that using a data 

analysis approach based exclusively on pathway annotations has the potential to miss much that is 

of interest and, in the case of misidentified metabolites, can produce perturbed pathways that are 

statistically significant yet uninformative for the biological sample at hand. On the other hand, a 

targeted approach, by narrowing its focus and minimizing (but not eliminating) misidentifications, 

renders the likelihood of a spurious pathway much smaller, but the limited number of metabolites 

also makes statistical significance harder to achieve.

To avoid an analysis dependent on pathways, we built a de novo network using all metabolites that 

were different at 24 hours with and without estrogen with a p-value less than .01 (53) in the 

STITCH database, which links metabolites based on known reactions in the main metabolic 

network pathways but also based on experimental evidence and text-mining. The resulting network 

contained a “connected component” of 43 metabolites, and helped identify non-endogenous 

metabolites as well as pathways not visible by annotation based approaches. Moreover, the most 
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highly connected metabolites (energy metabolites such as pyruvate and alpha-ketoglutarate, as 

well as amino acids) showed only a modest change between proliferation with and without 

estrogen.

Here, we demonstrate that estrogen has subtle but potentially phenotypically important alterations 

in the acyl-carnitine fatty acids and acetyl-putrescine and succinoadenosine, in addition to likely 

subtle changes in key energy metabolites that, however, could not be verified consistently given 

the technical limitations of this approach. Finally, we show that a network-based approach 

combined with text-mining identifies pathways that would otherwise neither be considered 

statistically significant on their own nor be identified via ORA, QEA, or PA.

Introduction

A major challenge of 21st century life sciences is to make sense of the big data produced by 

the new technologies available. Biological pathways lend themselves as guidance to interpret 

such data, especially those derived from omics technologies. Metabolomics, i.e. which aims 

for a relatively complete analysis of all small molecules of a biological model, promises to 

be closest to phenotypical changes, as changes in gene expression and protein formation for 

example do not necessarily lead to altered functionality. Analyzing metabolites for altered 

phenotype is perhaps one of the oldest modalities employed by medicine—the tale goes that 

pre-modern doctors would test for diabetes mellitus by seeing if ants were attracted to a 

patient’s urine, a crude but effective and accurate assay for a biomarker of disease(King and 

Rubin, 2003). Nonetheless, metabolomics—defined as measuring the concentration of the 

low molecular weight (<1,500 Da) molecules in a system of interest—has yet to join 

transcriptomics and proteomics as an essential part of systems biology. In part, this may be 

because metabolomics presents many technical and analytical challenges in comparison to 

transcriptomics. While metabolomics is ultimately very close to the phenotype, this turns out 

to be a double- edged sword, as it means that metabolomics can be extraordinarily sensitive 

to slight changes in experimental parameters, and it requires a scrupulous commitment to 

protocol as virtually any small change can introduce artifacts (Bouhifd et al., 2015b). 

Metabolomics also presents a challenge in terms of analytical chemistry in comparison to 

transcriptomics or even proteomics, which is comparatively straight-forward from an 

analytical perspective, as both technologies targets a single class of compounds that are 

comparatively easy to isolate and more stable. The universe of metabolites consists of 

chemicals with a vast range of properties—over 2000 metabolites total, consisting of polar 

and neutral lipids, amino acids, redox metabolites, and sugars (Wishart, 2011)—and the 

different biochemical properties precludes coverage with any one platform, e.g. HPLC will 

have different coverage than gas chromatography, positive or negative polarity will ionize 

different metabolites, etc. Therefore, while untargeted metabolomics attempts to catch “all” 

the metabolites, the choice of platform will likely privilege some over others. This is 

important to keep in mind for any analysis based on pathways, as metabolites that are 

invisible to a specific platform but are heavily represented on a pathway of interest may 

skew the result, i.e. cells treated with estrogen may have steroid-specific pathways up-

regulated, but if a technology does not adequately capture large, non-polar compounds, any 
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impact on that pathway may be difficult to see unless a combination of analytical platforms 

is used.

Lastly, metabolomics, unlike transcriptomics, does not produce a list of unambiguously 

identified “features”. Instead, it depends on several intricate steps of data analysis to go from 

a chromatograms to a list of metabolites with concentrations, including peak alignment, 

deconvolution, adequate identification of ions, isotopes, and possible adduct modifications 

(water, sodium, or other small molecules that may be bound to or lost from the compound 

and therefore reflected in the m/z), and lastly accurate metabolite identification, which is 

dependent not only on all of the above steps, but also on the accuracy and metabolite 

coverage provided by the database used for compound identification. Finally, this last step is 

an immensely time consuming step, seriously compromising the use of untargeted 

metabolomics for high-throughput screening. In this respect, metabolomics has yet gain the 

maturity that transcriptomics, which in the past decade has achieved broad consensus on 

data analysis.

As part of the Mapping the Human Toxome project (Bouhifd et al., 2015a; Bouhifd et al., 

2014), where concepts and tools for the elucidation of molecular pathways of toxicity 

(Hartung and McBride, 2011; Kleensang et al., 2014) are being developed using the test case 

of estrogen endocrine disruption, we examined the effect of 17B-estradiol on the metabolism 

of MCF-7 cells with both a targeted and untargeted approach using over-representation 

analysis (ORA), quantitative enrichment analysis (QEA), and pathway analysis (PA) and a 

network approach. Here, we show that QEA and PA must be used with caution when applied 

to untargeted metabolomics, given the noise typically present in such data. On the other 

hand, a network approach both helped identify pathways that would otherwise be invisible, 

eliminated incorrectly identified metabolites, and allowed visualization of the metabolic 

perturbations that respects the intrinsic interconnectedness of metabolites. Finally, we show 

how estradiol specifically perturbs several metabolic pathways: our analysis indicates that 

carnitine-fatty acid derivative pathway appears regulated by estrogen, as are polyamine 

degradation and production, and succinoadenosine.

Materials and Methods

Cell Culture

MCF-7 cells were purchased from the American Type Culture Collection (ATCC, Manassas, 

VA, USA no. HTB-22, lot number 59388743) and were grown using an optimized protocol, 

modified from the protocol used in the ICCVAM (Interagency Coordinating Committee on 

the Validation of Alternative Methods) validation study for the MCF-7 cell proliferation test 

method (ICCVAM, 2003), which was positively evaluated by the US validation body of the 

National Toxicology Program (ICCVAM, 2006b). Vials received from ATCC at passage 147 

were thawed and expanded for 8 passages to provide a sufficient available stock, and then 

frozen and stored in liquid nitrogen. MCF-7 cells were maintained in complete growth 

medium composed of DMEM-F12 (GIBCO, Life Technologies, Grand Island, NY, USA, no. 

11309 ) supplemented with 10% fetal bovine serum (Atlanta Biologicals, Norcross, GA, 

USA, no. S11150), nonessential amino acids (GIBCO, Life Technologies, no. 11140), 

10μg/mL bovine insulin (Akron Biotech, Boca Raton, FL, USA, no. AK8213) and 0.01 
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mg/ml gentamicin (Invitrogen, Life Technologies, no. 15710) in BPA-free culture flasks. 

Cultures were fed every 2–3 days and passaged when 70–80% confluent. To control for 

genetic drift, MCF-7 cells from the initial thawed vial were only used in experiments for up 

to 10 passages. For quality control, MCF-7 cells were analyzed for karyotyping and 

mycoplasma. Comparative genomic hybridization (CGH) (Kleensang et al., 2015) as well as 

regular morphological assessment were also performed on the MCF-7 cells.

Treatment of cell cultures

MCF-7 cells were seeded at a density of 300,000 cells/well in 6-well plates and allowed to 

grow for 72 hours in complete growth media. After 72 hours, cells were rinsed with PBS and 

placed in treatment media composed of DMEM/F12 supplemented with 5% dextran 

charcoal stripped fetal bovine serum (DCC, Gemini Bio-products, Sacramento, CA, US, no. 

100–119), nonessential amino acids, 6 ng/mL bovine insulin and gentamicin for 48 hours. 

Cells were then exposed to 1 nm/L 17β estradiol (E2, Sigma Aldrich, St. Louis, MO, USA, 

no. E8875) or vehicle control dimethylsulfoxide (DMSO, Sigma Aldrich, no. D8418) in 

fresh treatment media for 4 and 24 hours.

Untargeted metabolomics analysis

After E2 treatment, the cell culture media was removed by gentle vacuum suction and the 

remaining cells were washed 2 times with 1 mL of pre-warmed PBS. Any residue of PBS is 

removed from the wells. A solution of 700uL dry-ice cold 80:20 (v/v) methanol/water was 

immediately added, and the cells were scraped and collected in a 1.5 ml Eppendorf tube. 

The wells were washed again with an additional 700uL solution of methanol/water and this 

solution was combined with the previous one. The solution was vortexed for 1 min and then 

stored at −80°C for 2 h to allow for protein precipitation. For metabolite extraction from the 

cell lysate, tubes were placed on dry ice for 15 min and centrifuged at 14 000 × g for 5 min 

at 4°C. The supernatant was transferred to a new 1.5 ml tube and placed on dry ice. Then, 

300 μl of 80 : 20 methanol/water was added to the pellet and a second extraction was 

performed. The combined supernatants were evaporated overnight to dryness at room 

temperature in a Speedvac concentrator (Savant, Thermo Fisher Scientific, Waltham, MA, 

USA). The dried samples were reconstituted with 60 μL of 60% methanol with 0.1% formic 

acid and clarified by centrifugation at 14 000 × g for 5 min. The clarified samples were 

transferred to HPLC vials for LC-MS measurements.

Chromatographic separations were performed using an Agilent 1260 high-performance 

liquid chromatography system with a well-plate autosampler (Agilent, Santa Clara, CA, 

USA). For aqueous normal phase (ANP) separation, a Cogent Diamond Hydride (MicroSol, 

Eatontown, NJ, USA) column (150 × 2.1 mm i.d., 4 μm particle size, 100 Å pore size) was 

used for separation of metabolites. The LC parameters were as follows: autosampler 

temperature, 4°C; injection volume, 5 μL; column temperature, 35°C; and flow rate, 0.4 mL/

min. The solvents and optimized gradient conditions for LC were: Solvent A, 50% 

methanol/50% water/0.05% formic acid; Solvent B, 90% acetonitrile with 5 mM ammonium 

acetate; elution gradient: 0 min 100% B; 20–25 min 40% B; post-run time for equilibration, 

10 min in 100% B. The LC system was coupled directly to the Q-TOF mass spectrometer. A 
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blank injection was run after every three samples and a QC sample was run after every five 

samples to identify the sample carryover and check for stability.

A 6520 accurate-mass Q-TOF LC-MS system (Agilent) equipped with a dual electrospray 

(ESI) ion source was operated in negative-ion mode for metabolic profiling. The optimized 

ESI Q-TOF parameters for MS experiments were: ion polarity, negative; gas temperature, 

325°C; drying gas, 10 l/min; nebulizer pressure, 45 psig; capillary voltage, 4000 V; 

fragmentor, 140 V; skimmer, 65 V; mass range, 70–1100 m/z; acquisition rate, 1.5 spectra/s; 

instrument state, extended dynamic range (1700 m/z, 2 GHz). Spectra were internally mass-

calibrated in real-time by continuous infusion of a reference mass solution (standards with 

known mass at specific concentrations, which are introduced into the ion-source throughout 

the sample run to perform dynamic calibration) using an isocratic pump connected to a dual 

sprayer feeding into an electrospray ionization source. Data were acquired with MassHunter 

Acquisition software from Agilent.

For the data processing and chemometric analysis of the LC-MS untargeted data, the 

acquired raw data files (.d files) were first checked for quality in MassHunter Qualitative 

Analysis software (Agilent, version 6.0). Reproducibility of chromatograms was visually 

inspected by overlaying the Total Ion Chromatograms (TICs) of all samples. Data files that 

exhibit outlier peaks; i.e. replicates with very dissimilar chromatograms, were excluded for 

further processing. The raw data files were then converted to mzXML using ProteoWizard 

3.0 (Kessner et al., 2008). Raw LC-MS data were analyzed by the MZmine 2 software 

(Pluskal et al., 2010)for chromatogram deconvolution, peak detection and alignment. The 

optimized parameters of the data processing are given in supplementary material S1. The 

putative identification was achieved by online searching for the accurate m/z values of the 

peaks against HMDB and KEGG databases (Kanehisa and Goto, 2000; Wishart et al., 2007). 

Those peaks were manually inspected for the quality of the EIC (extracted ion 

chromatograms) and also for remaining duplicate compounds names.

Targeted metabolomics analysis

The cell culture and treatment were the same as described above. The metabolite extraction 

was made in a similar manner as for the untargeted analysis using an 80:20 methanol/water 

solution with some minor modifications; after the PBS wash, a quick final rinse with 

deionized water was added to remove excess salts. The metabolism was then quenched using 

a similar solution as previously (dry-ice cold 80:20 MeOH/water) and the cells scraped and 

transferred in cold methanol and stored at −80°C. In addition, a bead-beating 

homogenization of the pellet was applied. The dried samples were reconstituted in 70% 

acetonitrile + 0.2% ammonium hydride for both positive and negative mode. The LC-MS 

platform for metabolite profiling was described previously (Chen et al., 2012). For the 

targeted metabolite identification method the assignment of structural identities to 

metabolites was based exclusively on a match of retention times and accurate masses to an 

in-house database, established by Dr. Gross lab at Cornell University, based on a match of 

retention times and accurate masses.
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Targeted metabolomic confirmation by LC-MS/MS

Targeted metabolomics confirmation analysis was performed on an Agilent 6490 triple 

quadropole LC-MS/MS system with iFunnel and Jet-Stream® technology 

(AgilentTechnologies, Santa Clara, CA) equipped with an Agilent 1260 infinity pump and 

autosampler. Chromatographic separation was performed on a Diamond Hydride column 

(150mm x 2.1 mm i.d., 4μm particle size, Microsolv, Eatontown, NJ). The LC parameters 

were as follows: autosampler temperature 4°C; injection volume 4 μL; column temperature 

35°C; and flow rate 0.4 ml/min. The solvents and optimized gradient conditions for LC 

were: Solvent A, water with 5mM ammonium acetate, pH=7.2; Solvent B, 90% acetonitrile 

with 10mM ammonium acetate, pH=6.5; elution gradient: 0 min 95% B; 15–20 min 25% B; 

post-run time for equilibration, 5 min in 95% B. MS was operated in positive/negative 

polarity switching mode (unit resolution) with all analytes monitored by multiple reaction 

monitoring (MRM). Compound identity was confirmed by comparison to the retention times 

of pure standards. The optimized operating ESI conditions were: gas temperature 230°C 

(nitrogen); gas flow 15 L/min; nebulizer pressure 40 psi; sheath gas temperature 350°C and 

sheath gas flow 12 L/min. Capillary voltages were optimized to 4000V in positive mode 

with nozzle voltages of 2000 V. All data processing was performed with the Mass Hunter 

Quantitative Analysis software package.

Data analysis—Over-representation analysis using only the metabolite identifiers was 

performed with Metaboanalyst, which tests all metabolites with database identifiers against 

human KEGG pathways for over-representation. Metabolite Set Enrichment Analysis, the 

metabolomics equivalent of Gene Set Enrichment Analysis/quantitative enrichment analysis 

was performed using the entire dataset to look for statistically significant perturbations along 

KEGG Pathways was performed via Metaboanalyst. Pathway Impact Analysis, which 

focuses on perturbations that are considered topologically important, was performed with 

Metaboanalyst (Xia et al., 2009; Xia et al., 2015) against all human pathways available. In 

all cases, the background was assumed to be all possible metabolites. Impala was also used 

for over-representation analysis. (Cavill et al., 2011; Kamburov et al., 2011).

Network analysis—All metabolites statistically significantly different at 24 hours with 

control vs. treated with a p-value less than .01 were used to create a network in STITCH 

Version 4 (Kuhn et al., 2008) with a medium stringency of .40 and no additional proteins. 

All unconnected metabolites were discarded. The network was plotted in Cystoscape 

(Shannon et al., 2003) using Neighborhood Connectivity map.

Results

Initially, we attempted to characterize the metabolomic effects of estradiol after 24 hours 

treatment with an untargeted approach. To examine reproducibility between two 

experiments, we performed identical experiments (hereafter called EXP1 and EXP2) one 

week apart with an otherwise identical protocol and cells harvested at passages 158 and 160, 

respectively.

For an untargeted approach, there are several approaches that could be taken to initially 

identify the metabolites. For our untargeted metabolomics workflow, only putative 
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identification of the metabolites is possible, i.e. an estimate of the identity (formula, name or 

both) based on algorithms for feature extraction and annotation. However, the multiple 

possible metabolites for each identified feature means that few metabolites can be identified 

definitively based on mass alone, and even with retention time there is still ambiguity in the 

assigned identity. Even with a clear mass the possibility of adducts, contaminants, and 

inaccurate peak calling translates into considerable ambiguity in any attempt to identify 

metabolites, making this step a major bottleneck in analysis of metabolomics data. Several 

methods and algorithms have been developed to meet this challenge, as extensively reviewed 

by Katajamaa and Orešič (Katajamaa and Oresic, 2007). Based on studies of different 

methods in terms of alignment, deconvolution and accuracy of identification and ease of use 

it was found that MZmine is highly suitable for LC-MS datasets, and typically allows for 

more than 80% accuracy (Niu et al., 2014). Mzmine, a freely available and widely used 

software for metabolomics analysis, was used for the untargeted method. The algorithm 

allows for chromatogram deconvolution, peak detection and alignment. One of the most 

valuable features of the software is its performance in handling missing values. Usually, 

after peak alignment, the resulting peak list may contain missing peaks that affect the 

successive analysis. A missing value does not necessarily imply that the peak is not present 

in the raw data, but could equally be a misidentification in one of the algorithm steps, which 

MZmine can fill in.

Most importantly, we verified the performance of the method in terms of accuracy of 

metabolite putative identification using a publicly available dataset (URL: http://

www.ebi.ac.uk/metabolights under accession number MTBLS67). The main result is the 

high accuracy of the putative identification, with 80% extracted and accurately annotated 

using our method, i.e. same m/z, RT, formula and name, 7% were assigned the same formula 

but a different compound name, 9% were assigned a different formula and only 4% were not 

found, although we have to caution that the accuracy may be different for our dataset due to 

differences in sample preparation, etc. The detail of the performance assessment of the 

metabolite putative identification method is provided in Supplementary Material S2.

After metabolite identification, Metaboanalyst was used for both over-representation 

analysis (ORA), Quantitative Set Enrichment Analysis (QEA), and Pathway Analysis (PA) 

(Xia and Wishart, 2010). ORA analyzes whether, for a given list of differentially expressed 

metabolites, one particular pathway is over-represented, that is to say there are more hits on 

that pathway than would be expected by chance compared to an expected value based on the 

size of the pathway and assuming a hypergeometric distribution, after correcting for a false 

discovery rate (FDR). Critically, ORA is dependent only looks at group selected on the basis 

of an inferential statistics and does not look at the magnitude of the fold-change of the given 

metabolite. The second approach, QEA, is based on the “global test” algorithm (Goeman et 

al., 2004), commonly used for microarray experiments, to perform enrichment analysis 

directly from expression data; like ORA it looks for more hits on a pathway than by chance, 

but it additionally takes into consideration the magnitude of the expression values; there a 

pathway can be significant because of a few highly changed genes or metabolites on a 

pathway, or alternatively, multiple smaller-scale changes in genes or metabolites on a 

pathway. “Global test” was originally created to examine associations between gene sets and 

clinical outcomes, but it has been used extensively for microarray data and adapted for 
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multiclass and continuous phenotypes. It uses a generalized linear model to compute a ‘Q-

stat’ for each metabolite set, using the average of the squared covariance between the 

expression level of the phenotype label. QEA includes appropriate methods to adjust for the 

multiple testing problems that occur during enrichment analysis (e.g. Benjamini and 

Hochberg FDR). PA attempts to improve on QEA by taking into consideration the topology 

of the pathway - in other words, it looks for changes in central, highly connected nodes 

when considering the likelihood that given pathway is perturbed (Aittokallio et al., 2003).

Our results indicate that all of the above approaches must be used with considerable caution 

when analyzing untargeted metabolomic data. Initially, we examined differentially expressed 

metabolites determined via Over-Representation Analysis, using all metabolites different at 

24 h vs. control with an uncorrected p-value less than .05, which show identical results for 

both data sets - only one fairly uninformative, overly general pathway (“Protein 

biosynthesis”) [Table 1] that was statistically significant after correcting for multiple 

hypothesis testing; it is likely that given the requirement for multiple hits on a given pathway 

to achieve statistical significance, ORA is of limited usefulness for smaller pathways (i.e. 

glutathione biosynthesis, with only 10 compounds annotated to that pathway). Finally, ORA 

will necessarily be sensitive to the background of identified metabolites – in this case, the 

main pathway identified by using all the metabolites identified in the experiment was also 

protein biosynthesis. The lists of all metabolites used in the analysis are provided in 

supplementary materials. S5 lists all metabolic features generated using the untargeted 

method for EXP1 and EXP2. S6 contains all metabolic features generated using the targeted 

method. S7 provides the results of the two confirmation experiments.

Since both QEA and PA offer a more sensitive measurement of pathway perturbation, as 

expected they both identified more pathways with higher statistical power. However, the top 

three pathways identified by QEA were all based on fewer than three - and often as few as 

one - metabolite, meaning such an analysis can be easily misled by a single misidentification 

or outlier in the data [ Figure 1, Table 2, Supplementary material S3]. Moreover, there was 

minimal overlap between the two data sets from the two experiments, EXP1 and EXP2 in 

terms of the pathways identified.

Similarly, PA analysis identified only five pathways in common between EXP1 and EXP2, 

and the top pathway in both (“methane metabolism”) datasets is based on three metabolites 

(Dihydroxyacetone, Glycine, and Serine) - reflecting the extent to which pathways used for 

such approaches typically build upon conserved consensus pathways initially identified in 

bacteria or yeast and then extrapolated to human data (Popescu and Yona, 2005); in this 

case, methane metabolism is clearly non-informative.

Quantitative Enrichment Analysis (QEA)

Pathway Analysis (PA)

Any untargeted approach necessarily has some noise in the data owing to artifacts, outliers, 

and misidentified metabolites. In the case of both QEA and PA, it is quite possible that the 

noise intrinsic to untargeted metabolomics creates the appearance of a statistically 
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significant perturbation in a pathway, and any such analysis must be treated as more 

exploratory than definitive, especially if the pathway is identified by a solitary metabolite.

Interestingly, using a network approach, the data appears more similar than the identified 

pathways would imply some overlap – for example, the dihydroxyacetone subnetwork 

consisted of pyruvic acid and alanine in EXP1 and the same metabolites, plus glycerate and 

glucose, in EXP2. Therefore, while dihydroxyacetone is annotated to both the methane and 

glycerolipid pathways, a network approach points to a more likely role in carbohydrate 

metabolism, although given the putative nature of metabolite identification, this hypothesis 

would need confirmation from a more precise approach.

We next tried a targeted approach based on metabolite identification with known standards 

and retention times. While this targeted method usually allows for detection of a smaller 

number of metabolites, the accuracy of identification is greatly improved, even though 

identification is only more certain, not definitive. The targeted approach identified 38 

metabolites statistically significantly with a p-value of less than .05 (without correction for 

multiple hypothesis testing) and 53 with a p-value less than .01. When the statistically 

significant metabolites were analyzed via ORA no significant pathways were found (the 

signal was weak in both QEA and Pathway Impact analysis, but it was statistically 

significant). However, only 36 of the 53 metabolites that were statistically significant after 

estrogen treatment were annotated to pathways even when using Impala (Cavill et al., 2011; 

Kamburov et al., 2011) which looks at not only KEGG pathways but also HMDB, SMPD, 

and Wikipathways. This indicates that even with a targeted approach and all possible 

databases, a substantial part of the signal was simply lost.

To build our de novo network, we used all metabolites that were different at 24 hours with 

and without estrogen with a p-value less than .01 (53) in the STITCH database, which links 

metabolites based on known reactions in the main metabolic network pathways but also 

based on experimental evidence and text-mining; we selected a medium stringency level (.

40).

The resulting network contained a “connected component” of 43 metabolites. Of the 

metabolites excluded, several were clearly non-endogenous (e.g. diethanolamine, geranyl 

pyrophosphate); one advantage of this approach is that while it does not completely 

eliminate spurious metabolites, it helps identify them, as they tend to be unconnected to the 

larger network. However, one metabolite (succinoadenosine) was unconnected although it is 

both endogenous and was later verified by in-house standards. Figure 4 shows the network 

plotted both by the fold change difference (node size) and p-value (node color). On the 

whole, the most highly connected metabolites (energy metabolites such as pyruvate (pyruvic 

acid) and alpha-ketoglutarate, as well as amino acids) showed only a modest change 

between proliferation with and without estrogen. The relatively subtle changes at such key 

nodes may indicate that PA, by focusing on highly connected nodes considered key points in 

pathways, may miss the most phenotypically relevant changes, as flux through such points is 

possibly so tightly controlled that profound changes are unlikely in the absence of targeted 

enzyme inhibition.
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The most marked differences in terms of fold-change between proliferating cells with and 

without estrogen were found in metabolites that were relatively “unconnected” – 

hypoxanthine (4 connected metabolites), purine (1 connected metabolite), acetyl-methionine 

(1 connected metabolite); only glutathione (11 connected metabolites) was both markedly 

different and highly connected.

Nonetheless, the use of the network approach suggests some connections that might 

otherwise be invisible - for example, the glutathione subnetwork (S4) (all first degree 

neighbors of glutathione) shows several metabolites not annotated to the glutathione 

pathway but connected either by experimental data or text-mining. Fumarate, for example, is 

not annotated to the glutathione pathway but is known to bind directly to glutathione and 

produce succinated glutathione which thus acts to both deplete NADPH and increase ROS 

(Sullivan et al., 2013) and is considered an onco-metabolite. However, succinyl-glutathione 

levels would likely have been invisible in most experiments that used HMDB to identify 

metabolites, and certainly in most pathway analyses, as it is not in HMDB as a metabolite 

and is not annotated to any pathways.

Moreover, the network helped identify several clear “pathways” not visible when focusing 

on annotated pathways. Although fatty acid beta-oxidation was identified in QEA as a 

pathway, the carnitine and fatty acid acyl carnitine derivatives formed a small cluster (Figure 

5) that would not be apparent via pathway-dependent data analysis, as the carnitine 

derivatives were, with the exception of propionyl-L-carnitine, not annotated to pathways. In 

this instance, the network links were added via text-mining.

Finally, to verify the altered metabolites, we analyzed 20 of the statistically significant 

metabolites using pure chemical standards in estrogen treated vs. untreated. 20 metabolites 

were analyzed using an optimized targeted method (Table 4): Putrescine, Hypoxanthine, 

Deoxycytidine, Taurine, Purine, Leucine, Pyruvate, α-Ketoglutarate, Octanoyl L-Carnitine, 

Glycerate, NAA, Proline, Glutathione (reduced), Succinoadenosine, Valeryl L-Carnitine, 

Butyryl L-Carnitine, Propionyl L-Carnitine, Cystathionine, L-Carnitine and N-

acetylputrescine.

6 replicates were analyzed for each condition, controls and estrogen treated cells, for a total 

of 12 samples, and we repeated the experiment twice. The abundances spanned over a 3-fold 

range with an average coefficient of variation of 11% and 17% for estrogen treated samples 

and controls, respectively. However, the coefficient of variation was markedly different for 

each metabolite and our results indicate that it needs to be considered carefully when 

interpreting results.

We compared the abundances of the analysis based on standards to the previous targeted 

data. For each metabolite, we first calculated the fold-change observed in each experiment 

between controls and treated samples and then we plotted these fold-changes for each 

compound (Figure 6) For the 20 metabolites analyzed, the carnitine pathways were, with one 

exception, fairly consistent in the direction in the (i.e. either increase or decrease) and 

somewhat less consistent in terms of change magnitudes although the dynamic range was 

quite different – fold-changes observed were between −1.2 and −5.4 for Cornell and the 
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targeted analysis, respectively. However, several of the metabolites showed a statistically 

significant difference in only one of the experiments using standards. Generally speaking, 

these tended to be very low-abundance metabolites - suggesting a technical bias due to the 

limit of detection with this approach. Moreover, the coefficient of variation of these 

compounds tended to be the highest, (e.g. 34% for purine) and the observed fold-changes 

obtained were very small and therefore inconclusive; while these may be affected by 

estrogen treatment, it would take a more targeted analysis specific for that metabolite (or 

flux analysis) to confirm the change.

Discussion

Often, metabolomic (like transcriptomic) data are analyzed based on inferential statistics, 

which generates a relatively small list of metabolites differentially expressed. The problems 

of relying on inferential statistics alone for high-dimensional data are well-known: the 

stringency of false-discovery corrections tends to lose much of the signal, and a key 

advantage of high-dimensional data - the ability to see each gene, protein, or metabolite 

acting in concert with others - is often lost with such an analysis. This is especially likely to 

diminish the signal in metabolomics data since the tight control of most metabolic pathways 

entails that most metabolites will fluctuate within a fairly narrow range – instead of dramatic 

fold-changes in one or two key metabolites, it is more likely to see a modest increase or 

decrease at key points in a given pathway.

This has led to the development of other approaches such as Over-Representation Analysis 

(ORA), Gene and/or Metabolite Set Enrichment Analysis (GSEA/MSEA), and finally 

Pathway Analysis (PA), all of which seek to interpret data in the context of known pathways. 

This approach, however, is only as useful as the quality of the databases and the 

reproducibility of the data used - for transcriptomics this may cover a significant portion of 

the data, but it likely leaves relevant gaps for toxicology, as shown in our previous work 

(Maertens et al., 2015) and (Pendse et al., in preparation). Metabolomics, on the other hand, 

has a relatively underdeveloped database infrastructure, and owing to inconsistent or 

incomplete pathway annotation may miss key information.

Turning to the sources that focus on pathways and attempt to provide a comprehensive map

—Recon/EHMNM, HumanCyc, KEGG, and Reactome—there is remarkably little overlap 

(Consensus and Conflict Database1): These databases differ in size—from a low of 970 

metabolites in Recon1 (reflecting that it is based on manual curation) to a high of 2,676 

metabolites for the EHMN (which is based in part on automated annotations) (Stobbe et al., 

2013). However, somewhat worryingly, there is a striking lack of agreement amongst the 

databases in terms of commonality—the five main databases agree only on 402 metabolites 

(9% of the total metabolites in the different databases) and a full 3,107 of metabolites are 

present in only one database (Stobbe et al., 2013). This can be attributed to several reasons. 

One, the databases may have different levels of granularity—for example, a reaction may 

include all associated molecules (including “currency molecules,” such as ATP and NADH) 

in one database, but another database may focus only on the main players. Two, various 

1http://www.molgenis.org/c2cards/molgenis.do (last accessed 27 Sep 2015)
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databases were started with different aims in mind and use different identifiers—the lack of 

database interoperability makes it exceedingly difficult to translate chemical identifiers from 

one database to another, because of the lack of efficient ID conversion tools, the complexity 

of chemical nomenclature, and the difficulty in using structural-based IDs such as InChI and 

SMILES for database indexing.

This problem is aggravated when approaches such as ORA and QEA (Quantitative 

Enrichment Analysis) are used in metabolomics without necessarily taking into 

consideration some of the problems of metabolomic data. While microarrays offer a data set 

where all the discrete features are labeled unambiguously at the outset and all such features 

have an assigned value, in the case of metabolomic data, due to the nature of the technology, 

no experiment can possibly identify a complete set of metabolites; of those identified as 

discrete, not all can be assigned an identity precisely - peak identification may have been 

incorrect, ions may have been incorrectly identified, or metabolites may be confused with 

compounds with the same weight. Finally, of those assigned identities, not all are annotated 

with pathway information. Moreover, the missing metabolites may not be missing at 

random, but may reflect a chemical class. As a consequence, at the same time ORA and 

QEA have a substantial loss of information (because of the incomplete pathway mappings), 

they also have the potential to be inaccurate due to a small number of misidentified 

metabolites. Additionally, all annotation-based statistical tests are predicated on an accurate 

assumption of the “background”—that is, the total number of pathways and metabolites 

possible. Generally, the assumed background is the number of total metabolites in pathways, 

although in fact even the best untargeted approaches will be able to identify only a fraction 

of any given pathway. Therefore, there are potentially two sources of error—non-random, 

missing data or an incorrect assumption about background size. Because of this, ORA and 

QEA can lead to inconsistent or misleading results owing both to errors in identification or a 

lack of annotations in the database. Finally, it is important to keep in mind that a linear 

pathway is an artificial construct—all pathways are abstracted from a broader, global 

cellular network and therefore are, at some level, an oversimplification. Focusing on discrete 

pathways for statistical analysis may miss a key aspect of a shift that is taking place within a 

global metabolic network, rather than a pathway.

While the estrogen-receptor signaling pathway is relatively well known, the full phenotypic 

consequences of estrogen or estrogen-like substances have yet to be fully explored. Here, we 

demonstrate that estrogen has subtle but potentially phenotypically important alterations in 

the acyl-carnitine fatty acids and acetyl-putrescine, in addition to likely subtle changes in 

key energy metabolites that, however, could not be verified consistently given the technical 

limitations of this approach. Our findings are consistent with a separate metabolomics study 

of ER-negative and positive breast cancer, which also found that butrylcarnitine – one of the 

carnitine-associated fatty acids in our network verified via standards – was highly correlated 

with a proliferation index (Tang et al., 2014).

Interestingly, in the same study hypoxanthine was correlated with receptor status (Tang et 

al., 2014). Hypoxanthine was markedly decreased in estrogen-treated cells vs. controls in the 

targeted analysis and confirmed via analysis with one data set using standards but not the 

other. Estrogen has been reported to decrease both protein levels and enzyme activity of 
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xanthine dehydrogenase/xanthine oxidase (XDH/XO) in MCF-7 cells (Taibi et al., 2008). 

Loss of XO activity has been linked to aggressive breast cancer growth both in vivo and in 
vitro (Fini et al., 2008). The phenotypic significance is unclear but offers an intriguing 

hypothesis that would require further exploration with an approach tailored to this goal.

Succinoadenosine, which was identified in the Cornell experiment and confirmed in both 

experiments with in-house standards, is a metabolite that is very much off the map, as it was 

not annotated to pathways and was unconnected in the STITCH network. Succinoadenosine 

is mostly found in the urine of patients with ADSL (Adenylosuccinate Lyase) deficiency 

(Zikanova et al., 2005). The only other disease context that reports an increase in 

succinodenosine is fumarase deficiency (Zeman et al., 2000), which suggests two 

possibilities for the elevated levels detected in estrogen-treated cells. One, estrogen 

suppressed ADSL levels, or two, ADSL inhibited fumarase such that succinoadenisone 

levels increased.

Acetyl-putrescine, which was consistently altered in both the targeted and in-house 

standards, and showed one of the largest fold-change differences, offers another interesting 

hypothesis. Both SAT1 and SAT2 are predicted to acetylate spermidine although with lower 

affinity than other polyamines (Hamosh et al., 2005). SAT2 is thought not be implicated in 

polyamine production or degradation in vivo and therefore the most likely candidate is 

SAT1. Transgenic SAT1 overexpression in mice is known to induce an increase in 

acetylspermidine as well as acetyl-putrescine with significant phenotypic consequences – 

including infertility in females. SAT1 does not have an estrogen response element and does 

not appear to be regulated by estrogen, but instead by the PMF1 and NRF2 mediated 

pathway (Wang et al., 1999).

While this paper shows that for this dataset, a network analysis offers insights unavailable in 

an approach that depends upon pathway annotations, the network built from this model must 

be treated with substantial caution. Because the overall effects were subtle, we used a less 

stringent p-value to build the network. While the metabolites that were verified with 

standards are unambiguously identified, for the remainder the identification remains 

putative. Although the network approach likely eliminated obvious non-endogenous 

metabolites, several metabolites were either misidentified as they are not endogenous or are 

unlikely to be in these cells (e.g. proline betaine). However, such an approach – especially if 

combined with chemical similarity network – offers one way forward to improve the 

percentage of accurately identified metabolites.

Metabolomics remains a field with both substantial technical challenges (most critically, the 

data analysis bottleneck of accurate metabolite identification) as well as bioinformatics 

challenges. To begin with, metabolomics has yet to standardize and optimize sample 

preparation techniques (washing, quenching, protein separation) to minimize the bias 

introduced by the methodology chosen. As was the case with transcriptomics, there needs to 

be a substantial investment in the necessary tools to allow the improvement of analytical and 

data processing methods, and the time-consuming but necessary task of curating databases, 

pathways, and annotations. Here, we show that using a data analysis approach based 

exclusively on pathway annotations will at best miss much that is of interest and at worst 
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will produce perturbed pathways that are statistically significant yet uninformative for the 

biological sample at hand (e.g. methane metabolism). Any pathway large enough to achieve 

statistical significance with ORA in an untargeted approach is equally likely to be a pathway 

so broad that it is uninformative. While both QEA and PA seem like they would offer an 

improvement as they are taking into consideration prior knowledge about the pathways 

(QEA) or pathway topology (PA), the noise intrinsic to an untargeted approach is at least as 

likely to produce artifacts as it is to produce a meaningful result, since both methodologies 

can use as few as one metabolite on any given pathway to achieve statistical significance. 

Given the intrinsic inter-relatedness of metabolic pathways, many metabolites appear on 

multiple pathways – e.g. methionine appears on 5 pathways in KEGG, 17 on HumanCyc – 

the likelihood of a misleading positive hit increases, and the experiments will then give the 

appearance of profound problems in reproducibility.

On the other hand, a targeted approach, by narrowing its focus and minimizing (but not 

eliminating) misidentifications, renders the likelihood of a spurious pathway much smaller, 

but the limited number of metabolites also makes statistical significance harder to achieve. 

Furthermore, the lack of annotations for several metabolites entails that such an approach 

will miss much that is of interest, and not necessarily provide the most useful information 

about any given perturbation.

A network based approach to data analysis – and specifically, one that exploits not just 

database reactions but text-mining as well – offers a chance to “connect the dots” (in this 

case, several acyl-carnitine derivatives) that would otherwise neither be considered 

statistically significant on their own (as each carnitine derivative was only modestly 

changed) nor be identified via ORA, QEA, or PA. Moreover, a network approach respects 

the intrinsic interconnectedness of the metabolites; instead of the statistical problems 

associated with analyzing pathways with several metabolites (e.g. amino acids and common 

energy metabolites) appearing in several different pathways, a metabolite can be seen in the 

context of its connectivity to the broader map.

Metabolomics bears considerable promise for toxicology to assess the actual phenotypical 

changes in a reasonably fast and affordable manner with chemical-analytical tools of a high 

level of standardization (Bouhifd et al., 2013; Ramirez et al., 2014). The challenge arises 

when we want to move from signatures of altered metabolites to underlying adverse 

outcome pathways or pathways of toxicity, which at the same time promise to link to the 

respective mode of action and separate thereby the signal from the noise. This is an 

indispensible step moving to a systems toxicology approach modeling the perturbations of 

the organism by a toxicant (Hartung et al., 2012). Nonetheless, a key message is that 

metabolomics experiments in some respects resemble the famous blind men trying to 

independently ascertain the nature of an elephant – any one experiment is going to be 

limited by the technical biases of the platform chosen, the noise intrinsic to the biological 

system and the data analysis, and the limitations of existing databases to interpret the data – 

both to identify metabolites and to identify perturbed pathways. Any one of our experiments 

taken independently would have led to at the very least a limited understanding of the 

biology, and at worst an artifact published as a striking new finding. As is true for all – 

omics technologies, but especially for metabolomics, both caution regarding conclusions and 
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confirmation of hypotheses are of critical importance. Finally, for metabolomics to offer 

sufficient reliability to help illuminate Pathways of Toxicity, it will require climbing the 

steep hill that once faced transcriptomics: a community-wide commitment to trouble-

shooting experimental protocols, improving and standardizing data processing, and slowly 

boot-strapping our way from the known pathways to a truly global understanding of the 

cellular metabolic network.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Untargeted Metabolomics analyzed by Quantitative Enrichment Analysis from 24 hour 
1nM estradiol-treated MCF-7 cells vs. control in EXP1 and EXP2
After metabolite identification, Metaboanalyst was used for Quantitative Enrichment 

Analysis. Using a Holmes adjusted p-value of .05, there were more pathways unique to each 

experiment than in common when QEA was used to analyze the data, despite being identical 

experiments.
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Figure 2. Untargeted metabolomics analyzed by Pathway Analysis of 24 hour 1nM estradiol-
treated MCF-7 cells vs. control in EXP1 and EXP2
After metabolite identification, Metaboanalyst was used for Pathway Analysis. Using a 

Holm-adjusted p-value of 0.05, only 5 pathways were common to both experiments while 

another 18 pathways were present in only one experiment, 6 in EXP1 and 12 in EXP2 using 

pathway impact analysis. Only one pathway was similar in both experiments using 

Quantitative Enrichment Analysis and Pathway Analysis.
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Figure 3. Dihydoxyacetone subnetwork, for untargeted metabolomics analyzed by Pathway 
Analysis of 24 hour 1nM estradiol-treated MCF-7 cells (A) EXP1 and (B) EXP2
Dihydroxyacetone and all linked metabolites. While dihyxdroxyacetone was annotated to 

the methane pathway, a network analysis connected it to alanine and pyruvic acid in both 

experiments.
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Figure 4. Metabolic network, plotted with Circular Neighborhood Connectivity layout, of 
targeted metabolomics of 24 hour 1nM estradiol-treated MCF-7 cells
Targeted metabolomicss was carried out at Cornell university. All metabolites statistically 

significantly different with a p-value less than .01 were used to create a network in STITCH 

Version 4 with a medium stringency of .40 and no additional proteins. All unconnected 

metabolites were discarded. The network was plotted in Cystoscape using Neighborhood 

Connectivity map. Node color = absolute value of the difference between the fold change of 

0 vs 24 h with estrogen and without estrogen (i.e. if a metabolite increased 2.5-fold with 

estrogen from 0 to 24 hours, and 1.5 without, Absolute Fold Change would equal to 1, 

darker is equivalent to a higher change); node size is equivalent to “degree” (the number of 

connected metabolites).
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Figure 5. Carnitine subnetwork cluster in targeted metabolomics of 24 hour 1nM estradiol-
treated MCF-7 cells
Carnitine and carnitine derivatives were linked in the network, but were not connected via 

pathway databases but instead via text-mining (using simple PubMed co-ocurrence); only 

propionyl-L-carnitine was connected to carnitine via known reactions in the pathway 

databases. In addition to the carnitine derivatives, carnitine was a “hub” in the network and 

connected to many other metabolites (names not shown).
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Figure 6. Reproducibility of fold-changes of 20 metabolites in three experiments using targeted 
metabolomics of 20 metabolites following 1nM estradiol treatment for 24h of MCF-7 cells
The three experiments with targeted metabolomics shown in Figure 6 analyzed first at 

Cornell and then restricted to 20 of the significant metabolites in Johns Hopkins are shown 

with regard to fold-change in metabolite.

Maertens et al. Page 23

Arch Toxicol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maertens et al. Page 24

Ta
b

le
 1

U
nt

ar
ge

te
d 

m
et

ab
ol

om
ic

s 
an

al
yz

ed
 b

y 
O

ve
r-

R
ep

re
se

nt
at

io
n 

A
na

ly
si

s 
fr

om
 2

4 
ho

ur
 1

nM
 e

st
ra

di
ol

-t
re

at
ed

 M
C

F-
7 

vs
. c

on
tr

ol
 in

 E
X

P1
 a

nd
 E

X
P2

To
ta

l M
et

ab
ol

it
es

 o
n 

P
at

hw
ay

E
xp

ec
te

d 
M

et
ab

ol
it

es
A

ct
ua

l M
et

ab
ol

it
es

R
aw

 p
H

ol
m

 p
F

D
R

P
R

O
T

E
IN

 B
IO

SY
N

T
H

E
SI

S
19

1.
24

9
6.

31
E

-0
7

5.
05

E
-0

5
5.

05
E

-0
5

A
M

M
O

N
IA

 R
E

C
Y

C
L

IN
G

18
1.

18
5

0.
00

44
4

0.
35

1
0.

17
8

U
R

E
A

 C
Y

C
L

E
20

1.
31

5
0.

00
72

7
0.

56
7

0.
19

4

A
ft

er
 m

et
ab

ol
ite

 id
en

tif
ic

at
io

n,
 M

et
ab

oa
na

ly
st

 w
as

 u
se

d 
fo

r 
O

ve
r-

R
ep

re
se

nt
at

io
n 

A
na

ly
si

s.
 O

nl
y 

pr
ot

ei
n 

bi
os

yn
th

es
is

 w
as

 id
en

tif
ie

d 
as

 a
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt
 p

at
hw

ay
 a

ft
er

 c
or

re
ct

io
n 

fo
r 

m
ul

tip
le

 
hy

po
th

es
is

 te
st

in
g,

 li
ke

ly
 r

ef
le

ct
in

g 
th

e 
la

rg
e 

nu
m

be
r 

of
 a

m
in

o 
ac

id
s,

 a
lth

ou
gh

 th
e 

am
in

o 
ac

id
s 

ha
d 

re
la

tiv
el

y 
m

od
es

t f
ol

d-
ch

an
ge

.

Arch Toxicol. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maertens et al. Page 25

Table 2

Pathways identified by Quantitative Enrichment Analysis of untargeted metabolomics of 24 hour 1nM 

estradiol-treated MCF-7 cells vs. control in EXP1 and EXP2

Pathways unique to EXP1 Pathways unique to EXP2 Pathways in Common

Beta oxidation of very long chain fatty acids Betaine metabolism Cysteine metabolism

Fructose and mannose degradation Biotin metabolism Folate and pterine biosynthesis

Glutathione metabolism Catecholamine biosynthesis Methionine metabolism

Glycerolipid metabolism Phenylalanine and tyrosine metabolism Sphingolipid metabolism

Glycine, serine and threonine metabolism Propanoate metabolism

Glycolysis Protein biosynthesis

Tyrosine metabolism

Valine, leucine and isoleucine degradation
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Table 3

Pathways identified by Pathway Analysis of untargeted metabolomics of 24 hour 1nM estradiol-treated 

MCF-7 cells vs. control in EXP1 and EXP2

Pathways unique to EXP1 Pathways unique to EXP2 Pathways in Common

Pentose phosphate pathway Biotin metabolism Methane metabolism

Folate biosynthesis Propanoate metabolism Sphingolipid metabolism

N-Glycan biosynthesis Valine, leucine and isoleucine degradation Glycerolipid metabolism

Cysteine and methionine metabolism Valine, leucine and isoleucine biosynthesis Sulfur metabolism

Tryptophan metabolism Ubiquinone and other terpenoid- quinone biosynthesis Arginine and proline metabolism

Glutathione metabolism Tyrosine metabolism

Thiamine metabolism

Phenylalanine metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis

Nitrogen metabolism

Ascorbate and aldarate metabolism

Aminoacyl-tRNA biosynthesis

Pathway Analysis found only three common five common pathways between the two experiments; despite being restricted to human pathways, the 
top pathway identified, methane metabolism, is incorrect.
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