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Abstract

Motivation: The identification of ligand-binding sites from a protein structure facilitates computa-

tional drug design and optimization, and protein function assignment. We introduce AutoSite: an

efficient software tool for identifying ligand-binding sites and predicting pseudo ligand correspond-

ing to each binding site identified. Binding sites are reported as clusters of 3D points called fills in

which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these

fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-

bond forming ligand atoms.

Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other

leading methods, and produces fills that better matches the ligand shape and properties, than the

fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demon-

strate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms,

and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the

receptor, and predict 81.2% of water molecules mediating interactions between ligand and recep-

tor. Finally, we illustrate potential uses of the predicted feature points in the context of lead opti-

mization in drug discovery projects.

Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html

Contact: sanner@scripps.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are involved in a wide variety of biological processes such as

signalling pathways and enzymatic reactions. While structural gen-

omics projects have revealed structures of a large number of proteins,

most of them lack reliable information about their biochemical func-

tions (Mills et al., 2015). The identification and characterization of

protein-binding sites can help decipher the function of proteins of un-

known function. The interactions made by protein with ligands are

often exploited in the design of small molecules to inhibit pathogenic,

or overexpressed proteins involved in a biological process. Binding

site characterization has various potential applications including: fil-

tering databases of ligands, lead compound optimization, template

definition for ligand search and automated docking.

Methods for identifying the locations where ligand molecules are

likely to bind a receptor molecule of known 3D structure can be

classified into three broad categories: (i) methods analyzing evolu-

tionary information (Brylinski and Skolnick, 2008; Stark et al.,

2004), which exploit the idea that important binding site residues
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are conserved for functional reasons; (ii) geometry-based methods

(Dundas et al., 2006; Hendlich et al., 1997) which identify the

clefts/cavities on the protein surface according to the size and depth

of the pockets; and (iii) energy-based methods (Halgren, 2009;

Harris et al., 2008; Hernandez et al., 2009; Laurie and Jackson,

2005), which rely on the potential generated by probe atoms or

chemical moieties to determine ligand-binding sites. Surfnet

(Laskowski, 1995) identifies pocket regions in proteins by fitting

spheres in the spaces between protein atoms resulting in groups of

interpenetrating spheres that correspond to the protein-binding sites.

Ligsite (Hendlich et al., 1997) places the protein in a Cartesian grid

and scans along the x, y, and z axes and the cube’s diagonals for

solvent accessible areas that are enclosed by protein atoms on both

sides. PocketFinder (An et al., 2004) uses van der Waals affinity

map computed with a carbon probe of radius 1.7Å. The regions

with larger cumulative values are identified and contoured with a

threshold to identify binding sites. Concavity (Capra et al., 2009)

provides its own implementation of the LigSite, Surfnet, and

Pocketfinder algorithms and combines them with evolutionary se-

quence conservation data to improve the accuracy of binding site

prediction. Concavity’s implementations of these algorithms when

evolutionary information is not included are named LigSiteþ,

Surfnetþ and Pocketfinderþ. These programs report the binding

sites as a collection of 3D points selected from a regular 3D grid.

Binding site characterization methods analyze an identified binding

site to provide more detailed information about the physicochemical

properties of potential ligands. Several review papers (Ghersi and

Sanchez, 2011; Henrich et al., 2010; Perot et al., 2010) provide a de-

tailed analysis of computational approaches for identifying and

characterizing protein-binding sites. These methods often character-

ize binding sites based on the amino acid composition of the recep-

tor around the cavity, and properties computed at the binding site

such as solvation, hydrophobicity, and electrostatics. A common ap-

proach to characterize the binding site is by generating affinity

grids(Goodford, 1985; Huey et al., 2007) using different probe

atoms at the binding site—a concept exploited by energy-based

approaches in identifying binding sites, and analysing the binding

site by 1) docking fragments (Jain, 2003) 2) condensing the inter-

actions into discrete pharmacophore points (Baroni et al., 2007;

Halgren, 2009) or 3) applying geometric rules (Lower et al., 2011;

Lower and Proschak, 2011). The characterization heavily relies on

the binding site information and hence these techniques are often

combined with custom or existing binding site identification algo-

rithms with or without emphasis on the shape of the ligand-binding

region. The obtained pharmacophore points are used to compare

and annotate the function of proteins, or used in virtual screening

experiments for drug design. AutoLigand (Harris et al., 2008) is a

software program that places emphasis on chemically detailed lig-

and shape prediction when identifying the ligand-binding sites. It

works on the hypothesis that protein-binding sites have evolved to

create a region of maximal affinity for the given size and shape of a

binding ligand. It identifies a contiguous region of maximal-binding

affinity by growing a cluster of contiguous, high-energy points from

on a grid of potential values obtained by combining affinity maps

from multiple atom-types. The resulting cluster of grid points yields

a prediction of ligand shape and each fill point of the predicted bind-

ing sites is associated with an AutoDock atom type. Although the

above described approaches attempts to characterize the binding site

to provide information about governing interactions between pro-

tein and ligand at the binding site, there is no available study to the

best of our knowledge that assess their quality of prediction with

existing ligand(s) that binds to the respective binding site.

Here, we present AutoSite, a new energy-based method for iden-

tifying ligand-binding sites and predicting potential pseudo-ligand in

each of the predicted binding site of a protein structure. Contrary to

AutoLigand, AutoSite filters out low affinity points from affinity

maps computed with hydrophobic (carbon) and hydrophilic (oxygen,

hydrogen) atomtypes to select high affinity points, merges the selected

points, and predicts feature points corresponding to potential ligand

atoms by applying knowledge-based and geometric rules. We show

that AutoSite performs equally to or slightly better than the state-of-

the-art energy- and geometry-based binding site identification meth-

ods. We further demonstrate that AutoSite outperforms AutoLigand

in the accuracy of labeling fill points as hydrophobic, hydrogen bond

donor/acceptor atoms and in the coverage of ligand atoms. Finally,

we introduce putative ligand atomic centres called feature points

derived from the AutoSite fill points. We show that for the Astex

Diverse Set, these feature points correctly identify 79.3% of hydro-

phobic ligand atoms as well as 81.4% and 62.9% of the ligand hydro-

gen acceptor and donor hydrogen atoms that interact with the

receptor, and predict 81.2% of water molecules that interact both

with ligand and receptor. In addition, we illustrate potential uses of

the predicted feature points in the context of drug discovery projects.

2 Methods

AutoSite is an energy-based method for identifying and characteriz-

ing ligand-binding pockets on receptors and deriving feature points

corresponding to putative ligand atoms. It relies on potentials gener-

ated by receptor atoms on grid points to identify clusters corres-

ponding to potential binding sites, and geometric measures for

ranking these binding sites. AutoSite uses AutoDock (Morris et al.,

2009) affinity maps computed using AutoGrid4 (Huey et al., 2007)

for carbon (AutoDock atom type C, hydrophobic), oxygen

(AutoDock atom type OA, hydrogen bond acceptor) and hydrogen

(AutoDock atom type HD, hydrogen bond donor) atom types to

identify binding sites. These maps are regularly spaced grids where

each grid point yields the sum of the pairwise interaction energies

between a probe-atom of a given type with all receptor atoms. The

maps include atom-specific affinities and do not include electro-

statics and charge-based desolvation. AutoSite computes maps cov-

ering the entire receptor, and selects high affinity points from each

map based on probe-specific affinity cutoffs. It then merges the three

sets of high affinity points into a composite map by selecting the

minimum value at each grid position (Fig. 1) . The selected grid

points are then clustered to define potential binding sites.

Affinity cutoffs: The AutoSite algorithm relies on affinity cut-off

values used to identify high affinity grid points. The cutoff value of

�0.3 kcal/mol for the carbon affinity map has been used by us

(Ravindranath et al., 2015) and others (Ghersi and Sanchez, 2009) as

it selects grid points covering ligands atoms. The donor (HD) and ac-

ceptor cutoffs (OA), �0.66 kcal/mol and �0.5 kcal/mol respectively,

Fig. 1. High affinity points in the hydrophobic affinity map (C), and hydrogen

bond forming affinity maps (acceptor – OA; donor – HD) are selected, com-

bined and clustered to yield putative ligand binding sites (Color version of

this figure is available at Bioinformatics online.)
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were obtained by analyzing affinity maps computed for the 189

receptor-ligand complexes from the AutoDock calibration dataset

(Huey et al., 2007) as follows. First, hydrogen (HD) and oxygen (OA)

affinity maps were computed using AutoGrid4. The maps were sized

to cover the entire receptor and computed using a grid spacing of 1Å.

Next, hydrogen donor atoms (HD) and hydrogen acceptor atoms

(OA-oxygen, SA-sulphur, and NA-nitrogen) contributing to the solv-

ent excluded surface computed using MSMS (Sanner et al., 1996)

were identified. For each of solvent-accessible hydrogen-bond capable

receptor atom, the best affinity grid point within 2.5Å of the atom

was recorded in the partner affinity map (i.e. the OA map for hydro-

gen donor atoms and the HD map for hydrogen acceptor atoms)

yielding a distribution of affinity values in the vicinity of surface re-

ceptor donor and acceptor atoms. The averages of these two distribu-

tions are �0.66kcal/mol for the OA grid points in the vicinity of a

receptor hydrogen donor atom, and �0.50 kcal/mol for the HD grids

points in the vicinity of a receptor hydrogen acceptor OA atom. The

vdW term of the AutoDock energy function used by AutoGrid to

compute affinity maps for non-hydrogen ligand atoms provides an

average of about �0.3 to �0.5 kcal/mol. For hydrogen bonding atoms

the value is approximately �0.6 kcal/mol for a single hydrogen bond

and approximately twice of �0.6 kcal/mol for oxygen atoms that ac-

cept two hydrogen bonds (Huey et al., 2007). The values can be any-

where less than or equal to the reported value on a grid. Thus the

considered cutoff for hydrophobic (�0.3 kcal/mol), hydrogen ac-

ceptor (�0.66 kcal/mol) and donor (�0.50kcal/mol) respects the

magnitude of energy terms that corresponds to the hydrophobic and

hydrogen-bonding interactions.

The composite map is obtained by merging the highest affinity

grid points from the three maps into a single set of grid points. If a

grid point has an identical high affinity in more than one map, the

atom type assignment follows the order: C, OA, HD. The rationale

behind this order is that hydrophobic groups govern the shape of the

ligand and hence it is given the highest priority; followed by hydro-

gen acceptor that are specific and directional and hence expected to

be highly accurate, and finally the donor whose contribution is es-

sential for hydrogen bonding but becomes uncertain on designed lig-

ands due to their physicochemical properties.

Density-based clustering: High affinity grid points are clustered

to partition the points into contiguous sets, each set corresponding

to a potential binding site. This clustering is performed using a

modified implementation of the DBSCAN algorithm (Ester et al.,

1996). DBSCAN uses a local density cutoff value to grow clusters,

and is known for its ability to handle noise (i.e. isolated points).

AutoSite exploits the fact that the points to be clustered are located

on a grid to replace the DBSCAN local density calculation by a sim-

ple count of neighbouring grid points. A given grid point will be

added to a growing cluster if it has at least N neighbouring grid

points in the set of high affinity grid points. Intuitively, N controls

the minimum width of channels connecting a collection of compact

points. Lower values of N allow cluster to have more protrusions

and grow larger, while larger values of N generate more compact

clusters. The clustering of a set P of high affinity grid points, for a

minimum number of neighbours N is performed as follows. A point

S is selected randomly from P as a seed point. If S has at least N

neighbours in the set, S and all its neighbours are added to the clus-

ter seeded by S. S is marked as treated and removed from the set P,

and the seed S and its neighbours that do not yet belong to a cluster

are added to the cluster. The test for number of neighbours is per-

formed for every un-treated point in the cluster, potentially adding

more points to the cluster, until all points in the cluster have been

treated. After a cluster is completed, a new point S is selected from P

as a seed for a new cluster, until P is empty. On a cubic grid, a point

has a maximum of 26 neighbours. We identified 14 as the best value

for the minimum number of neighbours N by maximizing the

Jaccard/Tanimoto coefficient (Jaccard, 1901) between the 189 lig-

ands of the AutoDock calibration set and fills obtained for values of

N ranging from 12 to 17. The Jaccard coefficient is used to compare

the similarity of two shapes as the ratio of the intersection over the

union of the two shapes. As the fills are clusters of high affinity

points located on a 3D grid, we discretized the ligand atomic-

spheres onto the same grid using atomic radii from the AutoDock4

parameters set to obtain ligand shape as a set of grid points. The

Jaccard coefficient is calculated as the ratio of the total of intersect-

ing grid points over the total of union of intersecting and non-

intersecting points from discretized ligand and reported fill.

Pocket ranking: The fills identified by clustering are ranked using

a geometry-based score. Like most site-finding software programs,

AutoSite computes a variety of numerical descriptors for each fill,

including: affinity, number of points, efficiency (i.e. affinity/vol-

ume), and radius of gyration. In addition, we compute fill buriedness

by dividing the fill’s buried surface area by the fill’s total surface

area. This value ranges from 1.0 for a fill entirely buried by the re-

ceptor (i.e. an enclosed cavity) to 0.0 for a fill entirely exposed to

solvent. The buriedness is calculated numerically in AutoSite as fol-

lows. First, we identify the set of grid points covered by ligand

atomic spheres augmented by 1.0Å. Next the grid points covered by

the ligand atomic spheres with their original radii are removed from

this set, yielding a shell of grid points around the ligand. The num-

ber of grid points in this shell, Nt is used as a numerical approxima-

tion of the fill’s total surface area. Next, the receptor atomic

spheres, with a radius augmented by 1.0, are used to tag as “buried”

grid points in the surface shell. The buriedness is calculated as the

ratio of the number of buried surface shell grid points over Nt. We

rank the fills using an empirical composite score in which the fill

size (i.e. number of points) is multiplied by the square of its buried-

ness and divided by the radius of gyration. This metric was designed

to favour fills that have large volumes with compact buried cavities.

AutoSite’s ability to identify the binding site was evaluated with

the Astex Diverse Set (Hartshorn et al., 2007). This dataset contains

85 well-curated proteins-ligand complexes with ligands that have

drug-like properties. This set has no overlap with the AutoDock’s

calibration dataset and thus the predictions have no training bias.

The proteins from the dataset were converted to the AutoDock’s

PDBQT format and gasteiger charges were assigned. AutoSite’s

performance was compared with LigSiteþ, Surfnetþ and

Pocketfinderþ. These programs were run with their default param-

eters as documented by Concavity and the resulting predictions were

ranked by volume which is the default ranking metric for these three

programs. The success rates of all programs were assessed with

Jaccard coefficient at cutoffs 0.0, 0.1, 0.25 and 0.5.

Binding site characterization: While LigSiteþ, Surfnetþ and

Pocketfinderþ report pockets as a collection of un-typed 3D points,

AutoSite fill points are labelled as hydrophobic, hydrogen bond

donor and acceptor points. AutoLigand and FLAP (Baroni et al.,

2007) are other software programs that predict typed fills. We were

unable to obtain a license to test FLAP, hence we evaluated the merit

of our method by comparing the typed fills predicted by AutoSite

with the ones predicted by AutoLigand on the Astex Diverse Set.

The fills were generated for both programs using the same carbon,

oxygen and hydrogen affinity maps. These maps were calculated

using AutoGrid4 as cubic grids of 27 Å on a side (including a pad-

ding of 2Å) and centred on the ligand, with a grid spacing of 1Å. By

default, AutoLigand initiates fill starting from 3D points randomly
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picked on the grid. As we are interested in comparing fills that over-

lap with the ligand, we ran AutoLigand using the ligand geometric

centre as the starting point for the fill. We ran the program for num-

bers of fill points ranging from 10 to 1500 in increments of 10. The

fill with the best energy-per-volume was picked as the AutoLigand

prediction. The AutoSite program was executed with the default

parameters (i.e. affinity cutoffs of -0.3 kcal/mol for C, �0.66 kcal/

mol for O and �0.5 kcal/mol for H, and 14 minimum number of

neighbours for clustering) and the predicted fill closest to the ligand

geometric centre was considered for comparison.

Feature Points
AutoSite converts the fills points into putative hydrophobic, or

hydrogen-bond forming ligand atoms. For hydrophobic fill points

we use k-means clustering for dividing the fill points into compact

clusters of fill points representing a pre-defined number of carbon

atoms. A survey of the ligands of the Astex Diverse Set revealed that

on average carbon atoms cover 14.3 grid points for grids of spacing

1Å. This average was found to be highly stable when the grid was

translated by small amounts in random directions (data not shown).

We cluster the hydrophobic fill points to form Nhp/14 clusters,

where Nhp is the number of hydrophobic fill points. The centres of

the resulting clusters are used as atomic centres for putative hydro-

phobic atoms. Putative hydrogen bond donors (HD) and hydrogen-

bond acceptor (OA) ligand atoms are identified as follows. Every fill

point of type HD is associated with all receptor OA located within

2.5 Å and every fill point of type OA is associated with all receptor

HD atoms located within 2.5 Å. Next, for each of these receptor

atoms the associated fill point with the best affinity (i.e. putative

atom centre) is selected as a feature point. The result of this process

is a set of putative ligand atoms. Figure 2 illustrates this process

using an actual fill generated for the streptavidin receptor.

3 Results

The binding site identification results summarized in Table 1 show

that AutoSite performs comparably or better than the other four

programs. With fill overlap ratio (Jaccard coefficient)>0.1 as the

cutoff, AutoSite identified 58 binding sites in the top prediction cor-

rectly out of 85 compared to 54 for LigSiteþ, 43 for Surfnetþ, 44

for PocketFinderþ and 56 for SiteHound. Considering the top three

binding site predictions for each system, AutoSite identified 76 bind-

ing sites compared to 74 for LigSiteþ, 61 for Surfnetþ, 62 for

Pocketfinderþ and 72 for SiteHound.

The programs were tested using different Jaccard coefficient

thresholds, and AutoSite showed to generate more fills with Jaccard

Coefficients greater than 0.0, 0.1 and 0.25 than other programs,

indicating better coverage of the ligand both in top prediction as

well as when considering Top 3 predictions. SiteHound was found

to do better than LigSiteþ in Top 1 at both threshold>0.1

and>0.25. LigSiteþ and Surfnetþ found 6 and 8 systems in Top1,

and 10 and 11 systems in Top3 out of 85 respectively, with Jaccard

coefficient>0.5 compared to 3 by AutoSite both in Top1 and Top3

predictions. Visual analysis of AutoSite predicted fills corresponding

to the 12 systems that did not get>0.5 Jaccard coefficient, showed

that they overlap well with the ligand except in 2 cases (1l7f – 0.17;

1vcj – 0.21), where AutoSite predicts only part of the ligand. The

consistency demonstrated by AutoSite in success rate shows that the

fills produced by AutoSite have better overlap with the ligand in

addition to identifying the correct binding sites.

The comparison of the binding site characterization performed

by AutoLigand and AutoSite is shown in Figure 3. Figure 3A plots

the percentage of systems as a function of the Jaccard coefficient of

the fills produced by both programs. We observe a substantial in-

crease in the number of fills with better Jaccard coefficients for

AutoSite, with 64.7% of the fills having a Jaccard coefficient>0.3

compared to 23.5% for AutoLigand fills. The average Jaccard coef-

ficient for AutoSite and AutoLigand were found to be 0.34 and

0.21, respectively. The relatively low values of the Jaccard coeffi-

cients can be explained by the fact that ligands do not always exploit

the entire binding pocket, hence, the predicted fills tend to extend

beyond the ligand as discussed below in the discussion where the

predicted fill cover regions corresponding to different known lig-

ands. Small Jaccard coefficients can arise when the overlap between

the fill and the ligand is small or when the fill extends far beyond the

ligand, or both. To investigate the results further, we analyzed the

fill sizes and the overlap with the ligands separately. It should be

noted that while the Jaccard coefficient is computed using a ligand

discretized on a grid identical to the affinity maps, the percentage

of ligand overlap is computed with the ligand atom coordinates.

Figure 3B shows the volume of the fills sorted by decreasing size of

the AutoSite fills. For 77 out of 85 ligands (90%), AutoSite fills are

Fig. 2. Fill points are segregated into hydrophobic points (C-green), and

hydrogen bond acceptor (OA-red) and donor hydrogen points (HD-yellow). K-

means clustering is performed on the C points and the resulting cluster cen-

troids are kept as the hydrophobic feature points. Feature point extraction for

O and H is performed using the receptor surface hydrogen-bonding atoms

(Color version of this figure is available at Bioinformatics online.)

Table 1. Binding site identification performance comparison between LigSiteþ, Surfnetþ, Pocketfinderþ, SiteHound and AutoSite

Top1 Top3

Jaccard coefficient >0.0 >0.1 >0.25 >0.5 >0.0 >0.1 >0.25 >0.5

LigSiteþ 57 54 38 6 78 74 56 10

Pocketfinderþ 52 44 29 1 71 62 41 2

Surfnetþ 49 43 36 8 69 61 49 11

SiteHound 56 56 41 2 72 72 52 2

AutoSite 60 58 45 3 78 76 59 3

The first column shows number of systems (out of 85) for which the programs correctly identify the ligand-binding site as the top prediction. The second

column shows the number when top 3 predictions are considered.
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larger than the AutoLigand fills with an average of 150 more points

per fill as indicated by the distribution of fill size differences in the

inset. To analyze the overlap of the fill with the ligand, we computed

the distance between every ligand atom and the closest fill point.

Figure 3C shows that 91.5% of ligand atoms are within 2.0 Å of a

fill point, compared to 72.4% for AutoLigand. We further segre-

gated ligand atoms into hydrophobic (C, A, N, S, P), hydrogen ac-

ceptors (OA, NA, SA) and hydrogen donor (HD) atoms and

computed the distance of each ligand atom to the closest fill point of

the appropriate type. The ligands have 90.8% hydrophobic, 68.6%

hydrogen acceptors, and 65.7% for hydrogen donor atoms within 2

Å of an AutoSite fill point of the proper type, compared to the

71.7%, 44.7% and 20.1% for AutoLigand fills, respectively. These

results indicate that AutoSite fills, while larger, have a better overlap

with the ligand and as such offer a more accurate depiction of the

ligand as predicted from the receptor structure.

Beyond the labeling of fill points in the predicted binding sites,

AutoSite predicts the number and positions of potential ligand

atoms interacting with the receptor in this binding site. Examples of

such predicted feature points from fill points are shown in Figure 4

for PDB ids 1stp and 1hps. Fig. 4A and 4C shows the starting fill

points for streptavidin and HIV-1 protease. Figure 4B shows that

the predicted hydrogen bond acceptor feature points (red spheres)

overlap with the oxygen and sulphur atoms, hydrogen bond donor

feature points (yellow spheres) are in close proximity to nitrogen

atoms that are known to be protonated in the bound form, and the

hydrophobic feature points overlay well with the carbon atoms. Our

method performs particularly well on this ligand, as it is highly po-

tent with a binding affinity of 40 fM. Figure 4D shows another ex-

ample of feature points for the site predicted for the binding site of

an HIV-1 protease inhibitor (PDB id 1hps). The cross-shaped pep-

tide geometry found in many HIV protease inhibitors and most

hydrogen bonding ligand atoms are identified by the feature points.

In particular the strong hydrogen bond acceptor preference identi-

fied at the centre of the fill is a common interaction observed in

HIV-1 proteases. This position is known to accommodate a water

molecule, which is displaced in cyclic urea inhibitors by an oxygen

atom (Harris et al., 2008). The phenyl group in the ligand that is not

covered by the feature points doesn’t show any strong interaction

with the receptor in the crystal structure. The feature points pre-

dicted for 20 other protease structures yielded the cross-shaped

geometry as described above and tends to identify the key inter-

actions (Supplementary information SFig.1). Figure 4 shows ligands

that have excellent overlap with the predicted fills. Hence we see re-

markably good agreement between the number of atoms in ligands

and the predicted number of feature points. In Table 2, we report

the correlation between number of ligand atoms and the number of

predicted feature points for the Astex diverse dataset at increasing

cutoff values of the Jaccard Coefficient. The correlation increases

with the increase in the overlap ratio, and with the cutoff of the

average Jaccard coefficient obtained by AutoSite (0.34) we get a cor-

relation coefficient of 0.74. The analysis includes ligand hydrogen

atoms, and it is noteworthy that the Astex diverse set contains

manually curated ligands for corresponding proteins.

In order to quantify the ability of AutoSite’s predicted feature

points to match with actual ligand atoms we computed the distance

from each ligand atom to the closest matching feature point. Table 3

shows that over 79% of all hydrophobic ligand atoms have a corres-

ponding hydrophobic feature point within 2Å. The percentages for

all ligand hydrogen-bond forming atoms are 41% for acceptor

atoms and 46% for donor hydrogen atoms respectively. Given that

Fig. 3. (A) Percentage of fills as a function of their fill-ligand Jaccard coeffi-

cients. (B) AutoSite and AutoLigand fill sizes comparison for the 85 systems.

The inset plot shows the histogram of the differences in fill sizes. (C)

Percentage of ligand atoms that find a fill point within 1Å, 1.5Å and 2Å. The

‘Unlabeled fill’ row provides the percentage of ligand atoms with a fill point

with any label within the distance cut-offs. The rows below provide the per-

centages when fill labels are considered (Color version of this figure is avail-

able at Bioinformatics online.)

Fig. 4. Predicted cluster and extracted feature points for streptavidin (PDB:

1stp; A, B) and HIV-1 protease (PDB: 1hps; C, D) overlaid with their respective

experimentally determined bound ligand (balls and sticks; carbon - green).

The potential hydrogen acceptor positions are shown as red spheres, hydro-

gen positions are shown in yellow spheres, and the hydrophobic positions

are shown as green spheres (Color version of this figure is available at

Bioinformatics online.)
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the feature points are derived from fill points, which are high affinity

points for the receptor, the method is expected to only predict the

subset of ligand hydrogen bond forming atoms that actually interact

with the receptor. Performing the analysis considering only the lig-

and atoms involved in a hydrogen bond with a receptor atom (i.e.

distance<2.5Å) the percentages of ligand atoms with a fill point

within 2Å of a feature point increase to 81.4% for acceptor atoms

and to 62.9% for donor hydrogen atoms. Although a decrease in the

percentage ligand overlap is expected when extracting representative

feature points from fill points, the result provides scope for further

optimization to the extraction procedure. In this analysis, we considered

the AutoDock4 atom types (C, A, N, S, P) as hydrophobic, (OA, NA,

SA) as acceptor atoms, and HD as donor atoms. In the Astex Diverse

Set, 72% of ligands atoms are hydrophobic, 15.1% acceptor atoms,

and 10.9% hydrogen bond donor atoms (HD). Another 2% of ligand

atoms are halogen atoms (Cl, Br, F) and were ignored for this analysis.

Predicted hydrogen bonding feature points should also identify

crystallographic water positions. To verify this hypothesis, we pro-

tonated the receptors of the Astex Diverse Set that included water

molecules using What If web server (Vriend, 1990), and selected

water molecules within 2.5Å of the ligand. We found that 38.3% of

the oxygen atoms, 30.8% of the hydrogen atoms of these selected

water molecules found corresponding feature point within 2Å

(Table 4A). When including only water molecules within 2.5Å of

both the receptors and ligand, AutoSite predicts 58% of the oxygen

and 41.3% of the hydrogen atoms of these water molecules

(Table 4A). Since the prediction gets only hydrogen bond inter-

actions between the receptor and atoms that are at a distance of

2.5Å, we further analyzed (Table 4B) the percentage of oxygen

atoms in water molecules that finds either a hydrogen or an oxygen

feature point within 3.5Å (maximum interaction distance between

hydrogen bonding heavy atoms). The result showed that 81.2% per-

centage of the oxygen atoms from the water molecules mediating

interaction between a receptor and ligand, have a feature point

within 3.5Å. Examples in Supplementary information (SFig. 2)

Timing: On a Intel Xeon E5-1620 3.5GHz processor, starting

from 1.0 Å spacing carbon, oxygen and hydrogen maps covering the

entire receptor, AutoSite takes on average 5.7 seconds to compute

all fills with 50 or more points, extract the feature points for all fills,

rank the fills, and write them out to file along with feature points in

the PDB file format. Using AutoGrid4 for computing the carbon,

oxygen and hydrogen maps takes 34.5 seconds on average for the

Astex diverse set receptors. A custom version of AutoGrid that

allows the exclusion of electrostatics and desolvation maps com-

putes these maps in 4.1 seconds on an average. Thus, AutoSite takes

on average less than 10 seconds to compute the maps, identify the

binding sites with 50 or more fill points and obtain the pseudo lig-

and for each of the predicted sites.

4 Discussion

AutoSite identifies binding sites with higher accuracy than other

leading methods. While it only performs marginally better than

LigSiteþ for binding site identification, it produces labelled points

which can further be used to characterize the binding site. In add-

ition, the Astex Diverse Set is a collection of diverse receptors with

geometrically well-defined binding sites, often buried cavities, which

overall favours geometry based methods like LigSiteþ. Similar to

AutoLigand, AutoSite fill points are annotated as hydrophobic,

hydrogen-bond acceptor or donor hydrogen atoms. The comparison

of labelled fills produced by these two programs was performed

using AutoLigand fills seeded at the ligand geometric centre to en-

sure an overlap between the fill and the ligand and the AutoSite fill

with the point closest to the ligand geometric centre. It is note-

worthy that 59 out of the 85 AutoSite fills selected for this analysis

also are the top ranking fills obtained for a grid spanning the entire

receptor. Moreover, 81 of the AutoSite fills selected for this analysis

are the top ranking fills obtained for the smaller 27x27x27Å3 boxes.

AutoSite was shown to outperform AutoLigand by covering more

ligand atoms. The fills identified by AutoSite tend to be larger than

the ligand bound to the receptor. This is because ligands exploit a

subset of the possible interactions with the receptor as exemplified

by Chitinase, which binds the cyclic GLY-PRO fragment (PDB id

1w1p) as well as a natural-product cyclopentapeptide (argadin)

(PDB id 1h0g) and the CI4 inhibitor (PDB id 1o6i). The cyclic GLY-

PRO fragment bound structure was part of the study to understand

the mechanism of inhibition by cyclic dipeptide inhibitors of chiti-

nase, which is involved in chitin degradation(Houston et al., 2004)

and only occupies a small portion of the fill. Argidin binds to the (þ)

sub-sites of the enzymes (Houston et al., 2002) and the CI4 inhibitor

Table 2. Correlation between the number of atoms in crystallo-

graphic ligands and predicted pseudo ligands

Jaccard Coefficient >0.1 >0.2 >0.3 >0.33(avg.) >0.4 >0.5

Correlation Coefficient 0.11 0.21 0.5 0.74 0.88 0.96

Table 4. Water molecules within 2.5Å of the ligand identified as fea-

ture points

A Water molecules

within 2.5Å of ligand

Water molecules within 2.5Å

of ligand and receptor

1.5Å 2.0Å 1.5Å 2.0Å

H acceptor 29.9% 38.3% 45.0% 58.0%

H donor 19.2% 30.8% 26.1% 41.3%

B Water molecules within 2.5Å of ligand and receptor

(oxygen)

1.5Å 2.0Å 2.5Å 3.0Å 3.5Å

H acceptor

or H donor

50.7% 65.2% 68.1% 72.5% 81.2%

A. The first column reports the percentage of oxygen and hydrogen atoms

from water molecules within 1.5Å and 2Å of a predicted feature point of the

appropriate type. The second column shows the percentages when water mol-

ecules mediate interaction between the receptor and the ligand. B. Percentage

of water molecules’ oxygen finding a hydrogen bond acceptor or donor within

cutoffs ranging from 1.5Å to 3.5Å.

Table 3. Ligand coverage by feature points

All ligand atoms Ligand atoms H-bonding

with receptor

1.5Å 2.0Å 1.5Å 2.0Å

Hydrophobic 58.9% 79.3% – –

H acceptor 33.2% 41.1% 73.6% 81.4%

H donor 30.1% 46.4% 30.8% 62.9%

The first column reports the percentage of ligand atoms within 1.5Å and

2Å of a predicted feature point of the appropriate type. The second column

shows the percentages when only ligand atoms interacting with the receptor

are considered.
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prefers the (–) sub-sites of the enzyme (Houston et al., 2004) thus each

inhibitor occupying one half of the fill (Supplementary information

SFig. 3). This illustrates the reason for the fills identified by AutoSite

to be larger than certain ligands. On the other hand, the fill predicted

by AutoLigand only identifies the (–) sub-sites of chitinase. For an-

other class of receptors, we observe that AutoSite generates multiple

smaller adjacent clusters. For example, in PDB id 1hwi - HMG-CoA

reductase with Fluvastatin, the five-membered ring in the ligand acts

as a scaffold, which positions three hydrophobic functional groups

that are increasing this ligand’s potency (Istvan and Deisenhofer,

2001). While fills covering the HMG-like moiety and the hydrophobic

groups are identified, they are disconnected because the five-

membered ring does not interact strongly with the receptor creating a

gap in high affinity points preventing the clustering algorithm from

connecting these fills (Supplementary information SFig. 4).

The feature points predicted by AutoSite for a given binding site

have several potential applications relevant to medicinal chemistry,

some of which we discuss and illustrate below. Feature points pre-

dict crystallographic water molecules, suggesting that they can po-

tentially be used for designing and optimizing drugs that make use

of the water interactions or that replace the water positions for bind-

ing the receptor.

A recent study by Johnson et al. (Johnson et al., 2015) on lead

optimization of inhibitors for MELK (maternal embryonic leucine

zipper kinase) using fragment-based discovery illustrates the poten-

tial use of feature points for lead optimization. The authors opti-

mized a fragment with 160 micromolar affinity using structure

based drug design into a 37 nanomolar inhibitor. We obtained fea-

ture points using AutoSite on the fragment-bound crystal structure

of the receptor (PDB id 4d2w) (Fig. 5A). The predicted putative lig-

and atoms identified the crystallographic water (W1) location, as

well as additional hydrogen bond forming positions. The optimized

nanomolar inhibitor, when superimposed over the AutoSite feature

points (Fig. 5B) occupies two of the predicted hydrogen bond ac-

ceptor spots near nitrogen atoms, leaving one more hydrogen bond

acceptor spot and a few donor spots available. It is interesting to no-

tice that the crystal structure of the nanomolar inhibitor bound pro-

tein (PDB id 4d2v) has a water molecule (W2) interacting with the

ligand nitrogen atom (2.84 Å) as well as a second crystallographic

water molecule (W3) (2.65 Å). Our method predicts a hydrogen ac-

ceptor atom at the first water molecule (W2) location and a donor

hydrogen atom close by the second water molecule (W3) (Fig. 5C),

indicating that predicted feature points could be used to further opti-

mize the ligand.

Feature points could also potentially be used for protein function

annotation. This could be achieved by keeping track of the receptor

amino acids interacting with feature points and comparing them

with the binding site databases.

Automated docking is another area that could benefit from the

feature points produced by AutoSite. Some docking programs such

as SLIDE (Schnecke et al., 1998), DOCK (Allen et al., 2015), and

Surflex (Jain, 2003) place the ligand into the receptor using tem-

plates of interactions. These programs could benefit from using fea-

ture points generated by AutoSite. Programs such as AutoDockFR

(Ravindranath et al., 2015) allow for the explicit representation of

receptor side chains as flexible during docking but require the a-pri-

ori identification of these side chains. Feature points could be used

to select receptor side chains (the ones interacting with the feature

points) to be made flexible. Finally, feature points could be used to

filter large databases of ligands for compounds matching the feature

points.

AutoSite like any energy-based methods will be sensitive to the

translation and orientation of coarse grids. This limitation is attenu-

ated when using smaller grid spacing. Pseudo-ligands derived by

AutoSite for 85 proteins in Astex diverse set, using a grid spacing of

0.375Å on cubic boxes of 26.625Å on a side and centred on the re-

spective ligands shows improvement in the ligand atoms coverage

by feature points (SFig. 5). AutoSite takes on an average 19 seconds

on Astex diverse set when maps are provided. Hence we recommend

smaller grid spacing only when studying pockets of interest.

5 Conclusion

We have introduced AutoSite, a software program to reliably and ef-

ficiently identify ligand-binding sites for the receptors of known 3D

structure, and characterize them by labeling the fill points as hydro-

phobic, or hydrogen bond donors or acceptors, as well as by deriv-

ing a set of putative ligand atomic positions called feature points.

We have demonstrated that this method identifies binding sites com-

parably or better than other popular binding site identification soft-

ware programs. We also demonstrated that the labelled fill points

produced by AutoSite are larger than the ones produced by

AutoLigand and also have a better overlap with the ligand. Finally,

we have shown that the predicted putative ligand atoms capture

around 80% of ligand hydrophobic and hydrogen acceptor atoms

that interact with the receptor and over 60% of ligand hydrogen

donor atoms, and illustrated and discussed applications of feature

points for rational drug design and optimization. The software is

available under the LGPL Open Source license at: http://adfr.

scripps.edu/AutoDockFR/autosite.html.
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Fig. 5. (A) Predicted feature points represented as spheres (carbon – green;
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balls; carbon – purple) overlaid with the fragment and the predicted feature

points for 4d2w. The crystallographic water molecules are shown as small

red spheres. C) Schematic illustration of (B): Receptor (R: atoms - orange)

interactions (arrows) are used to extract the feature points represented as cir-

cles (green - carbon; red - oxygen; yellow- hydrogen). Predicted feature points

capture the ligand atoms (L: atoms - purple) and water molecules (cyan)

(Color version of this figure is available at Bioinformatics online.)
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