
Genome analysis

Genome puzzle master (GPM): an integrated

pipeline for building and editing

pseudomolecules from fragmented sequences

Jianwei Zhang1,2,*, Dave Kudrna2, Ting Mu1, Weiming Li1,

Dario Copetti2,3, Yeisoo Yu2,†, Jose Luis Goicoechea2, Yang Lei1 and

Rod A. Wing2,3,*

1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,
2Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721,

USA and 3International Rice Research Institute, Genetic Resource Center, Los Ba~nos, Laguna, Philippines

*To whom correspondence should be addressed.
†Present address: Phyzen Genomics Institute, Phyzen Inc., Seoul 151-836, South Korea.

Associate Editor: John Hancock

Received on April 7, 2016; revised on June 1, 2016; accepted on June 6, 2016

Abstract

Motivation: Next generation sequencing technologies have revolutionized our ability to rapidly

and affordably generate vast quantities of sequence data. Once generated, raw sequences are

assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and in-

accurate at the whole genome scale, largely due to the inability to integrate additional informative

datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a

semi-automated software tool—Genome Puzzle Master (GPM)—that enables the integration of

additional genomic signposts to edit and build ‘new-gen-assemblies’ that result in high-quality ‘an-

notation-ready’ pseudomolecules.

Results: With GPM, loaded datasets can be connected to each other via their logical relationships

which accomplishes tasks to ‘group,’ ‘merge,’ ‘order and orient’ sequences in a draft assembly.

Manual editing can also be performed with a user-friendly graphical interface. Final pseudomole-

cules reflect a user’s total data package and are available for long-term project management. GPM

is a web-based pipeline and an important part of a Laboratory Information Management System

(LIMS) which can be easily deployed on local servers for any genome research laboratory.

Availability and Implementation: The GPM (with LIMS) package is available at https://github.com/

Jianwei-Zhang/LIMS

Contacts: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Illumina and PacBio SMRT sequencing technologies are the two

most widely accepted sequencing platforms currently used for large

scale genomics-driven data generation. Illumina, representing the

most widely used second-generation sequencing technology, pro-

duces short reads (35–150 base read lengths), that are highly

accurate, with base call outputs that can yield hundreds of millions

of bases from a single lane over several days (depending upon com-

plexity) (Schatz et al., 2010). PacBio produces hundreds of thou-

sands of long-read error-corrected sequences (up to 20 kb average

read lengths) that can be produced in 3–6 h per SMRT cell. Data

generated by either platform can be used independently, or in

VC The Author 2016. Published by Oxford University Press. 3058

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(20), 2016, 3058–3064

doi: 10.1093/bioinformatics/btw370

Advance Access Publication Date: 17 June 2016

Original Paper

https://github.com/Jianwei-Zhang/LIMS
https://github.com/Jianwei-Zhang/LIMS
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw370/-/DC1
Deleted Text: -
Deleted Text: -
Deleted Text: hours
http://www.oxfordjournals.org/

combination, to successfully assemble genomes de novo (Alkan

et al., 2011; Chin et al., 2013; Kajitani et al., 2014). Many assem-

blers have been developed to assemble raw sequence reads into se-

quence contigs (i.e. minimum sequence units for an assembly), such

as SOAPdenovo (Luo et al., 2012), Allpaths (Butler et al., 2008;

MacCallum et al., 2009), HGAP (Chin et al., 2013), or Falcon

(https://github.com/PacificBiosciences/FALCON-integrate). A few

programs or packages (e.g. Bambus, ABACAS, Mauve Aligner,

ALLMAPS, etc.) are also available for scaffolding contigs (Assefa

et al., 2009; Hunt et al., 2014; Pop et al., 2004; Rissman et al.,

2009; Tang et al., 2015). However, software tools that can be used

to inspect/edit NGS sequence assemblies, as well as integrate other

evidence types (i.e. physical and genetics maps) to produce an as-

sembly that more accurately and completely reflects the native struc-

ture of a given genome, are currently lacking.

To analyze, manage and incorporate genome datasets for diverse

sequencing projects, such as pseudomolecule construction for the

maize and several wild Oryza genome sequencing projects (Schnable

et al., 2009; J. Stein et al., submitted for publication; Wei et al.,

2009), we developed a software tool called ‘Genome Puzzle Master’

(GPM). GPM does not require sophisticated bioinformatics skills or

support, and the final products are ready to use in the form of

annotation-ready pseudomolecules. GPM can also facilitate the in-

corporation of additional datasets as new refinements are generated.

Here we make GPM available to researchers who have NGS genome

assemblies and other unlinked genomic datasets, and are struggling to

generate ‘annotation-ready’ or ‘submission-ready’ pseudomolecules.

2 Methods

GPM is a key part of a web-based Laboratory Information

Management System (LIMS) that we developed to manage and ana-

lyze genomic data at different levels from both wet and dry lab ex-

periments. The LIMS is set up in a LAMP environment (Linux

operating system, Apache HTTP Server, MySQL database software

and Perl programing language) and requires additional libraries and

software listed in Supplementary Table S1. We used jQuery (plus

UI), a fast and concise JavaScript library, to build GPM’s highly

interactive web applications.

A database schema was designed which contains one main table

called ‘matrix’ to record most types of data from ‘wet’ or ‘dry’ lab

experiments (Supplementary Table S2), and several extra tables (e.g.

‘link’, ‘alignment’) to store relationship data. Combined with these

tables, we can extensively handle all types of datasets and connect

them logically. In our database, the expansibility is flexible, as we

can either add a new type of ‘container’ in the ‘matrix’ table or cre-

ate another table for new data if needed, depending on the data

type. For example, huge amounts of individual clone information

can potentially cause process servers to slow down while performing

complicated search operations on the ‘matrix’ table; hence, we spe-

cifically created a ‘clone’ table to store this type of data and separ-

ately can run queries on it to avoid concurrent queries on the

‘matrix’ table. To include additional information for certain

existing data types, we extended the ability to store more inform-

ative data by adopting the JavaScript Object Notation (JSON), a

lightweight data-interchange format, in the ‘note’ field of the ‘ma-

trix’ table.

GPM can currently utilize data categorized into different types,

such as sequence contigs/scaffolds, Bacterial Artificial Chromosome

(BAC) clone end-sequences (BESs), and reference genome sequences

(RefSeq) that are the basic input elements for GPM assemblies.

Different data types can be connected to one another via their se-

quence relationships. For example, AGP (a golden path, https://

www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/) informa-

tion can describe the assembly of a larger sequence object (e.g. a

contig, a scaffold, or a chromosome) from smaller objects and list

their relationships. Most importantly, these kinds of relationships

are used to link multiple datasets and to logically integrate genomic

data with accuracy.

To demonstrate a GPM assembly result, here we specifically

defined two terms, ‘assemblyCtg’ for a GPM assembly contig and

‘assemblySeq’ for a sequence component that belongs to an

assemblyCtg. Both data types are stored in the ‘matrix’ table as indi-

vidual containers. In the database, a record of assemblyCtg describes

its constituent members (assemblySeqs) and attributes (e.g. length,

chromosome number and position); and an assemblySeq records the

original sequence and the actual part and status of the component

sequence (e.g. coordinates and orientation) that contributes to its

corresponding assemblyCtg. A complete GPM assembly contains a

set of assemblyCtgs, which are formed by various numbers of

assemblySeqs.

3 Results

3.1 Information-guided assembly
To build pseudomolecules from sequence contigs with reference in-

formation, a GPM ‘assemblyRun’ execution (Fig. 1) can be divided

into 11 optional operations:

1. Assembly initialization. First, to initialize a new assembly,

GPM converts all de novo assembled sequences into

assemblySeqs and each assemblySeq is assigned to a single

assemblyCtg. (Note: This operation can be skipped for an

existing assembly to avoid losing any manual edits.)

2. Seq-to-Seq alignment. Depending on the potential relationship

of all sequence elements, GPM can prepare overlapping align-

ments among all sequences in an assembly by running a ‘Seq-

to-Seq’ pre-calculation with ‘blastn’ (NCBI BLAST 2.2.29þ, E-

value¼1e-200) (Camacho et al., 2008) as the default alignment

engine. Pre-calculation parameters can be customized as

needed. Overlap information between sequence contigs can be

used in later processing steps, e.g. to determine the orientation

of two neighboring sequences.

3. Physical reference (PR)-guided assembly. Based on an existing

physical reference, such as a physical map (PM) or an AGP file,

sequences will be assigned to assemblyCtgs. If an AGP file is

available, object-component information is used to build links

between sequences. If a FingerPrinted Contig (FPC) file (Nelson

et al., 2005) is available, we use PM contig-clone information

to connect potentially neighboring sequences and merge two

assemblySeqs from neighboring BACs on PMs into an

assemblyCtg. AssemblyCtgs will only be merged when overlap-

ping evidence is detected. For a non-PR-based whole genome

shotgun (WGS) project, the original sequences would be loaded

into GPM, and this operation would be skipped. To build

assemblyCtgs, the default parameters for merging two

sequences are ‘minOverlapSeqToSeq¼1000 bp’ and

‘identitySeqToSeq¼99%,’ plus the overlap should be at both

ends of each sequence.

4. Seq-to-Genome alignment. This operation allows the user to

run the alignment engine (‘blastn’ as default, E-value¼1e-200)

to search against reference genome sequences by using the ori-

ginal sequences of all assemblySeqs. The alignment information

Genome puzzle master 3059

https://github.com/PacificBiosciences/FALCON-integrate
Deleted Text: Assefa <italic>et<?A3B2 show $146#?>al.</italic>, 2009;
Deleted Text: Hunt <italic>et<?A3B2 show $146#?>al.</italic>, 2014;
Deleted Text:
Deleted Text: ; Stein <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw370/-/DC1
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw370/-/DC1
Deleted Text: &hx201C;
Deleted Text: &hx201D;,
Deleted Text: &hx201C;
Deleted Text: &hx201D;)
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: <italic>&hx201D;</italic>
Deleted Text: &hx201C;
Deleted Text: <italic>&hx201D;</italic>
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/
https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx0025;,&hx201D;
Deleted Text: (&hx201C;
Deleted Text: &hx201D;
Deleted Text: -

can be used to ‘group,’ ‘order,’ and ‘orient’ assemblyCtgs at a

chromosomal scale. Depending on the similarity between the

RefSeq and the to-be-assembled sequence, alignment param-

eters can be varied and tested by the user. GPM currently sup-

ports blastn, megablast (Camacho et al., 2008) and BLAT

(Kent et al., 2002) as alignment engines for sequence compari-

son. Users can choose a proper alignment engine to accelerate

GPM’s performance. For example, megablast or BLAT can be

chosen for aligning sequences with high similarities since they

run faster than blastn (in most situations). Importantly, to min-

imize the misleading impacts of repetitive sequences in both to-

be-assembled and reference datasets during this step, users can

(i) activate the ‘Mark Repeat Region’ option to filter out any

non-unique alignments, which will not be considered as evi-

dence to guide a GPM assembly; or (ii) select the alternative

‘Soft Masking’ option for the blastn/megablast alignment pro-

cessing if repetitive regions in reference sequences have already

been soft-masked for an assembly.

(1) Assembly ini�aliza�on

(2) Seq-to-Seq Alignment

sequences assemblySeqs assemblyCtgs

(3) Physical reference (PR)-guided assembly

AGP

a. AGP assemblySeqs
assemblyCtg

(5) Chromosome number assignment

(6) Redundant assemblySeq removal

(7) Non-redundant assemblySeq orienta�on

(8) AssemblyCtg orienta�on

(9) End-to-End assemblyCtg merge

(10) Redundancies in overlapping regions removed

(11) AssemblyCtgs ordered and/or renumbered

(4) Seq-to-Genome alignment

b. FPC

assemblySeqs assemblyCtg
FPC con�g

pre-assemblySeq

next-assemblySeq

assemblyCtgs

reference genome

321

assemblyCtgA

reference genome

sequences alignments
Alignment Engine

sequences alignments
Alignment Engine

assemblyCtg

reference genome

flip

pre-assemblySeq

next-assemblySeq

flip flip

flip flip

assemblyCtgC

assemblyCtgA

assemblyCtgB
flip

flip flip

flip

assemblySeq 2

assemblySeq 1a. buried
hide

assemblySeq 1 assemblySeq 3

assemblySeq 2b. covered by 2
assemblySeqs

hide

Fig. 1. GPM assemblyRun operations

3060 J.Zhang et al.

Deleted Text: &hx201C;
Deleted Text: ,&hx201D;
Deleted Text: &hx201C;
Deleted Text: ,&hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: a
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: b
Deleted Text: &hx201C;
Deleted Text: &hx201D;

5. Chromosome number assignment. If a high-quality reference

genome is available, we prefer to use it as a guide to automatic-

ally assign chromosome numbers to assemblyCtgs.

Alternatively, chromosome assignments can also be performed

manually in a batch mode.

6. Redundant assemblySeq removal. GPM will mask and

remove a buried or redundant sequence according to the

alignment information processed in operation 2. Here a

redundant sequence is defined as a sequence that can be fully

aligned by two neighboring sequences and the two neigh-

boring sequences have end-overlapped alignment (default

parameters ‘minOverlapSeqToSeq¼ 1000 bp’ and

‘identitySeqToSeq¼99%’). Such assemblySeqs would be

marked as redundant and are hidden in the final assembly.

Masking redundancies can reduce the computational com-

plexity of orienting assemblySeqs and assemblyCtgs.

7. Non-redundant assemblySeq orientation. In a multi-

assemblySeq contig, GPM can orient sequences based on

overlap data. This operation is performed on the premise that

an overlapping region of two neighboring sequences

should be at the end of each sequence, specifically at the

right end of a pre-assemblySeq, and at the left end of the next-

assemblySeq. GPM adjusts the orientation of these

assemblySeqs to fit the premise accordingly with the proper

extension of both non-overlapping parts that will elongate an

expanding contig. GPM determines the orientation of each

initial seed assemblySeq and then the subsequent assemblySeq

one-by-one.

8. AssemblyCtg orientation. Using a reference genome, GPM can

orient assemblyCtgs according to the linear information sug-

gested by the ‘Seq-to-Genome’ alignment data.

9. End-to-End assemblyCtg merge. In some cases, physically over-

lapping sequences can be separated into two different

assemblyCtgs due to the lack of strong evidence derived from

the guide data, for example, when there is weak evidence to

merge two contigs during a PM construction step. These kinds

of situations usually arise from BACs located at the ends of PM

contigs, and as a consequence, assemblySeqs of these BACs are

also found at assemblyCtg ends. Detection of end-to-end over-

laps between neighboring assemblyCtgs facilitates merging into

larger assemblyCtgs.

10. Redundancies in overlapping regions removed. Overlapping se-

quences between two neighboring assemblySeqs are considered

redundant, and one redundant portion of either assemblySeq is

removed from the final pseudomolecule. Here GPM makes no

preferences on which overlapping sequence is retained.

However, if evidence is provided that one overlapping sequence

is of a higher quality than the other, then the highest quality se-

quence will be retained.

11. AssemblyCtgs ordered and/or renumbered. GPM can sort

assemblyCtgs based on their chromosomal number and pos-

ition and provide an option to renumber assemblyCtgs in their

proper order.

After running an automated GPM assembly, the user is also

able to manually check and edit the assembly (Fig. 2). With the

visualization function, GPM can provide a convenient way to

manually check and edit an assembly, thereby eliminating the

need to rely solely on automated assembly results. Relationships

among datasets (including BAC sequences, BESs, physical maps,

reference sequences, etc.) can logically guide assembly operations,

including but not limited to grouping, merging, ordering and

orienting. All manual editing steps are saved automatically, so the

entire editing process can be reproduced and quality checked.

Upon completion of an editing step, GPM can be used to export

contig sequences, chromosome-based pseudomolecules and AGP

files in real time.

3.2 Application of the GPM pipeline to assemble two

high-quality reference genome sequences for indica

rice: a case study
Recently, our consortia published two high-quality reference gen-

ome sequences for the two main varietal groups of indica rice—

Zhenshan 97 (ZS97) and Minghui 63 (MH63) (Zhang et al.,

2016a,b). These genomes were primarily sequenced using PacBio

long-read sequencing of minimum tiling path BAC pools, combined

with Illumina WGS assembled contigs to fill gaps. Once individual

BAC sequences were assembled they were loaded into GPM for as-

sembly editing and pseudomolecule construction.

Following is a summary of how these data were used to assemble

two of the highest quality indica rice genome assemblies produced

to date:

To assemble the ZS97 and MH63 genomes, the following data-

sets were loaded in to GPM: (i) Whole Genome Profiling (WGP, van

Oeveren et al., 2011) sequence-based PMs for each genome; and (ii)

5363 assembled BAC sequences (including duplicates for the same

BAC clones sequenced in multiple jobs or pools) from 188 HGAP

jobs for ZS97, and 6,801 from 313 jobs for MH63. Here we take

ZS97 as an example to demonstrate the assembly procedure once

these data were loaded (Supplementary Fig. S1). To start a new as-

sembly, we set the ‘FPC: ZS97 v.1’ PM as the physical reference and

the ‘IRGSP-MSU’ (i.e. O.sativa subsp. japonica cv. Nipponbare gen-

ome sequence, Kawahara et al., 2013) as the reference genome. We

checked ‘Assign chromosome number for contigs’ and ‘Orient con-

tigs based-on reference genome’ since both ZS97 and Nipponbare

belong to the same genus and species (i.e. O.sativa), and minor dif-

ferences between the to-be-assembled and reference genomes would

not mislead the results because they are so closely related. ‘Seq-to-

Seq Alignment’ was used to pre-build all possible overlapping rela-

tionships among all BAC sequences since it was expected that those

should be connected. ‘Seq-to-Genome Alignment’ was also used to

map all BAC sequences to the reference genome. We also utilized

the ‘End-to-End Merge,’ ‘Auto-Orient Sequences’ and ‘Filter

Redundant Sequences and Overlaps’ options. (Note: A similar pro-

cess was used to assemble the MH63 genome, except we used the

‘FPC: MH63 v.1’ PM as the physical reference.)

After manual checking, editing and removing redundancies, the

final assembly products yielded 318 (ZS97, composed of 3862

assemblySeqs) and 216 (MH63, composed of 3256 assemblySeqs)

assemblyCtgs that were ordered, oriented, and assigned to their ap-

propriate chromosomes. The ‘assemblyCtg’ sequences were used as

the primary frameworks to build pseudomolecules after gap-filling

sequences were integrated during the second round of GPM assem-

bly (Zhang et al., 2016b).

4 Discussion

GPM is an integrated pipeline for generating and editing pseudomo-

lecules from existing next gen sequence assembles using evidence-

based guides such as reference sequences, physical maps, genetic

maps and paired BESs. We demonstrated how GPM can be used to

generate high-quality submission-ready pseudomolecules for two

indica rice accessions, ZS97 and MH63, by the integration of BAC-

Genome puzzle master 3061

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx0025;&hx201D;).
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text: ,
Deleted Text: &hx2013;
Deleted Text: -
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw370/-/DC1
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: ,&hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,

based physical maps and reference sequence guides. To perform an

assembly with GPM, not all the resources like those used for ZS97

and MH63 are required, but GPM does require at least one guide

type (e.g. genetic, physical or genome reference). Since GPM does

not reassemble sequence data from the original short/long reads, the

kind and quality of the evidence-based guides will greatly affect the

amount of time required for editing and will impact the final quality

of an assembly. Using a reference genome in a GPM assembly is

quite valuable, however, the utilization of more evidence guides can

greatly enhance the ability to build high-quality pseudomolecules

and to avoid the overuse of the reference sequences in conforming a

GPM assembly to mimic a RefSeq. If a reference genome is the only

evidence to guide an assembly, then reference sequence overuse mis-

takes can’t be avoided. However, using other information that is

available could detect overuse errors which would be corrected

during a manual check step (which is not labor-intensive and

strongly recommended) with GPM. Hence, evidence data are key

factors used to build high-quality GPM assemblies.

In the current version of our LIMS, we can track each processing

step from BAC library construction to the final genome assembly

seamlessly during the entire phase of a sequencing project. BAC li-

brary resources and wet lab sequencing runs are recorded in our sys-

tem. As a part of the LIMS, GPM supports FASTA-formatted

sequences. However, the ability to deal with raw reads has been lim-

ited due to their huge data size. Some additional features, such as

paired end/mate and MTP information, are partially adapted for

assembly manipulation in the current version of GPM.

Pseudomolecules in FASTA format with an AGP file can be gener-

ated as the final output for further downstream analysis and public

repository sequence submissions (e.g. GenBank).

Fig. 2. Visualization of typical available data in GPM. (A) GPM assemblyCtg view of a 500-KB region. AssemblySeqs, top and bottom, are shown as overlapping

(yellow) and fully redundant assemblySeqs are gray. The retained (green) and removed (gray) portions of assemblySeqs are indicated. (B) Chromosome-scale

view of a 500-KB region that compares two genome assemblies to a Reference sequence. The Reference Sequence is shown in the middle (bright green) with

alignments (yellow) to each assemblyCtg (violet) at the top and bottom. The assemblyCtg order can be changed by drag-and-drop (Color version of this figure is

available at Bioinformatics online.)

3062 J.Zhang et al.

The LIMS can be expanded to integrate new functions for a spe-

cific project as needed. For example, we built a pipeline called

‘postHGAP’ to perform circularization and identification of BAC se-

quences for the two rice genome sequencing projects described above

(Fig. 3). As reported in our data descriptor (Zhang et al., 2016b), we

used a map-based BAC-pool sequencing strategy to produce se-

quence data that were assembled into a set of sequences (termed uni-

tigs by HGAP) for each pool. We were able to process the output of

each corresponding HGAP job to circularize and identify BAC se-

quences properly using related data information in the LIMS as fol-

lows: (i) postHGAP first filtered unitigs with lengths shorter than 10

kb, then (ii) trimmed vectors and circularized plasmid or BAC se-

quences according to pairs of sequences at specific breakpoints and

(iii) assigned BAC IDs to each sequence according to WGP tags or

BES information. During the postHGAP processing step, two param-

eters (default: minOverlap¼500 bp, overlapIdentity¼95%) could

be set for sequence circularization and four optional parameters

(default: minCloneTagNumber¼5, tagMatchIdentity¼100%,

tagMatchPercent¼80%, besMatchIdentity¼98% if no WGP tags

available) for BAC ID assignment. The program ‘blastn’ (NCBI

BLAST 2.2.29þ) was used to perform sequence comparison and

alignment analysis in postHGAP. As a result, a total of 501 HGAP

jobs (multiple runs for the same pool count multiple times) for 375

pools were run through postHGAP in this study and produced 12

164 BAC-ID-ready sequences (including duplicates for the same

BAC processed in multiple jobs or pools) for both ZS97 and MH63.

All BAC-ID-ready sequences were seamlessly converted as input

datasets for both GPM assemblies.

Technically, the use of a one-main-table database schema design

may simplify query processing. However, one possible disadvantage

for this schema is that the response time to query might be longer

with increasing amounts of data. Based upon our LIMS structure,

we used the new ‘container’ option for less complicated data and

created new tables for large datasets (e.g. clones). To date, we are

able to operate GPM smoothly on a 4� 12-core cluster with more

than 1.7 million data records. These kinds of strategies are recom-

mended for other users. We can provide free host services to aca-

demic projects of medium-size genomes (up to 1 Gb) with full

technical support.

Several WGS scaffolding packages (e.g. Bambus, Mauve Aligner,

ABACAS, ALLMAPS, etc.) treat assembled contig sequences as non-

overlapping and single-copy sequences. Unfortunately, these pack-

ages are not focused toward the handling of inherent sequence

redundancies and are not programmed to produce incremental

assemblies. Further, these scaffolding tools are all file-based and do

not provide a flexible process for manual checking and editing, espe-

cially if the input data has been modified or updated. In contrast,

GPM is a relationship-based pipeline, which has the flexibility to

edit and visualize assembled data, not only by showing the order

and orientation of contig sequences and sequence redundancies but

also by displaying the necessary guide information for easy user con-

firmation. One thing GPM cannot do is to assemble a genome

de novo from raw reads. This deficit can be compensated for by its

ability to import results (sequences and AGPs) from other assembly

programs to guide new and improved assemblies. The final quality

of a GPM assembly relies heavily on the quality and richness of the

guide information used. For example, if a draft genome assembly is

used as the guide rather than a map-based BAC-by-BAC assembly,

the quality of the GPM assembly will suffer.

DNA sequencing technologies and assembly programs change

rapidly, and the GPM pipeline presented here is no exception. We

will continue to improve the interactive functionalities of GPM, as

well as integrate additional tools to support more data types. With

GPM, data types are seamlessly linked and logically integrated into

an encompassing LIMS for all genomic data. GPM is an open source

software dynamically developed for the genomics research commu-

nity and can be extensively adapted/improved by different research

groups for their own applications.

Funding

This study was supported by the Start-up Fund of the National Key

Laboratory of Crop Genetic Improvement to J.Z. and the National Science

Foundation Grant (#1026200) to R.A.W.

Conflict of Interest: none declared.

References

Alkan,C. et al. (2011) Limitations of next-generation genome sequence assem-

bly. Nat. Methods, 8, 61–65.

Assefa,S. et al. (2009) ABACAS: algorithm-based automatic contiguation of

assembled sequences. Bioinformatics, 25, 1968–1969.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shot-

gun microreads. Genome Res., 18, 810–820.

Camacho,C. et al. (2008) BLASTþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Chin,C.S. et al. (2013) Nonhybrid, finished microbial genome assemblies from

long-read SMRT sequencing data. Nat. Methods, 10, 563–569.

Hunt,M. et al. (2014) A comprehensive evaluation of assembly scaffolding

tools. Genome Biol., 15, R42.

Kajitani,R. et al. (2014) Efficient de novo assembly of highly heterozygous

genomes from whole-genome shotgun short reads. Genome Res., 24,

1384–1395.

Kawahara,Y. et al. (2013) Improvement of the Oryza sativa Nipponbare

reference genome using next generation sequence and optical map data.

Rice, 6, 4.

Unitig

Length <

shortCutoff
Short Seq

Yes

| | | | | | | | | | | |

Mark breakpoints on unitig by vector

No

Default parameters
shortCutoff: 10 kb

identity: 95%

minOverlap: 500 bp

tagMatchIdentity: 100%

besMatchIdentity: 98%

tagMatchPercent: 80%

minCloneTagNumber: 5

SequenceEnd

InsertEnd

VectorEnd

Both subSeqA

and subSeqB

exist

Yes

No
Partial Seq

Overlapping >

minOverlap

No

Yes

subSeqA

subSeqB

Piece

Number =

3

No

Yes

gapped Seqcircularized Seq

Determine BAC ID with

WGP tag or BES data

ID-assigned BAC sequence

insert Seq

noVector Seq

vector Seqmixer Seq

Determine sequence piece type by paired breakpoints

breakpoints

Vector

Unitig

Fig. 3. Flowchart for processing unitigs with postHGAP

Genome puzzle master 3063

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
Deleted Text: 3
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:
Deleted Text: x

Kent,W. et al. (2002) BLAT – the BLAST-like alignment tool. Genome Res.,

12, 656–664.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 18.

MacCallum,I. et al. (2009) ALLPATHS 2: small genomes assembled accur-

ately and with high continuity from short paired reads. Genome Biol., 10,

R103.

Nelson,W. et al. (2005) Whole-genome validation of high-information-

content fingerprinting. Plant Physiol., 139, 27–38.

Pop,M. et al. (2004) Hierarchical scaffolding with Bambus. Genome Res., 14,

149–159.

Rissman,A. et al. (2009) Reordering contigs of draft genomes using the Mauve

aligner. Bioinformatics, 25, 2071–2073.

Schatz,M. et al. (2010) Assembly of large genomes using second-generation

sequencing. Genome Res., 20, 1165–1173.

Schnable,P. et al. (2009) The B73 maize genome: complexity, diversity, and

dynamics. Science, 326, 1112–1115.

Tang,H. et al. (2015) ALLMAPS: robust scaffold ordering based on multiple

maps. Genome Biol., 16, 3.

van Oeveren,J. et al. (2011) Sequence-based physical mapping of

complex genomes by whole genome profiling. Genome Res., 21,

618–625.

Wei,F. et al. (2009) The physical and genetic framework of the maize B73 gen-

ome. PLoS Genet., 5, e1000715.

Zhang,J. et al. (2016a) Extensive sequence divergence between the reference

genomes of two elite indica rice varieties Zhenshan97 and Minghui 63.

Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.1611012113.

Zhang,J. et al. (2016b) Building two indica rice reference genomes with

PacBio long-read and Illumina paired-end sequencing data. Sci. Data,

10.1038/sdata.2016.76.

3064 J.Zhang et al.

