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Diffusion tensor imaging (DTI) has become the predominantmodality for studyingwhitematter integrity inmul-
tiple sclerosis (MS) and other neurological disorders. Unfortunately, the use of DTI-based biomarkers in large
multi-center studies is hindered by systematic biases that confound the study of disease-related changes. Fur-
thermore, the site-to-site variability in multi-center studies is significantly higher for DTI than that for conven-
tional MRI-based markers. In our study, we apply the Quantitative MR Estimation Employing Normalization
(QuEEN)model to estimate the four DTImeasures:MD, FA, RD, and AD. QuEEN uses a voxel-wise generalized ad-
ditive regression model to relate the normalized intensities of one or more conventional MRI modalities to a
quantitativemodality, such as DTI.We assess the accuracy of themodels by comparing the prediction error of es-
timated DTI images to the scan-rescan error in subjects with two sets of scans. Across the four DTI measures, the
performance of the models is not consistent: Both MD and RD estimations appear to be quite accurate, while AD
estimation is less accurate than MD and RD; the accuracy of FA estimation is poor. Thus, in some cases when
assessing white matter integrity, it may be sufficient to acquire conventional MRI sequences alone.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Diffusion tensor imaging (DTI) has become the predominantmodal-
ity for studying white matter integrity in multiple sclerosis (MS) and
other brain disorders, including Alzheimer's disease, traumatic brain in-
jury, epilepsy, depression, and stroke. InMS,DTI is generally understood
to provide information about diffuse changes in the microstructure and
integrity in thewhitematter of patients. Numerous studies have shown
that certain DTI measures differ between MS subjects and controls. In
particular, researchers have found that patients withMS have increased
mean diffusivity (MD) and decreased fractional anisotropy (FA) in nor-
mal appearing white matter (NAWM) compared to healthy controls
(Vrenken et al., 2006; Ciccarelli et al., 2003; Senda et al., 2012;
Werring et al., 1999). As traditionalMRI basedmeasures ofwhitematter
changes in MS show only limited associations with disability, these DTI
findings have been noted for their promise of clinical utility (Barkhof,
2002); (Zivadinov, 2016). Moreover, many studies promote the use of
DTI by suggesting that DTI can measure microstructural changes,
whereas conventional magnetic resonance imaging (MRI) is only able
to identify changes at the macrostructural level (Senda et al., 2012;
Rocca et al., 2006; Wilson et al., 2003).
er).
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Unfortunately, the use of DTI-based biomarkers in largemulti-center
studies is hindered by systematic biases (Pfefferbaum et al., 2003;
Vollmar et al., 2010), which confound the study of disease-related
changes. Furthermore, the site-to-site variability inmulti-center studies
is significantly higher for DTI (Zhu et al., 2011; Teipel et al., 2012) than
that for conventional MRI-based markers (Teipel et al., 2010; Ewers et
al., 2006). These issues necessitate larger sample size in multi-center
studies using DTI and highlight the potential for less generalizable find-
ings from single-scanner studies. Additionally, DTI sequences require
additional scanning time, which increases the cost of MRI in both clini-
cal and research settings. In this paper, we investigate whether conven-
tional MRI can be used to detect microstructural changes and estimate
DTI measures.

Synthesizing or estimating a specific imaging modality or sequence
from other imaging sequences can be advantageous for several reasons.
Doing so allows for larger multicenter imaging studies in which pa-
tients, or even entire centers, are missing particular types of images. It
also allows researchers to capitalize on imaging datasets that have al-
ready been acquired. For example, the Alzheimer's Disease Neuroimag-
ing Initiative (ADNI) database (Mueller et al., 2005) contains thousands
of conventional MRIs, and the Comprehensive Longitudinal Investiga-
tion of Multiple sclerosis at the Brigham and Women's Hospital
(CLIMB) contains conventional MRI from thousands of MS patients
(Gauthier et al., 2006); there are also numerous well controlled phase
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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3 studies that have acquired conventional MRI data. Using image esti-
mation, these and other databases could be used to conduct large-
scale studies with quantitative imaging not acquired at every study
site. Image synthesis also has significant applications in multi-modal
image registration (Michel and Paragios, 2010; Jog et al., 2013a; Ye et
al., 2013) and normalization (Jog et al., 2013a). Thus, there has been a
growing interest in this field in recent years. A recent study on image
synthesis showed that it is possible to synthesize T2-weighted contrasts
from T1-weighted images and to synthesize 3-tesla T1-weighted mag-
netization prepared rapid gradient echo (MPRAGE) images from 1.5-
tesla MPRAGEs using an atlas image-based nonlinear regression (Jog
et al., 2013b; Ye et al., 2013) uses a generalized patch-based label prop-
agation method to synthesis arbitrary target image modalities. Specifi-
cally, they use T1-weighted MRI to synthesize T2 MRI and, with much
less accuracy, DTI-fractional anisotropy.

In our study, we adopt the methods introduced by Mejia et al.
(2016), inwhich quantitative T1maps (qT1) are estimated from the con-
ventional MRI sequences: T1-weighted (T1w), T2-weighted (T2w), pro-
ton density-weighted (PDw), and T2-weighted fluid attenuated
inversion recovery (FLAIR) images. We apply their Quantitative MR Es-
timation Employing Normalization (QuEEN)model to estimate the four
DTI measures: MD, FA, radial diffusivity (RD) and axial diffusivity (AD).

2. Methods

2.1. Study sample

The dataset we use in this study includes 73 subjects with clinically
diagnosed MS and at least one set of MRI and DTI scans. After
performing quality control to exclude images that exhibit subjectmove-
ment, major segmentation errors, and registration problems, we have
50 subjects, including 14 with relapsing-remitting MS (RRMS), 12
with secondary-progressive MS (SPMS), and 24 with primary-progres-
sive MS (PPMS). The resulting study sample is 64% female with a mean
age of 53 (S.D. 11). Additionally, a second set of MRI and DTI scans was
acquired for 19 subjects, which we use to evaluate the predictive accu-
racy of the model. The median time between scans is 181 days (range
147–301). Additional summary statistics are provided in Table 1. The
distributions of these summary statistics are similar in males and fe-
male, though the males have slightly higher EDSS scores (Appendix
Tables A.1 and A.2).

2.2. Imaging protocol

Each MRI study includes the following volumes, all collected on a
Siemens Skyra 3 T scanner equipped with a 32-channel receive coil:
T1-MPRAGE (Magnetization-Prepared RApid Gradient Echo) [TR =
3000 ms, TE = 3.03 ms, TI = 900 ms, FA = 9]; PDw and T2w images
from a dual-echo turbo-spin-echo (TSE) sequence [TR = 3000 ms,
TE = 11 ms/101 ms, FA = 150, ETL = 14]; and a 3D T2-weighted
FLAIR image acquired using a T2-selective inversion pulse optimized
for T2 of 120 ms [TR = 4800 ms, TE = 354 ms, TI = 1800 ms, variable
FA]. All scans are acquired at 1.0 mm isotropic resolution except the
PDw/T2w TSE sequence, which is acquired at 0.93 × 0.93 × 3.0 mm
resolution.
Table 1
Study sample summary statistics.

All MS PPMS RRMS SPMS

n 50 24 14 12
% Female 64.0 50.0 85.7 66.7
Mean age (SD) 52.9 (11.4) 56.6 (7.4) 44.4 (15.0) 55.4 (8.3)
Disease duration (SD) 14.9 (10.8) 13.5(9.5) 15.0 (7.9) 25.7 (9.2)
Median EDSS score
(range)

3.5
(1.0–7.5)

5.5
(1.5–7.5)

1.5
(1.0–6.0)

6.25
(1.5–7.0)
Each DTI study was obtained using a two-acquisition method with
opposite phase encode directions to minimize influence of B0-related
image distortions. Each acquisition acquired 1 reference image without
diffusion weighting and 30 images with radially spaced diffusion direc-
tions and a diffusion weighting of b = 1000 s/mm2. Diffusion weighted
images were acquired at 2 × 2 × 2 mm isotropic resolution.

2.3. Image processing

Weperform image preprocessing as described inMejia et al. (2016).
Briefly,we rigidly align all images to theMNI152 1.0mmnonlinear tem-
plate. To remove extracerebral voxels, we use the SPECTRE skull-strip-
ping algorithm (Carass et al., 2011). To segment tissue classes, we use
Lesion Topology Preserving Anatomy Driven Segmentation (Lesion-
TOADS) (Shiee et al., 2010). We visually inspect the segmentations
and exclude subjects with major errors, but we do not manually tune
the segmentation method. We correct for ventricular segmentation er-
rors using non-topologically constrained maximum membership clas-
ses. We generate brain masks by excluding cerebrospinal fluid (CSF),
hypointense voxels in FLAIR, and any voxels outside the field of view
on any image. To create conservative tissue class masks, we use a 3 ×
3 × 3 diamond-shaped kernel for erosion of the Lesion-TOADS segmen-
tation. We use the conservative masks for training and validation, but
we use the full masks for whole-image predictions. Overall, the image
processing takes approximately one to two hours per subject on a single
computer core.

2.4. Image normalization

As conventional structuralMRI is acquired in arbitrary units, intensi-
ty normalization is required to compare values across images acquired
at different sites; using different hardware, software or protocols; or
even on different dates using the same scanner and protocol. Historical-
ly, image normalization has been performed with respect to NAWM
(Shinohara et al., 2014) or CSF Pujol et al., 1992; van Waesberghe et
al., 1998; Bakshi et al., 2002; Tjoa et al., 2005; Brass et al., 2006,
Neema et al., 2009) as a reference region. However, both of these tissue
classes are less than optimal for this study. CSF is highly variable in in-
tensity, which can lead to inconsistent normalization. Changes in
NAWM are of primary interest, and thus normalizing with respect to
NAWM could obscure disease-related changes.

Instead,we utilize the adaptation of the z-score normalizationmeth-
od (Shinohara et al., 2014; Shinohara et al., 2011) proposed by Mejia et
al. (2016). The z-score method subtracts a measure of location and di-
vides by a measure of scale; we refer to these two steps as scaling and
shifting, respectively. The adapted method proposed by Teipel et al.
(2010) utilizes a combination of NAWM and cerebellar gray matter
(CBGM). Although using NAWM alone as a reference can confound
the normalization, the standard deviation of NAWM is well estimated
and can be used for scaling. Abnormalities of CBGM inMS are poorly de-
tected by conventional MRI methods, and thus CBGM signal intensity
should be similar between subjects and disease groups. Thus, CBGM
can be used for shifting. Previously, CBGM has been used for normaliza-
tion in positron emission tomography (PET) in MS (Ratchford et al.,
2012) and Alzheimer's disease (Kropholler et al., 2007).

The normalized units are given by

MN
i vð Þ ¼

Mi vð Þ−μ CBGMð Þ
i;m

σ NAWMð Þ
i;m

Mi(v) denotes the intensity of voxel v for subject i in modality M ∈
{FLAIR, PDw, T1w, T2w}. For subject i in modality M, μ i;M

ðCBGMÞ is the

mean intensity in CBGM, andσ i;M
ðNAWMÞ is the standard deviation of in-

tensities within NAWM.



Table 2
Kruskal-Wallis tests of association between the acquired
DTI measure in CBGM and MS subtype.

Acquired DTI p-Value

MD 0.86
RD 0.83
AD 0.78
FA 0.51
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2.5. Statistical prediction model

Tomodel eachDTImodality, we apply theQuEEN statisticalmodel to
generate “statistical DTI”measures of MD, FA, RD and AD. QuEEN uses a
voxel-wise generalized additive regression model to relate the normal-
ized intensities of one ormore conventional MRI modalities to a quanti-
tativemodality, such as qT1 or DTI.We specify a set ofmodels to use the
standard MRI modalities, T1w, T2w, PDw, and FLAIR, to predict the DTI
measures MD, FA, RD, and AD. As in the QuEEN T1 model, we fit a sepa-
rate model for each tissue class, c. Here we use the nine tissue classes
identified as lesion, CBGM, GM, caudate, thalamus, putamen, brainstem,
CBWM, and NAWM. Thus, for each DTI measure, we relate the value at
each voxel v in class c of subject i to the corresponding predictor modal-
ities by:

DTIji vð Þ∼ f cj1 T1wN
i vð Þ� �þ f cj2 T2wN

i vð Þ� �þ f cj1 PDwN
i vð Þ� �

þ f cj1 FLAIRN
i vð Þ

� �
þ ϵ1 vð Þ

where j=1,2 ,3 ,4 indexes the four DTI measures we wish to predict.
The smooth functions fjkc (·), k=1,2,3,4, relate predictor modality k to
DTI measure i within tissue class c. We implement the models in R
using the gam function from the mgcv package (version 1.7-28,
(Wood, 2006; Wood, 2011) as described in Mejia et al. (2016). The
gam function represents the smooth curves as penalized regression
splines. The degree of smoothness is estimated using generalized
cross-validation, and the smoothing parameter estimation criterion is
optimized using the Newton method (Chong and Wahba, 1991). The
statistical DTI measures (stat-MD, stat-FA, stat-RD, and stat-AD) are es-
timated by applying the estimated regression curves to the respective
predictor modalities.

2.6. Model validation

To evaluate eachmodel, we assess the accuracy and utility of the sta-
tistical DTI measures. First, we assess the accuracy of the models by
comparing the scan-rescan mean square error (MSE) to the statistical
prediction MSE in subjects with two sets of scans. We define the scan-
rescan MSE as the voxel-wise squared difference in intensity between
the original acquired images and the second set of images (the rescan
images) averaged across voxels. In contrast, we define the statistical
prediction MSE as the voxel-wise squared difference in intensity be-
tween the statistical DTImeasure and the rescan image, averaged across
voxels. We summarize both measures by tissue class. These two MSEs
describe how accurately the statistical and acquired DTI measures pre-
dict a second acquired DTImeasure obtainedwithin one year. Assuming
that the best available prediction of the acquired rescan DTI measure is
the acquired DTI measure from the first visit, we use these MSEs as
benchmarks for predictive performance.

Second, we assess the utility of themodel. Liu et al. (2012) found ev-
idence that RRMS patients had decreased FA and increasedMD, RD, and
AD in white matter regions compared to healthy controls, so we com-
pare the mean DTI values in NAWM across MS subtypes for the statisti-
cal and acquired images. For each DTI measure, we conduct two-sided
Wilcoxon rank sum tests between each subtype.

2.7. Associations with clinical measures

To investigate the use of these images as potential biomarkers we
conduct a preliminary assessment of the association of the observed
and predicted DTI measures and two commonly used scores for disabil-
ity and cognition. First, we test the correlations between mean MD and
mean RD in NAWM and the Expanded Disability Status Scale (EDSS)
score (Kurtzke, 1983), a commonmeasure designed to assess neurolog-
ical impairment in MS. We also test the correlation of mean MD and
mean RD in NAWM with the Symbol Digit Modality Test (SDMT)
(Smith, 1982) score, a tool for measuring cognitive function. We use
the nonparametric Kendall's Tau coefficient for assessing correlations.

3. Results

The normalization method relies on the assumption that the distri-
bution of intensities in CBGM is similar across the MS subtype groups.
We check this assumption using Kruskal–Wallis tests of association be-
tween each acquired DTI measure andMS subtype. Indeed, there are no
significant associations (Table 2). Fig. 1 shows the relationships be-
tween the normalized predictor images and each acquired DTI measure
within NAWM. The relationships between the normalized predictor im-
ages andMD (top row) and RD (second row) appear to be similar across
subjects, while the relationships between the normalized images and
AD (third row) appear less similar. In FA (bottom row), there appears
to be a large amount of heterogeneity across subjects in the relation-
ships with the normalized predictor images.

Sample images from two randomly selected subjects are shown in
Fig. 2. The subject in Fig. 2a has PPMS and the subject in Fig. 2b has
SPMS. The top rows in Fig. 2a/b show the acquired DTI images, the mid-
dle rows show the statistical DTI images estimated using the leave-one-
subject-out cross-validation (LOOCV), and the bottom rows show the
absolute value of the difference between the acquired and statistical
DTI images. Both stat-MD and stat-RD appear to be quite accurate esti-
mates of MD and RD, respectively, while stat-AD is less accurate than
stat-MD and stat-RD, and the accuracy of stat-FA is poor (although
stat-FA still captures the strong gray/white differentiation typical of FA
maps).

To assess the accuracy of our statistical DTI models, we compare the
prediction MSE of the statistical DTI images to the scan-rescan MSE of
the acquired images. Fig. 3 shows boxplots of the scan-rescan log-MSE
for the acquired DTI images (shown in green) and the prediction log-
MSE for the statistical estimate of each DTI image (shown in orange)
for three tissue classes of interest: NAWM, GM, and lesions. Each
boxplot was constructed based on the MSE from 19 subjects with two
sets of DTI scans. In MD and RD, the MSEs are comparable in NAWM
and lesions. In MD, the prediction log-MSE in the statistical images
and the scan-rescan log-MSE in the acquired images have means in
NAWM of −7.4 mm2 s−1 (25th percentile = −7.5, 75th percen-
tile = −7.3) and −7.4 mm2 s−1 (−7.5, −7.3), respectively, and
means in lesions of −7.4 mm2 s−1 (−7.5, −7.1) and −7.5 mm2 s−1

(−7.6, −7.3), respectively. In RD, the prediction log-MSE and the
scan-rescan log-MSE have means in NAWM of −7.3 mm2 s−1 (−7.5,
−7.3) and−7.3 mm2 s−1 (−7.5,−7.2), respectively, andmeans in le-
sions of−7.2mm2 s−1 (−7.3,−7.1) and−7.4mm2 s−1 (−7.6,−7.1),
respectively. Across all four DTI measures, the statistical prediction log-
MSE of the estimated images is smaller in GM compared to the scan-
rescan log-MSE of the acquired images, indicating that our models can
accurately estimate GM. However, in FA and AD, the prediction log-
MSE is much larger in NAWM and lesions compared to the scan-rescan
log-MSE of the acquired images, suggesting that the FA and AD models
may be incorrect.

Figs. 4 and 5 show the MS subtype group differences for mean MD
and mean RD, respectively, in NAWM. In all comparisons, the differ-
ences between subgroups were not significant. However, the spread of
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Fig. 1. Acquired DTI versus normalized predictor images within NAWM. Each line is a smoothed curve from a single subject, and confidence bands for each curve are shown in gray. The
relationships between MD and RD and the normalized predic-tor images appear much more similar across subjects, whereas the relationships between AD and FA and the normalized
predictor images varies greatly across subjects.
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the data is tighter in the statistical images compared to the acquired im-
ages. As shown in Fig. 5, the level of significance between groups was
similar for the statistical and acquired RD images. Fig. 4 shows more
pronounced differences in statistical MD between PPMS and each of
the other subtypes compared to the acquired images aswell as a smaller
spread.

Table 3a provides the results of the exploratory analyses of the cor-
relations between mean MD in NAWM and EDSS and SDMT scores, re-
spectively. Table 3b provides the correlations between mean RD in
NAWM and the EDSS and SDMT scores. None of the results withstand
the multiple comparisons correction, however these results suggest
that higher RD values may be associated with lower SDMT scores, and
this association is stronger using the statistical RD measure.

4. Discussion

Here, we have used conventional MRI to estimate several common
DTI measures, namely MD, RD, AD, and FA. Across the four DTI mea-
sures, the performance of the models is not consistent: while MD and
RD are accurately estimated within NAWM using statistical methods,
AD and FA are less so. It is currently unclear whether the inaccuracies
in the AD and FA predictions are due to failures of the model or due to



a

b

Fig. 2. a DTI images from a PPMS subject. The four DTI measures are shown for a PPMS subject. The top row shows the acquired DTI, the middle row shows the statistical DTI, and the
bottom row shows the abso-lute value of the difference between the acquired and statistical DTI. The models for MD and RD perform relatively well, while the models for AD and FA
appear to fail. 2b DTI images from a SPMS subject. The four DTI measures are shown for a SPMS subject. The top row shows the acquired DTI, the middle row shows the statistical DTI,
and the bottom row shows the absolute value of the difference between the acquired and statistical DTI. The models for MD and RD perform relatively well, while the models for AD
and FA appear to fail.
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Fig. 3. Scan-rescanand statistical predictionMSEs. For eachDTImeasure, acquired scan-rescanMSE (green) and statistical predictionMSE (orange) are shown in lesion, GM, andNAWM. In
NAWM the prediction MSEs in MD (a) and RD (b) are similar to scan-rescan MSEs, but these are slightly larger in AD (c) and FA (d). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Distribution of MD in NAWM between MS subtypes. Differences in MD in NAWM between MS subtypes were tested using (a) the acquired DTI images and (b) the statistical MD
images. The plots show themeanMD inNAWM for each subject (gray) and theWilcoxon 95% confidence intervals for each subtype. The p-values are reported for the two-sidedWilcoxon
tests. There are no significant differences between the subgroups in either DTI MD or statistical MD. However, the variance of the data is smaller in the statistical MD images compared to
the acquired MD images.
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Fig. 5. Distribution of RD in NAWM between MS subtypes. Differences in RD in NAWM between MS subtypes were tested using (a) the acquired DTI images and (b) the statistical RD
images. The plots show the mean RD in NAWM for each subject (gray) and the Wilcoxon 95% confidence intervals for each subtype. The p-values are reported for the two-sided
Wilcoxon tests. There are no significant differences between the subgroups in either DTI RD or statistical RD.
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missing information. It may be that the differences in the performance
of the models are explained by what each DTI measure describes. MD
is a global measure sensitive to tissue microstructure, and in practice
it is highly correlated to RD,which, inNAWM, represents diffusivity per-
pendicular to white matter bundles. On the other hand, AD quantifies
diffusivity along the major orientation of the axon bundles and is sub-
stantially less sensitive to pathology, such as diffuse inflammation, de-
myelination, and edema – all of which are detectable by the
conventional MRI approaches. Finally, FA represents tissue anisotropy
as ameasure of contrast betweenAD andRD; thus, any prediction errors
for either AD or RD are likely to bemagnified in the FA prediction (Song
et al., 2002; Alexander et al., 2007). Furthermore, the fourMRI contrasts
that we use in the estimation are not sensitive to fiber orientation, but
another contrast, T2*, can be quite sensitive to fiber orientation. Thus,
if the failure of the model to predict AD and FA is due to inadequacies
of the standard MRI modalities, then including T2* in our statistical
model may improve the accuracy of our AD and FA estimations.

As described above, we fit a separate model within each tissue class
for eachDTI predictionmodel. Model performance differs by tissue class
both within and across DTI measures, as seen by the prediction MSE
plots. Across all DTI measures, we predict GM well with respect to the
acquiredDTI scans. This is likely due to the lack of variation in structured
diffusion across the brain in GM. In NAWM, we can accurately predict
Table 3b
Correlations between mean RD and clinical scores.

RD Score Correlation p-Value

Acquired EDSS 0.133 0.20
Statistical EDSS 0.171 0.10
Acquired SDMT −0.184 0.07
Statistical SDMT −0.248 0.02

Table 3a
Correlations between mean MD and clinical scores.

MD Score Correlation p-Value

Acquired EDSS 0.133 0.20
Statistical EDSS 0.0378 0.72
Acquired SDMT −0.19 0.07
Statistical SDMT −0.141 0.17
MD and RD but not AD and FA, again indicating that the model is insuf-
ficient for the latter DTI measures or that additional information exists
in the AD and FAmaps. In lesions, the statistical DTI predictions are gen-
erally worse than the acquired DTI predictions for each measure, which
may be due to the greater amount of variability in DTI measures within
lesions.

In addition, although none of the MS subtype group differences in
NAWMare significant, we show that there aremore pronounced differ-
ences in the statistical MD images than in the acquiredMD images. This
finding needs further examination in a larger sample which would pro-
videmore power to detect true groupdifferences inMD,whichhas been
shown to be sensitive to diffuse and focal white matter pathology as
well as changes in the gray matter in MS (Senda et al., 2012;
Ontaneda et al., 2014; Harrison et al., 2013).

Implementation of these models as a tool for studying and moni-
toring MS requires that the images produced are accurate and repro-
ducible. We have shown that the proposed models perform well for
the specific imaging protocols used in this study. The fj(v) elements
of the model are functions estimated from a large number of voxels
whose intensities are known to be highly reproducible (Teipel et
al., 2010; Ewers et al., 2006). However, it remains to be shown how
the models perform across different DTI protocols and platforms.
Such validation studies will be crucial before this methodology can
be adopted in the clinic.

5. Conclusions

We have discussed the differences in the performance of our statis-
tical estimation across the four DTI measures and various tissue classes.
Although we do not present accurate estimation models for AD or FA
maps, we can accurately estimate MD and RD. Thus, we have shown
that the information in the latter image types is not unique, and that
the information may be captured using statistical methods on conven-
tional imaging. Therefore, in studies that are not interested in anisotro-
py, or only interested in MD, it may be sufficient to acquire only
conventional MRI sequences.
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Appendix A
Table A.1
Study sample summary statistics in females.

All MS PPMS RRMS SPMS

n 32 12 12 8
Mean age (SD) 51.5 (12.5) 56.6 (6.8) 44.2 (16.2) 55.0 (7.2)
Disease duration (SD) 15.2 (11.9) 15.2 (11.1) 8.0 (7.3) 26.1 (11.5)
Median EDSS score
(range)

2.5
(1.0–6.5)

3.25
(1.5–6.5)

1.5
(1.0–3.5)

6.0
(1.5–6.5)

Table A.2
Study sample summary statistics in males.

All MS PPMS RRMS SPMS

n 18 12 2 4
Mean age (SD) 55.3 (8.9) 56.6 (8.1) 45.8 (7.1) 56.2 (11.0)
Disease duration (SD) 14.2 (8.9) 11.9 (7.7) 7.0 (5.8) 25.0 (2.2)
Median EDSS score
(range)

6.0
(1.5–7.5)

6.0
(2.5–7.5)

3.75
(1.5–6.0)

6.5
(2.5–7.0)
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