Table 1.
Contribution of subview prediction (explicit training).
| Dataset | Method | Sp (%) | Se (%) | GMean (%) | Acc (%) | AUC | NPV = 95% | |
|---|---|---|---|---|---|---|---|---|
| TPR (%) | FPR (%) | |||||||
| DS1 | Simple [6] | 88.84 | 76.95 | 82.68 | 85.41 | 0.9034 | 63.322 | 8.217 |
| Subview | 89.85 | 76.81 | 83.07 | 86.09 | 0.9123 | 71.111 | 9.227 | |
|
| ||||||||
| DS2 | Simple [6] | 88.63 | 79.55 | 83.97 | 85.99 | 0.9174 | 74.389 | 9.558 |
| Subview | 89.92 | 80.05 | 84.84 | 87.05 | 0.9272 | 78.879 | 10.135 | |
|
| ||||||||
| DS3 | Simple [6] | 86.58 | 77.69 | 82.01 | 84.03 | 0.8972 | 65.597 | 8.599 |
| Subview | 87.81 | 78.03 | 82.77 | 85.01 | 0.9074 | 72.506 | 9.505 | |
|
| ||||||||
| DS4 | Simple [6] | 82.75 | 84.81 | 83.77 | 83.91 | 0.9096 | 0.091 | 0.011 |
| Subview | 83.67 | 85.09 | 84.38 | 84.47 | 0.9153 | 0.051 | 0.004 | |
|
| ||||||||
| DS5 | Simple [6] | 79.52 | 86.20 | 82.79 | 83.23 | 0.9084 | 0∗ | 0∗ |
| Subview | 80.70 | 86.64 | 83.62 | 84.00 | 0.9144 | 0 | 0 | |
|
| ||||||||
| DS6 | Simple [6] | 81.98 | 84.90 | 83.43 | 83.57 | 0.9101 | 0.025 | 0.003 |
| Subview | 82.80 | 85.49 | 84.13 | 84.26 | 0.9169 | 0 | 0 | |
|
| ||||||||
| DS7 | Simple [6] | 77.81 | 84.71 | 81.19 | 81.28 | 0.8905 | 0.010 | 0.001 |
| Subview | 78.60 | 85.17 | 81.82 | 81.90 | 0.8964 | 0 | 0 | |
|
| ||||||||
| DS8 | Simple [6] | 78.31 | 84.74 | 81.47 | 81.71 | 0.8913 | 0 | 0 |
| Subview | 79.46 | 85.23 | 82.30 | 82.51 | 0.8976 | 0.020 | 0.003 | |
|
| ||||||||
| DS9 | Simple [6] | 83.97 | 75.40 | 79.57 | 81.48 | 0.8661 | 1.196 | 0.159 |
| Subview | 84.62 | 76.04 | 80.22 | 82.13 | 0.8778 | 52.160 | 6.722 | |
∗We can change the discrimination threshold from 0 to 1 and calculate the corresponding values of Se, Sp, and NPV. As for “0,” it means that the condition of NPV being equal to 95% cannot be satisfied.