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This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid
artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm
the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search
by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth
operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient
topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population
driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well
maintained.The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed
HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational
results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization
accuracy computation efficiency.

1. Introduction

Image segmentation is an important image preprocessing
technique with primitive operations for image recognition
[1, 2]. The goal of image segmentation is to partition an
original image into a suit of disjoint sections or regions by
gray values and texture structures [3]. Generally, there is
a strong correlation between the objects of these disjoint
regions in the image. Bithreshold or multilevel threshold
based segmentation methods have been deeply developed
and employed in various practical applications.The key issue
to this segmentation method is the computational determi-
nation of the involved threshold. A broad variety of threshold
based segmentation methods have been proposed, including
conventional approaches [4] and intelligent approaches [5, 6].
Among them, the classical Otsu criterion shows significant
merits of simplicity and high efficiency, which determines

the appropriate thresholds according to intrinsic profile
characteristic of histogram [7]. As a matter of fact, the Otsu
transforms the multilevel threshold segmentation into an
optimization problem, which tends to maximize intercluster
variance of subpartition. However, due to the exhaustive
property of this approach, the computational complexity
will rise exponentially with the increasing of the threshold
number [8, 9].

Recently, due to their excellent abilities of tackling com-
plex NP-hard problems, metaheuristics such as artificial bee
colony [10, 11], particle swarm optimization [12], artificial
ant colony [13], differential evolution [14], firefly algorithm
[15], wind driven optimization [16], and bacterial foraging
algorithm [17] have been adopted widely in threshold image
segmentation. It is worth noting that thosemetaheuristics are
generally inspired form intelligent behaviors of animals that
have foraging strategies. The survival wisdom of plants, as
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another typical species of foraging organisms, has received
little attention due to their specific lifestyle [18]. However,
terrestrial plants have prominent adaptability and sensing
ability to use environmental information as a basis for gov-
erning their growth orientation and root systemdevelopment
[19]. Logically, such adaptive growth processes can provide
novel insights into new computing paradigm for global
optimization [20–22]. References [23, 24] have proposed and
developed the novel and effective EA variants by using a
hybridization of life-cycle and optimal search strategies and
obtain significant performance improvement, which shows
a novel and effective computation framework for related
scientists. How to deliberately design novel evolutionary
computation model and algorithm is increasingly becoming
an area of active research; taking a promising example, a
representative ARFO algorithm is proposed by Ma et al. in
[22] and has received a surge of attention [23, 24]. Essentially,
the ARFO provides an open and extensible biocomputation
framework and model for scientists in the field of optimiza-
tion theory to exploit new bioinspired algorithms.

Thus, this paper develops a novel hybrid artificial root
foraging optimizer (HARFO) which synergizes the idea of
coevolution and root-to-root communication strategy. In
the proposed model, all roots can be generally divided into
the main roots and lateral roots according to the auxin
concentration. The main root as the strongest individuals
can branch and regrow under effect of hydrotropism. The
lateral root involves many branches derived from the main
root, and its growth direction orients from corresponding
main root [25, 26]. Furthermore, in the root-to-root com-
munication, through different effective topology, individual
roots share more information from the elite roots in the early
exploration stage of the algorithm. With multipopulation
coevolution mechanism, the hierarchical population of roots
can be structured with enhanced interactions of individual
behaviors from different subpopulations. By incorporating
a set of hybrid strategies, the proposed HARFO can be
claimed very effective and efficient because the exploitation
and exploration can be elaborately balanced, which guar-
antees finding the optimal thresholds at a more reasonable
time.

This paper is structured as follows: In Section 2, a brief
overview of the proposed hybrid artificial root foraging
optimizer model and algorithm is presented. Section 3
experimentally compares HARFO with other well-known
algorithms on a set of benchmark functions. In Section 4 the
implementation ofHARFO formultilevel threshold for image
segmentation is conducted. In Section 5 final conclusion is
outlined.

2. Hybrid Artificial Root Foraging Optimizer

2.1. Artificial Root Foraging Optimization (ARFO) Model.
This section briefly describes the classical ARFO proposed
in [22], which simulates the intelligent foraging behaviors of
plant roots. As depicted in [22], in order to idealize biological
plant root growth behaviors, some criteria are presented as
follows.

Auxin Concentration

The root’s adaptive growth is conducted by auxin con-
centration, which significantly influences the infor-
mation exchange among root tips. The auxin con-
centration regulates the roots’ spatial structure, after
new roots germinate and grow, and it is dynamically
reallocated instead of static.

Growth Strategies

Regrowing: one root apex elongates forward (or
sideways) in the substrate.

Branching: one root apex produces daughter root
apices.

Root Classification

The whole root system generally consists of three
categories sorted by the auxin concentration from
high to low: the main roots, the lateral roots, and the
dead roots

Root Tropisms

The growth trajectory of plant roots is influenced by
hydrotropism, which makes the growing direction of
the root tips towards the optimal individual position.

Generally, each root implements different growth strategies
and operators according to the above criteria. Each main
root regrows (i.e., elongates itself) while branching new
individuals once some conditions are met. After each growth
cycle, some deteriorated roots are selected as the dead roots
to be eliminated from current population.

2.1.1. Auxin Regulation. Supposing that 𝐴
𝑖
as the auxin

concentration is used to exhibit the nutrient distribution in
artificial soil environment, then it can be stated mathemati-
cally as below:

𝑓
𝑖
=
fitness

𝑖
− 𝑓min

𝑓max − 𝑓min
. (1)

Then

𝐴
𝑖
=

𝑓
𝑖

∑
𝑆

𝑗=1
𝑓
𝑖

, (2)

where fitness
𝑖
is the functional fitness value, 𝑓

𝑖
is the nor-

malization fitness value of the root 𝑖, 𝑓min and 𝑓max are
the maximum and minimum of the current population,
respectively, and 𝑆 is the size of current population. In each
cycle of root growth process, all root taps are sorted by auxin
concentration values defined above. In our model, half of the
sorted population are selected as main roots while the rest of
roots are identified as lateral roots.
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2.1.2.MainRoots’ Growth: Regrowing andBranching. Accord-
ing to the growth strategy of main root in criterion for the
plant root growth behaviors, a main root with high 𝐴

𝑖
value

has strong growth ability of implementing both regrowing
operator and branching operator.

(i) Regrowing Operator. In this regrowing process, the strong
main root can sense environmental stimuli (i.e., nutrient
distribution) and use this information to govern its growth
orientation.Then, the formulation of this operator is given as
below:

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ 𝑙 ⋅ rand ⋅ (𝑥

𝑙𝑏𝑒𝑠𝑡
− 𝑥
𝑡−1

𝑖
) , (3)

where 𝑥𝑡
𝑖
and 𝑥𝑡−1

𝑖
are defined as the position of root 𝑖 at time

step 𝑡 and 𝑡 − 1, respectively, 𝑙 is a local learning inertia, rand
is a random coefficient varying within [0, 1], and 𝑥

𝑙𝑏𝑒𝑠𝑡
is the

local best individual in current population.

(ii) Branching Operator. The main roots with higher auxin
concentration values have higher probability to branch more
individuals. In this operator, for each main root, if its auxin
concentration value is more than a branching threshold
T Branch, it will start generating a certain number of new
individuals as follows:

branch 𝑤
𝑖
individuals if 𝐴

𝑖
> 𝑇 Branch,

nobranching otherelse.
(4)

In principle, the main root in nutrient-rich environment
will forage for energy to obtain higher auxin concentration
and then produces more branches. Thus, the branch number
𝑤
𝑖
can be calculated as

𝑤
𝑖
= 𝑅
1
𝐴
𝑖
(𝑆max − 𝑆min) + 𝑆min, (5)

where 𝑅
1
is a random coefficient within the range [0, 1],𝐴

𝑖
is

the auxin concentration of root 𝑖, and 𝑆max and 𝑆min are the
maximal number andminimal number of the new branching
individuals, respectively, which are usually preset to 4 and 1,
respectively.

The position of a newly branching root is initialized
from the parent main root with Gauss distribution𝑁(𝑥

𝑡

𝑖
, 𝜎
2
),

where 𝜎 can be defined as

𝜎
𝑖
= (

(𝑖max − 𝑖)

𝑖max
)

𝑛

⋅ (𝜎ini − 𝜎fin) + 𝜎fin, (6)

where 𝑖 is the current iteration index, 𝑖max is the maximum
of iterations, the initial standard deviation 𝜎ini is determined
by the range of searching, and 𝜎fin donates the final standard
deviation.

2.1.3. Lateral Roots Growth: Random Walking. At the 𝑡th
iteration, each lateral root tip generates a random head angle
and a random elongation length, given as follows: all lateral

roots will conduct random searches at each feeding process;
random search strategy is considered to be the most effective
foraging strategy in nutrient distributed environment [27,
28]. Each lateral root generates a random growth angle and
random elongated length, which is given by

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ rand ⋅ 𝑙max𝐷𝑖 (𝜑) ,

𝜑 =
𝛿
𝑖

√𝛿
𝑇

𝑖
⋅ 𝛿
𝑖

,
(7)

where 𝑙max is the maximum elongate length unit (i.e., objec-
tive function boundary range), rand is a random number
with uniform distribution in [0, 1], and 𝜑 is a growth angle
computed by a random vector 𝛿

𝑖
.

2.1.4. Dead Roots’ Growth: Shrinkage. In the case that the
root does not get enough nutrients from soil, its corre-
sponding auxin concentration is intended to be weak. Once
auxin concentration is lower than a certain threshold, the
sustained growth probability will be stagnated. This enables
the corresponding root to be simply removed from the
current population. The branching criterion and dead roots
eliminating criterion are listed as follows:

𝑁
𝑖
= 𝑁
𝑖
+ 𝑤
𝑖

if 𝑋
𝑖
> 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ,

𝑁
𝑖
= 𝑁
𝑖
− 1 if 𝑋

𝑖
< 𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦,

(8)

where 𝑁
𝑖
is the current population size, 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ is the

branching threshold, 𝑤
𝑖
is the branching number defined by

(5), and T Nmority is the death threshold.

2.2. Root-to-Root Communication. The intrinsic property of
the “population” in swarm intelligence is collective intel-
ligence emerging by a number of connected individuals
exchanging information in some specific topologies [27–30].
This means that the spatial topological structure plays an
important role in enhancing dynamic interaction between
individuals and optimizing information propagation path
across the structured population.

Accordingly, the population topology technique has been
strongly recommended for potential improvement of swarm
intelligence or evolutionary algorithms [30–33]. Particu-
larly, by lucubrating on the relationship between population
topologies structure and algorithmic performances in [29],
Kennedy and Mendes conclude that the Von Neumann
exhibits better convergence speed on a variety of test func-
tions, as shown Figures 1(a) and 1(b).

In ARFO, (3) shows that an individual’s candidate neigh-
borhood termed 𝑥

𝑙𝑏𝑒𝑠𝑡
is selected from the entire population,

which indicates one central node influences, and is influenced
by all other members of the population [26]. In other words,
this population topological structure ofARFOessentially falls
into the star topology, which is a fully connected neighbor-
hood relation, as shown in Figure 1(c). From [29], it is claimed
that theVonNeumannhas a lower connectivitywhile covers a
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(a) Three-dimensional Von
Neumann

(b) Two-dimensional Von
Neumann

(c) Star

Figure 1: Population topology.

Von Neumann
Split population of 𝑃 roots into𝑀 rows and𝑁 cols, and 𝑃 = 𝑀 ∗𝑁.
Begin
For 𝑖 = 1 : 𝑁

𝑥
𝑖4
(𝑖, 1) = (𝑖 − Cols) mod 𝑁;

If 𝑥
𝑖4
(𝑖, 1) == 0 𝑥

𝑖4
(𝑖, 1) = 𝑁;

𝑥
𝑖4
(𝑖, 2) = 𝑖 − 1;

If (𝑖 − 1) mod Cols == 0 𝑥
𝑖4
(𝑖, 2) = 𝑖 − 1 + Cols;

𝑥
𝑖4
(𝑖, 3) = 𝑖 + 1;

If 𝑖 mod Cols == 0

𝑥
𝑖4
(𝑖, 3) = 𝑖 + 1 − Cols;

𝑥
𝑖4
(𝑖, 4) = (𝑖 + Cols) mod 𝑁;

If 𝑥
𝑖4
(𝑖, 4) == 0

𝑥
𝑖4
(𝑖, 4) = 𝑁;

End

Algorithm 1: The pseudocode of Von Neumann.

larger search space than the star type, which tends tomaintain
better diversity of population and reduces the chances of
falling into local optima.The procedures of representing Von
Neumann structure are listed in Algorithm 1.

2.3. Coevolution Mechanism. Hierarchy is a common phe-
nomenon in the development of plant root system [25, 26].
With the severity of environmental stress, homogeneous
main roots continuously self-grow-branch and evolve while
being a part of heterogeneous roots of different plant types
and that plant is in turn a part of a specific ecosystem niche
[27]. As a result, this hierarchical coevolution approach is
incorporated to improve algorithm efficiency via decom-
posing large-scale problems into simple tasks optimized in
parallel. As depicted in Figure 2, the flat ARFO is structured
into two levels with different topologies as follows.

Hypothesize that population 𝑃 = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑀
}, and

each swarm 𝑆
𝑘
= {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}. In each growth phase, the

new individual or agent in level 2 is defined as

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ 𝑙
1
⋅ rand

1
⋅ (𝑥
𝑡−1

𝑖𝑏𝑒𝑠𝑡
− 𝑥
𝑡−1

𝑖
) + 𝑙
2
⋅ rand

2

⋅ (𝑥
𝑡−1

𝑝𝑏𝑒𝑠𝑡
− 𝑥
𝑡−1

𝑖
) ,

(9)

Level 1

Level 2

Top 1

Population in level 1
Roots in level 2

Top 1, 1 Top 1, m

Top 1: topology in level 1

topology in level 2

· · ·

P1

P2 P3

Pn

Top 1, 1,. . ., Top 1, m:

Figure 2: Multispecies coevolution mechanism.

where 𝑥𝑡−1
𝑖𝑏𝑒𝑠𝑡

is the best individual within current population
which denotes cooperation in level 2 and 𝑥

𝑡−1

𝑝𝑏𝑒𝑠𝑡
is the global

best individual among all populations which exchanges
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Initialization
Initialize𝑀 root populations, each consists of𝑁 individuals. And set the maximum iteration numberMaxT.
Set 𝑡 = 0.
Calculate auxin concentration values of all populations by (2).

While (terminal conditions not satisfied)
Divide each population into main root and lateral root groups according to auxin concentration.
For each population 𝑃

𝑖

Construct Von Neumann topology as shown in Algorithm 1.
For each main roots group

Implement regrowing operator by (9).
Evaluate auxin concentration values of renewal main roots, and apply greedy selection.
If the condition of branching determined by (4) is met, continue; otherwise, go to lateral-roots loop.
Calculate the branching number by (5), and branching new roots by (6).
Adjust the population size.
End for
Loop over each mainroot tip

For each Lateral-roots group.
Lateral-root take regrowing operator by (7).
Evaluate the auxin concentration values of the renewal lateral roots, apply greedy selection.
Adjust the corresponding nutrient concentration value by (2);

End for
Loop over each root tip of lateral-roots
Remove the dead individuals from each population according to their auxin concentration values by (8).
Loop over each population
𝑡 = 𝑡 + 1;

End while
Output the best result.

Algorithm 2: The pseudocode of HARFO.

information across populations in level 1. 𝑙
1
and 𝑙
2
are the

random coefficients. rand
1
and rand

2
are random numbers

with uniform distribution in [0, 1], respectively.

2.4. The Proposed Algorithm. By hybridizing ARFO with
these complex degrees of strategies, namely, root-to-root
communication and coevolutionmechanism, the hybrid arti-
ficial root growth optimizer (HARFO) can regulate the trajec-
tory of each root through the specific topology.Moreover, the
evolution of population is guided by historical experience in
level 2 and global best information in level 1, which can imply
diversity of population.Themain procedures of the proposed
HARFO are listed in Algorithm 2. The flowchart of HARFO
is presented in Figure 3.

3. Benchmark Test

3.1. Test Functions. For the purpose of performance compar-
ison, the HARFO, together with other state-of-the-art meta-
heuristic algorithms, is evaluated on a set of test functions
from basic benchmarks and CEC 2005 test beds. The defini-
tion and mathematical representation of them are available
in Table 1 where 𝑓

1
∼𝑓
5
are basic benchmark functions and

𝑓
6
∼𝑓
10
are taken from CEC 2005 test suit, which is complex

rotation and shift problem based on the basic test functions.
Furthermore, in order to comprehensively evaluate the

performance of the proposed algorithm, a suit of scalable
shifted and rotated benchmarks from CEC 2014 test bed is
employed in the test [34–36]. The dimensions, initialization
ranges, and global optimum of each function (𝑓

11
∼𝑓
20
) are

listed in Table 2.

3.2. Experimental Configuration. For the purpose of perfor-
mance comparison, the HARFO is compared with several
classical evolutionary algorithms including particle swarm
optimization (PSO) [37, 38], cooperative coevolution genetic
algorithm (CCGA) [39], pure artificial root foraging opti-
mization algorithm (ARFO) [22], and artificial bee colony
algorithm (ABC) [20] on ten test benchmarks given above.
Specifically, CCGA is a parallelized GA variant derived from
the dimension-distributed coevolution mode, which divides
a high-dimensional problem into several lower-dimensional
subproblems and then assigns them to corresponding sub-
swarms to coevolve [39]. On each function, the algorithm
is independently run 20 times and terminated when the
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End

Yes

Construct Von Neumann
topology

Construct Von Neumann
topology

Construct Von Neumann
topology

Criterion satisfied?

Set iterations number t = 0

t = t + 1

No

Update pbest if necessary

Le
ve

l 2
Le

ve
l 1

Main root operation:
regrow and branch

Main root operation:
regrow and branch

Main root operation:
regrow and branch

Lateral root operation Lateral root operation Lateral root operation

Dead root elimination Dead root elimination Dead root elimination

Construct star topology

Initialize M populations (Pi, i ∈
, i ∈

[1 : M]),
each possess N individuals (Sij [1 : M], j ∈ [1 : N])

S1N S2N SM1 SMNS11 S21 · · ·· · ·· · ·· · ·

Population 1: P1 Population 2: P2 Population M: PM

Figure 3: The flowchart of HARFO algorithm.

number of function evaluations reaches 100,000 for each run.
The common population size associated with ARFO, PSO,
and ABC is set to 20.

For PSO, the global versionwith inertiaweight is adopted,
and its parameters directly follow the default setting of [37,
38]: the acceleration factors 𝑐

1
= 𝑐
2
= 2.0 and the decaying

inertia weight 𝜔 starting at 0.9 and ending at 0.4. For ABC,
the limit is set to 𝑆𝑁 × 𝐷, where 𝐷 is the dimension of the
problem and SN is half of population size [20]. For CCGA,
the subswarm number is set to 10, and other parameters are
the same as its original literature [39]. The parameter setting

of HARFO and ARFO can be empirically summarized in
Table 3. For the proposedHARFO, the population number𝑁,
the branching, and dead thresholds should be tuned firstly in
next section.

3.3. Parameters Sensitivity

(i) Sensitivity in relation to PopulationNumber𝑀 in Level 1. To
scientifically assess the effect of parameter 𝑀, the following
experiment is designed. First, 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ and 𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 are
assigned empirically with initial values 10 and 5, respectively.
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Table 1: Parameters of basic benchmarks and CEC 2005 benchmarks (𝑥∗ is the optimal solution, 𝑓(𝑥∗) is the best values of function).

𝑓 Functions Dimensions Initial range 𝑥
*

𝑓(𝑥
*
)

𝑓
1 Sphere function 20 [−100, 100]

𝐷
[0, 0, . . . , 0] 0

𝑓
2 Rosenbrock function 20 [−30, 30]

𝐷
[1, 1, . . . , 1] 0

𝑓
3 Rastrigrin function 20 [−5.12, 5.12]

𝐷
[0, 0, . . . , 0] 0

𝑓
4 Schwefel function 20 [−500, 500]

𝐷
[420.9867, . . . , 420.9867] 0

𝑓
5 Griewank function 20 [−600, 600]

𝐷
[0, 0, . . . , 0] 0

𝑓
6 Shifted Sphere Function 20 [−100, 100]

𝐷
[0, 0, . . . , 0] −450

𝑓
7 Shifted Rosenbrock’s Function 20 [−100, 100]

𝐷
[0, 0, . . . , 0] 390

𝑓
8 Shifted Schwefel’s Problem 20 [−100, 100]

𝐷
[0, 0, . . . , 0] −450

𝑓
9

Shifted Rotated Griewank’s
Function without Bounds 20 No bounds [0, 0, . . . , 0] −180

𝑓
10 Shifted Rastrigin’s Function 20 [−5, 5]

𝐷
[0, 0, . . . , 0] −330

Table 2: Parameters of CEC 2014 test functions (𝑥∗ is the optimal solution; 𝑓(𝑥∗) is the best values of function; and 𝑂
𝑖
is the shifted global

optimum defined in “shift data x.txt,” which is randomly distributed in [−80, 80]
𝐷).

𝑓 Functions Dimensions Initial range 𝑥
*

𝑓(𝑥
*
)

𝑓
11

Rotated High Conditioned Elliptic
Function 30 [−100, 100]

𝐷
𝑂
1

100

𝑓
12 Rotated Bent Cigar Function 30 [−100, 100]

𝐷
𝑂
2

200
𝑓
13 Rotated Discus Function 30 [−100, 100]

𝐷
𝑂
3

300

𝑓
14

Shifted and Rotated Rosenbrock’s
Function 30 [−100, 100]

𝐷
𝑂
4

400

𝑓
15

Shifted and Rotated Ackley’s
Function 30 [−100, 100]

𝐷
𝑂
5

500

𝑓
16

Shifted and Rotated Weierstrass
Function 30 [−100, 100]

𝐷
𝑂
6

600

𝑓
17

Shifted and Rotated Griewank’s
Function 30 [−100, 100]

𝐷
𝑂
7

700

𝑓
18 Shifted Rastrigin’s Function 30 [−100, 100]

𝐷
𝑂
8

800

𝑓
19

Shifted and Rotated Rastrigin’s
Function 30 [−100, 100]

𝐷
𝑂
9

900

𝑓
20 Shifted Schwefel’s Function 30 [−100, 100]

𝐷
𝑂
10

1000

Table 3: Parameters of HARFO and ARFO for optimization.

HARFO
The number of initial population 20
The maximum number of population 100
T Branch 10
T Nmority 5
𝑆
𝑚𝑎𝑥

4
𝑆
𝑚𝑖𝑛

1
Population number 8
The number of initial population 4
The maximum number of single population 50
BranchG 10
Nmority 5
𝑆
𝑚𝑎𝑥

4
𝑆
𝑚𝑖𝑛

1

Then𝑀 is varied from 2 to 17 with a step size 3. For each value
of 𝑀, HARFO is implemented for 20 times on six selected
30-dimensional 𝑓

11
, 𝑓
12
, 𝑓
13
, 𝑓
14
, and 𝑓

15
. And computation

results in terms of mean and standard deviation are given
in Table 4. It can be visibly observed from Table 4 that
algorithm with 𝑀 equal to 2 and 8 can perform superior to
that with other𝑀 values. Comparedwith𝑀 = 2, the result of
algorithm with𝑀 = 8 is relatively better on three of five test
benchmarks. Therefore, the optimal setting of the parameter
𝑀 can be𝑀 = 8 as general usage of the algorithm.

(ii) Sensitivity in relation to T Branch and T Nmority in Level
2.𝑇 𝐵𝑟𝑎𝑛𝑐ℎ and𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 play vital roles in the population
varying process, and there are critical correlations between
them; thus, these two parameters are analyzed together. In
this experiment, population number 𝑀 is fixed to 8, and
the values of 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ are varied as 5, 10, and 15 while the
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Table 4: Results obtained by HARFO with different population number.

𝑀 2 5 8 11 14 17

𝑓
11

Mean 1.9663E + 01 3.0644E + 01 2.0535E + 01 3.4134E + 01 3.7901E + 01 3.4393E + 01
Std 6.5353E − 01 7.3232E − 01 4.9023E − 01 8.1423E − 01 9.0482E − 01 8.2108E − 01

𝑓
12

Mean 6.5523E + 01 7.3533E + 01 4.9234E + 01 8.1788E + 01 9.0872E + 01 8.2462E + 01
Std 1.1212E + 02 1.2511E + 02 8.4181E + 01 1.3922E + 02 1.5537E + 02 1.4099E + 02

𝑓
13

Mean 3.1865E + 01 3.5876E + 01 3.7405E + 01 6.2144E + 01 6.9037E + 01 6.2648E + 01
Std 1.0089E + 01 1.9254E + 01 1.2886E + 01 2.1429E + 01 2.3784E + 01 2.1583E + 01

𝑓
14

Mean 3.7411E + 01 4.1955E + 01 2.8088E + 01 4.6603E + 01 5.1842E + 01 4.7044E + 01
Std 9.6699E − 01 1.0881E + 00 7.2544E − 01 1.2127E + 00 1.3389E + 00 1.2150E + 00

𝑓
15

Mean 7.9732E + 01 8.9323E + 01 5.9839E + 01 9.9226E + 01 1.1045E + 02 1.0022E + 02
Std 3.3109E + 01 3.7102E + 01 2.4897E + 01 4.1900E + 01 4.5952E + 01 4.1699E + 01

Table 5: Results obtained by HARFO with different T Branch and T Nmority.

T Branch/T Nmority 5/0 10/0 15/0 5/5 10/5 15/5

𝑓
11

Mean 2.9494E + 01 2.9835E − 01 1.7934E + 01 2.0332E + 01 1.6815E + 01 3.0914E + 02
Std 6.0931E − 01 3.9945 6.1453E − 01 5.0094E − 01 4.0143E − 01 9.0093

𝑓
12

Mean 4.5534E + 02 2.4346E + 03 8.6729E − 01 2.4621E + 02 4.0316E + 01 3.4344E + 01
Std 2.3424E + 02 1.5529E + 02 3.4031E + 01 1.6436E + 02 6.8932E + 01 5.6987

𝑓
13

Mean 3.0352E + 01 6.3321E + 01 3.6239E + 01 3.1234E + 02 3.0629E + 01 1.0342E + 02
Std 4.0945E + 01 8.0345E + 01 2.9023E + 01 9.0945E + 01 1.0552E + 01 9.0934E + 01

𝑓
14

Mean 4.0333E + 01 1.4452E + 02 4.8845E + 02 2.0340E + 02 2.3000E + 01 2.4136E + 00
Std 7.9834 6.8554 5.2231E + 01 2.4442E + 01 5.9403E − 01 5.9453E − 01

𝑓
15

Mean 1.0934E + 02 5.5423E + 01 4.9000E + 01 2.2454E + 02 4.9000E + 01 1.0043E + 02
Std 4.2213E + 02 4.7775E + 01 6.0003E + 01 8.8896E + 01 2.0387E + 01 3.2009E + 01

relevant 𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 is selected to be 0 or 5. From Table 5, it
is clearly visible that the HARFO obtains best computation
results on most test functions including 𝑓

11
, 𝑓
13
, 𝑓
14
, and

𝑓
15

when 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ/𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 are set as 10/5. Therefore,
the optimal configuration of 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ/𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 is 10/5
as general usage of the algorithm.

As the summary of this section, all suggested values of
the control parameters can be listed as follows: 𝑀 = 8,
𝑇 𝐵𝑟𝑎𝑛𝑐ℎ = 10, and 𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 = 5. These values are
determined by experiments where the correlative 𝑇 𝐵𝑟𝑎𝑛𝑐ℎ

and 𝑇 𝑁𝑚𝑜𝑟𝑖𝑡𝑦 in level 2 are taken into consideration
together, and the third one in level 1 is varied over an interval
with a step size.

3.4. Computational Results

(i) Comparative Results on 30-Dimensional Case. HARFO is
comparedwithABC, PSO, andCCGAon ten 30-dimensional
benchmarks 𝑓

1
–𝑓
10
. On each benchmark, these algorithms

are independently implemented 20 times and terminated
when the number of function evaluations reaches 100,000 for
each run.The statistical results in terms ofmean and standard
deviation of each benchmark over 20 runs are calculated and
shown in Table 6. As revealed from experimental results in
Table 6, HARFO generally shows relative outperformance
for solving most test benchmarks, compared to CCGA and

ABC, which obtain the second and third best rankings,
respectively.

On 𝑓
1
, HARFO, CCGA, and ABC perform close to each

other, relatively better than other algorithms. Specifically,
CCGA does better than ABC, followed by CCGA. On 𝑓

2
,

ARFO remarkably outperforms others as well as CCGA
and ABC obtain close results, significantly better than other
algorithms. For complex multimodal variable-separable 𝑓

3
,

variable-separable 𝑓
4
, and nonseparable 𝑓

5
, HARFO per-

forms slightly better than CCGA and ABC, furthermore sig-
nificantly better than other algorithms. Particularly, on𝑓

3
and

𝑓
5
, the search performance order can be shown apparently as

HARFO > CCGA > ABC > ARFO > PSO. On 𝑓
6
–𝑓
10
, which

are more complex shifted and rotated benchmarks, HARFO
can obtain best performance in terms of mean, maximum,
and minimum on most of five benchmarks including 𝑓

6
, 𝑓
8
,

𝑓
9
, and 𝑓

10
and ARFO also outperforms other algorithms on

𝑓
7
. Apparently, HARFO shows significant improvement over

other algorithms, especially ARFO.

(ii) Comparative Results on 100-Dimensional Case. In order to
assess the scalability of our proposed algorithm, which is cru-
cial for its applicability to real-world high-dimensional prob-
lems, the test benchmarks are extended to 100-dimensional
problems as high-dimensional cases. The experimental
results are given in Table 7. From Table 7, it is observed that
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Table 6: Comparison of results with 30 dimensions obtained by each algorithm (𝑓(𝑥) − 𝑓(𝑥
∗
)).

Func. HARFO ABC ARFO PSO CCGA

𝑓
1

Mean 4.2817E − 13 1.3230E − 20 8.4537E − 03 6.4050E − 01 1.2942E − 20
Std 5.8831E − 13 4.3300E − 20 6.6176E − 03 2.2735E − 01 4.2357E − 20

𝑓
2

Mean 7.2733E − 01 3.9681E + 00 6.9380E + 01 2.6402E + 02 3.8817E + 00
Std 1.5903E + 00 3.7709E + 00 1.3271E + 00 1.4057E + 02 3.6888

𝑓
3

Mean 2.1575E − 13 4.9539E + 01 7.5788E + 01 1.3201E + 02 4.8976E + 01
Std 1.2233E − 12 1.3063E + 01 1.1519E + 00 3.7770E + 02 1.2903E + 01

𝑓
4

Mean 7.6514E − 04 2.8590E − 04 4.4610E + 03 2.9702E + 02 2.8094E − 04
Std 6.3836E − 04 2.7604E − 04 2.2428E + 02 2.1757E + 02 1.5404E − 04

𝑓
5

Mean 5.0157E − 03 8.3921E − 02 9.2917E − 01 3.9481E + 00 8.2891E − 02
Std 4.9156E − 03 7.3446E − 02 2.8713E − 01 2.6640E − 03 7.2544E − 02

𝑓
6

Mean 4.0543E − 14 7.5624E − 14 6.3095E + 02 9.4363E + 01 7.4696E − 14
Std 3.4998E − 14 3.0806E − 14 7.8376E + 02 3.9237E + 01 6.6428E − 14

𝑓
7

Mean 8.4784E + 00 2.4324E + 01 1.4680E + 00 7.0365E + 06 2.4025E + 01
Std 1.2762E + 00 7.1995E + 01 2.0352E + 00 2.3168E + 07 7.1111E + 01

𝑓
8

Mean 1.9573E + 02 9.0699E + 02 1.9471E + 02 2.0902E + 04 8.9575E + 02
Std 4.6811E + 02 5.8412E + 02 1.5947E + 01 4.8404E + 03 5.7698E + 02

𝑓
9

Mean 1.6015E + 03 2.0949E + 03 5.2497E + 03 2.5180E + 03 2.0664E + 03
Std 6.9952E − 01 7.4802E − 13 5.2374E + 02 3.8381E + 02 7.6612E − 13

𝑓
10

Mean 6.8062E + 00 5.9028E + 01 3.4875E + 02 6.6128E + 01 5.8311E + 01
Std 6.4614E − 01 1.7745E − 01 6.5806E + 01 5.7449E + 00 1.7554E − 01

Table 7: Comparison of results with 100 dimensions obtained by each algorithm (𝑓(𝑥) − 𝑓(𝑥
∗
)).

Func. HARFO ABC ARFO PSO CCGA

𝑓
1

Mean 1.2867E − 03 2.5048E − 03 4.3104E − 02 4.5449E + 02 1.2558E − 02
Std 6.2167E − 03 5.0736E − 03 7.8429E − 03 1.1368E + 02 5.7436E − 03

𝑓
2

Mean 2.3158E + 02 6.2667E + 02 6.0868E + 02 1.0874E + 04 9.8880E + 01
Std 2.9080E + 01 6.8733E + 02 3.3206E + 01 6.7649E + 04 3.2121E + 01

𝑓
3

Mean 6.7884E + 02 1.4622E + 02 9.1064E + 02 5.6672E + 03 8.8089E + 02
Std 1.3927E + 02 1.8944E + 01 6.6473E + 01 7.2860E + 02 6.7302E + 01

𝑓
4

Mean 1.7000E + 01 5.1011E + 02 1.7000E + 01 1.7000E + 01 1.8874E + 01
Std 4.0850E + 00 1.2089E + 02 2.3858E + 00 7.2467E + 00 2.6488E + 00

𝑓
5

Mean 1.7451E − 01 5.4011E + 01 1.6357E + 01 1.5808E + 03 1.7160E − 01
Std 2.1547E − 01 2.7978E + 01 4.4982E + 00 3.2400E + 02 1.9940E − 01

𝑓
6

Mean 6.4416E + 03 7.2900E + 04 9.8642E + 03 2.3474E + 05 9.5026E + 03
Std 1.1540E + 03 2.5311E + 03 1.0969E + 03 4.0396E + 04 1.1567E + 03

𝑓
7

Mean 3.3781E + 10 2.8028E + 10 1.1095E + 09 6.8711E + 09 1.1688E + 09
Std 1.1606E + 10 8.0320E + 09 4.6126E + 08 1.9879E + 08 4.4435E + 08

𝑓
8

Mean 1.2057E + 05 3.5396E + 05 1.2118E + 05 4.5362E + 05 1.3464E + 05
Std 1.7588E + 04 9.1560E + 04 4.1061E + 03 3.1074E + 04 4.5623E + 03

𝑓
9

Mean 1.5149E + 03 1.8168E + 04 3.5279E + 04 2.8477E + 04 3.9199E + 04
Std 1.0312E + 02 2.7420E + 03 1.3535E + 03 8.9127E + 02 1.5039E + 03

𝑓
10

Mean 2.2175E + 02 6.5384E + 03 1.1434E + 03 1.8442E + 03 1.2704E + 03
Std 3.7382E + 00 3.6678E + 00 1.2423E + 02 2.2994E + 02 1.3803E + 02

HARFO significantly outperforms other algorithms almost
all test functions except for 𝑓

2
and 𝑓
7
. Particularly, compared

to other algorithms, the solution accuracy of HARFO on
shifted and rotated 𝑓

5
, 𝑓
9
, and 𝑓

10
is increased by one

order of magnitude. From the distinct difference between
dimension = 20 and 100 results, it is clearly observed that with

dimensionality increasing, the proposed algorithm exhibits
its persistence and performs better.

Finally, the performance improvement obtained by our
proposed algorithm can be generally explained: when other
algorithms are trapped in the local optima, the HARFO
can utilize the root-to-root communication mechanism
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Table 8: Comparison of results with 30 dimensions obtained by each algorithm (𝑓(𝑥) − 𝑓(𝑥
∗
)).

Func. HARFO ABC ARFO PSO CCGA

𝑓
11

Mean 1.6815E + 01 1.9799E + 07 1.2573E + 07 2.9358E + 08 1.9563E + 02
Std 3.9994E − 01 6.7129E + 06 1.0473E + 07 2.1609E + 08 6.6330E + 02

𝑓
12

Mean 3.1528E + 01 7.5904E + 02 1.0104E + 08 7.0153E + 08 7.5001E + 02
Std 2.4023E + 01 7.5572E + 02 2.3503E + 08 2.8266E + 08 7.4673E + 02

𝑓
13

Mean 2.8969E + 01 1.3000E + 01 1.5265E + 02 4.5742E + 02 1.3000E + 01
Std 1.5290E + 00 2.5348E + 01 5.0791E + 01 1.5825E + 02 2.8136E + 01

𝑓
14

Mean 2.2457E + 01 2.4494E + 01 2.4296E + 01 2.5464E + 01 2.7188E + 01
Std 4.8265E − 01 4.8600E − 02 1.2623E − 02 7.6957E − 02 5.3946E − 02

𝑓
15

Mean 4.2697E + 01 1.9000E + 01 3.6291E + 01 5.0531E + 01 1.9000E + 01
Std 8.1373E + 00 1.7665E + 00 3.1039E + 00 2.2499E + 00 1.0608E + 00

𝑓
16

Mean 3.1060E − 03 1.3200E − 03 5.6546E + 00 1.2402E + 02 1.4652E − 03
Std 1.5530E − 03 3.8400E − 03 7.0040E + 00 3.0668E + 01 4.4330E − 03

𝑓
17

Mean 6.1585E − 06 5.1208E + 02 1.5884E + 02 3.1284E + 02 5.9117E + 02
Std 3.3153E − 05 1.1126E + 02 3.0743E + 01 4.1798E + 01 1.2844E + 02

𝑓
18

Mean 2.1913E + 03 6.1602E + 06 3.5613E + 05 2.0148E + 03 7.1116E + 06
Std 4.7034E + 02 3.4051E + 06 7.1417E + 05 3.4323E + 02 3.9310E + 06

𝑓
19

Mean 4.7272E + 02 1.6622E + 04 8.5742E + 02 7.3078E + 06 1.5327E + 04
Std 2.2216E + 02 1.4328E + 03 1.2094E + 02 5.5582E + 06 1.3212E + 03

𝑓
20

Mean 2.4618E + 02 2.7362E + 02 2.9471E + 02 4.7931E + 02 2.5231E + 02
Std 1.2685E + 01 1.6578E + 02 9.1791E + 02 2.9374E + 01 1.5287E + 02

to escape. By employing the hierarchical multipopulation
coevolution, the complex task is decomposed into smaller-
scale subproblems.

(iii) Comparative Results on 30-Dimensional CEC 2014 Case.
Computation results in terms of means and stand deviations
of the 20 runs obtained by six algorithms on ten 30-
dimensional CEC 2014 benchmarks are given in Table 8,
within which the best results among those algorithms are
highlighted. From Table 8, the proposed HARFO performs
significantly superior to its counterparts including CCGA
and ABC on most of test benchmarks. Specifically, HARFO
can do better than CCGA on 𝑓

11
, 𝑓
12
, 𝑓
14
, 𝑓
16
, 𝑓
17
, 𝑓
19
,

and 𝑓
20
, followed by ABC and ARFO, PSO cannot obtain

competitive results. On𝑓
13
and𝑓
15
, ABC andCCGAperform

significantly better than ARFO and slightly better than
HARFO. PSO also obtains best result on𝑓

18
. Furthermore, we

can observe that although the shifted and rotated CEC 2014
benchmarks become more difficult to be handled compared
with their classical counterparts and the computation results
are not as satisfactory as those in the classical benchmarks,
HARFO still performs more powerful than other algorithms
on most test cases.This essentially indicates that HARFO has
greater potential to cope with more complex problems.

4. Real-World Application for
Image Segmentation

4.1. Otsu Criterion. The well-known Otsu criterion has been
widely adopted to determine the optimal thresholds with

desired characteristics through computing between-class
variance [7, 8]. The original procedures of Otsu can be listed
as below: at the beginning, a given image consisting of 𝑁
pixels of gray levels falling into the range [0, 𝐿−1] is taken into
consideration. ℎ(𝑖) donates the pixel number of gray-level 𝑖
and 𝑃(𝑖) represents the probability of gray-level 𝑖.

Then, we have

𝑁 =

𝐿−1

∑

𝑖=0

ℎ (𝑖) ,

𝑃 (𝑖) =
ℎ (𝑖)

𝑁
,

for 0 ≤ 𝑖 ≤ 𝐿 − 1.

(10)

Hypothesize that 𝑀 − 1 thresholds, namely, {𝑡
1
, 𝑡
2
, . . . ,

𝑡
𝑀−1

}, are required to segment the given image into𝑀 classes:
𝐶
1
for [0, . . . , 1],𝐶

2
for [𝑡
1
+1, . . . , 1], . . .,𝐶

𝑀
for [𝑡
𝑀−1

, . . . , 𝐿],
the optimal thresholds {𝑡∗

1
, 𝑡
∗

2
, . . . , 𝑡

∗

𝑀−1
} selected by Otsu are

described as

{𝑡
∗

1
, 𝑡
∗

2
, . . . , 𝑡

∗

𝑀−1
} = argmax {𝜎2

𝐵
(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑀−1
)} ,

0 ≤ 𝑡
1
≤ 𝑡
2
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑀−1
≤ 𝐿,

(11)
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Table 9: Objective values and thresholds by the Otsu method.

Image 𝑀− 1 = 2 𝑀 − 1 = 3 𝑀 − 1 = 4

Objective values Optimal thresholds Objective values Optimal thresholds Objective values Optimal thresholds
Avion 3.493𝐸 + 3 113, 173 3.13𝐸 + 4 93, 145, 191 3.45𝐸 + 4 84, 129, 172, 203
House 2.24𝐸 + 3 107, 173 2.42𝐸 + 4 84, 137, 181 2.86𝐸 + 4 71, 118, 153, 186
Lena 9.34𝐸 + 3 134, 165, 1.13𝐸 + 4 121, 151, 176 1.26𝐸 + 4 111, 140, 158, 180
Peppers 9.35𝐸 + 3 134, 176 1.13𝐸 + 4 113, 158, 184 1.25𝐸 + 4 103, 140, 167, 189
Safari04 2.53𝐸 + 3 82, 141 2.33𝐸 + 4 65, 107, 151 2.43𝐸 + 4 55, 88, 120, 156
Hunter 5.45𝐸 + 3 102, 146 5.45𝐸 + 3 86, 129, 155 9.75𝐸 + 3 69, 112, 137, 158
Mean CPU time 2.1472 175.776 7945.325

where

𝜎
2

𝐵
=

𝑀

∑

𝑖=1

𝑤
𝑖
∗ (𝑢
𝑖
− 𝑢
𝑡
∗

𝑖

)

2

,

𝑤
𝑖
= ∑

𝑘∈𝐶
𝑖

𝑘 ∗ 𝑃
𝑘
,

𝑢
𝑖
=

𝐿=1

∑

𝑘∈𝐶
𝑖

𝑘 ∗
𝑃
𝑘

𝑤
𝑖

,

𝑖 = 1, 2, . . . ,𝑀.

(12)

Generally, (11) is employed as the fitness function for
heuristic methods based procedure to be optimized. A close
look into this equation will show that it is very similar to the
expression for uniformity measure [40–43].

4.2. Experiment Setup. The image segmentation experi-
ments by HARFO are conducted on a set of image
datasets. These datasets consist of a variety of standard
tested images widely employed in previous studies [42–47],
including avion.ppm, house.ppm, lena.ppm, peppers.ppm,
safari04.ppm, and hunter.pgm with pixels size of 512 ∗ 512

(available at http://decsai.ugr.es/cvg/dbimagenes/). Several
state-of-the-art EA algorithms are selected for comprehensive
comparison, namely, HARFO, ABC [20], ARFO [22], CCGA
[39], and IDPSO [12]. Particularly, the IDPSO is an existing
enhanced PSO variant with intermediate disturbance search-
ing strategy recently proposed in [12] for image segmentation,
which has gained satisfactory image segmentation 𝑟 results.
We will directly compare HARFO with existing computation
results (i.e., for lena, peppers, and hunter) of IDPSO which
have been reported in [12]. The parameters of HARFO,
ABC, ARFO, PSO, and CCGA follow the optimal settings in
Section 3.2. And the parameters of IDPSO are set the same as
its original literature [12]. In this test, the proposed algorithm
is to maximize the objective fitness within less computation
time.The thresholds numbers𝑀−1 are set to 2, 3, 4, 5, 7, and
9. And Figure 4 presents test images and their histograms.

4.3. Experimental Results and Analysis

Case 1 (segmentation results with 𝑀 − 1 = 2, 3, 4). Table 9
lists the objective values andmean computational time found

by pure Otsu, which are partly reported in [12]. In practical
real-time application, we hope that algorithms can keep a
suitable balance of running time and high accuracy [48].
As shown in Table 9, due to the exhaustive search feature,
Otsu needs to consume too long CPU time while achieving a
satisfactory optimal thresholding. It can be seen fromTable 10
that the proposed HARFO provides generally close results in
terms of objective values and standard deviation compared
with ABC and ARFO on some test cases, such as avion and
lena. On lena, IDPSO and CCGA perform similarly, still
a little worse than HARFO. At the same time considering
the relevant results form Table 9, the proposed HARFO
algorithm consumes less CPU time than its counterparts,
whichmeans that HARFO shows better efficiency. Compared
with other algorithms, the HARFO has coevolution mecha-
nism to perform better global search in higher-dimensional
space.

Case 2 (segmentation results with 𝑀 − 1 = 5, 7, 9). Table 11
gives computational results with 𝑀 − 1 = 5, 7, and 9
in terms of average fitness and standard deviation of each
algorithm. From Table 11, it is clearly observed that there
are statistically significant differences between Cases 1 and 2
based on these segmentation algorithms, in aspects of both
efficiency and stability. Due to the hybrid optimal strategies,
HARFO exhibits obviously promising performance on this
higher-dimensional segmentation case with𝑀−1 = 5, 7, and
9. Among these methods except HARFO, the ABC method
also possesses relative powerful exploration ability due to
usage of the scout bees operation. However, as shown in
Table 11, as the number of segmentation thresholds increases,
the results in terms of fitness values found by HARFO are
significantly better than that of other methods, including
the ABC algorithm. Generally, it can be concluded that
HARFOperforms better than other algorithms in this higher-
dimensional scenario.

5. Conclusions

This paper proposes and develops a novel bionic optimization
algorithm inspired by plant root growth mechanism to solve
multilevel threshold image segmentation, namely, hybrid
artificial root foraging optimizer (HARFO). Based on original
single-colony ARFO, the potential of HARFO to improve the
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Figure 4: Test images and their histograms.



Computational Intelligence and Neuroscience 13

Table 10: Objective values and standard deviation by heuristic methods on Otsu algorithm.

Image 𝑀− 1
Objective values (standard deviation)

HARFO ABC ARFO CCGA IDPSO

Avion

2 4.3909E + 04 3.8752E + 04 3.8870E + 04 3.902E + 04 3.948E + 04
3.8166E − 01 8.7275E − 12 1.8550E − 02 8.642E − 02 1.594E − 01

3 4.4003E + 04 3.8839E + 04 3.8948E + 04 4.034E + 04 4.013E + 04
2.0072E − 01 2.1530E − 01 1.2917E − 01 4.442E − 01 5.238E − 01

4 4.4031E + 04 3.8889E + 04 4.4001E + 04 4.441E + 04 4.111E + 04
5.9884E − 01 5.3222E − 01 9.4322E − 01 1.542E − 01 2.442E − 01

House

2 3.6206E + 04 3.1941E + 04 3.2069E + 04 3.423E + 04 3.551E + 04
3.7387E − 02 0.0000E + 00 7.0560E − 02 2.194E − 01 5.422E − 04

3 3.6371E + 04 3.2082E + 04 3.2209E + 04 3.441E + 04 3.532E + 04
3.5218E − 02 4.2787E − 02 2.2613E − 01 5.213E − 01 7.522E − 03

4 3.6430E + 04 3.2137E + 04 3.2332E + 04 3.424E + 04 3.575E + 04
1.0542E + 00 5.4974E − 01 7.3052E − 01 2.113E + 00 5.094E − 02

Lena

2 2.2663E + 04 1.3928E + 04 1.0034E + 04 2.132E + 03 9.3449E3
1.0934E − 02 5.0944E − 12 5.4093E − 02 2.422E − 01 5.46E − 12

3 2.4983E + 04 2.0233E + 04 2.1033E + 04 2.142E + 04 1.1334E4
8.0934E − 03 7.42343E − 02 4.4421E − 01 2.499E − 02 9.095E − 12

4 2.2742E + 04 2.0003E + 04 1.9999E + 04 2.042E + 04 1.2558E4
2.6544E − 01 6.42245E − 01 5.4226 5.453 4.336E − 1

Peppers

2 1.0340E + 04 1.9533E + 04 2.0344E + 04 9.924E + 03 9.3515E3
4.5333E − 12 5.34337E − 12 7.5652E − 02 5.424E − 01 1.27E − 11

3 1.1322E + 04 1.0125E + 04 1.1333E + 04 1.153E + 04 1.1269E4
1.4422E + 00 2.5566E − 02 2.4223E − 01 5.5301 5.46E − 12

4 1.9834E + 04 1.9593E + 04 1.9818E + 04 1.993E + 04 1.2525E4
9.0452E − 11 9.7863E − 02 1.9887 4.522E − 01 5.45E − 12

Safari04

2 2.5866E + 04 2.2766E + 04 2.2984E + 04 2.414E + 04 2.363E + 04
5.6183E − 01 0.0000E + 00 4.7684E − 02 5.252E − 01 5.414E − 02

3 2.5954E + 04 2.2865E + 04 2.3015E + 04 2.422E + 04 2.309E + 04
9.5100E − 01 3.5163E − 02 2.0405E − 01 7.532E − 01 5.522E − 01

4 2.6005E + 04 2.2903E + 04 2.3122E + 04 2.443E + 04 2.442E + 04
7.0754E − 01 1.0771E + 00 1.8869E − 01 2.0934 5.720E − 02

Hunter

2 2.2311E + 04 1.0378E + 04 1.0389E + 04 5.042E + 02 5.4491E3
0 0 2.0462E − 01 5.642E − 01 0

3 6.5233E + 03 3.0422E + 03 6.5222E + 03 6.043E + 03 6.4260E3
2.4122 8.4544 5.4223E − 01 5.3252 1.774E − 1

4 6.4522E + 04 1.1444E + 04 6.8632E + 03 1.214E + 04 6.9721E3
1.0222 5.7733 5.0530 3.534 1.4463

global search performance and keep diversity of population
relies on the combination of the root-to-root communication
and multipopulation cooperative mechanism. With root-
to-root communication, information exchanging between
individuals can be enhanced through different efficient
topologies. With coevolution mechanism, the hierarchical
spatial population driven by multipopulations is constructed
to ensure that diversity of population is well kept.

The comparative experiments of HARFO in compari-
son with several classical population based algorithms are
conducted on a set of 20-dimensional and 100-dimensional
benchmarks. The experimental results validate the supe-
riority of the proposed algorithm. Finally, the HARFO is

employed to handle the image segmentation problems with
multilevel threshold. Computational results achieved by this
method on a suit of images dataset show that the proposed
algorithm has significant potential to be a novel effective and
efficient image processing approach. In our future work, we
will focus on perfecting this novel optimization framework
from the perspective of relevance theory.
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Table 11: Objective value and standard deviation by the compared population based methods on Otsu algorithm.

Image 𝑀− 1
Objective values (standard deviation)

HARFO ABC ARFO CCGA IDPSO

Avion

5 4.2940E + 04 4.0947E + 04 4.2721E + 04 4.266E + 04 4.165E + 04
6.6839E − 02 1.5094E + 00 1.2493E + 00 3.133E − 02 4.9845E − 02

7 4.2852E + 04 4.0972E + 04 4.2735E + 04 4.266E + 04 4.243E + 04
3.0811E − 02 3.8286E + 00 1.6504E + 00 4.531E − 01 5.325E − 01

9 4.2857E + 04 4.0986E + 04 4.2639E + 04 4.275E + 04 4.293E + 04
1.3309E − 01 2.6222E + 00 5.4868E − 01 2.853E − 01 5.535E − 01

House

5 3.5543E + 04 3.3854E + 04 3.5364E + 04 3.443E + 04 3.468E + 04
5.3886E − 01 1.8866E + 00 5.8096E − 01 2.284E − 01 8.653E − 02

7 3.5558E + 04 3.3895E + 04 3.5360E + 04 3.512E + 04 3.574E + 04
1.0541E − 01 5.4665E + 00 1.7216E + 00 5.543E − 01 5.524E − 01

9 3.5610E + 04 3.3919E + 04 3.5263E + 04 3.521E + 04 3.341E + 04
1.4416E − 01 3.8422E + 00 1.4566E + 00 2.842 6.751E − 01

Lena

5 1.2141E + 04 1.1077E + 04 1.1890E + 04 1.340E + 04 1.3399E4
1.1142E − 02 2.3456E + 00 6.9755E − 01 2.434E − 01 2.01E − 2

7 1.2232E + 04 1.1144E + 04 1.1942E + 04 1.135E + 04 1.4418E4
1.2534E − 01 5.0432E + 00 8.9221E − 01 2.743 4.2087

9 1.2154E + 04 1.1424E + 04 1.2012E + 04 1.133E + 04 1.4984E4
1.7543E − 01 3.8324E + 00 1.7423E + 00 3.326 6.457

Peppers

5 2.1900E + 04 2.0668E + 04 2.1587E + 04 2.202E + 04 1.3366E4
5.0443E − 02 1.7541E + 00 2.0475E + 00 2.1408E − 01 5.019E − 1

7 2.1717E + 04 2.0710E + 04 2.1531E + 04 1.522E + 04 1.4293E4
1.3917E − 01 2.8835E + 00 2.6158E + 00 2.244 1.1924E + 1

9 2.1743E + 04 2.0725E + 04 2.1645E + 04 1.662E + 04 1.4792E4
2.3165E − 01 2.8313 2.3470 6.354 9.3027

Safari04

5 2.5363E + 04 2.4130E + 04 2.5172E + 04 2.319E + 04 2.516E + 04
1.1934E − 01 6.1834E + 00 1.6155E + 00 1.542E − 01 2.526E + 00

7 2.5449E + 04 2.4154E + 04 2.5225E + 04 2.524E + 04 2.413E + 04
1.3396E − 01 4.8186E + 00 1.2653E + 00 4.563E − 01 6.224E − 01

9 2.5472E + 04 2.4165E + 04 2.5062E + 04 2.401E + 04 2.446E + 04
1.0982E − 01 1.9172E + 00 5.8804E − 01 2.536 5.514E − 01

Hunter

5 1.1723E + 04 1.1205E + 04 1.1614E + 04 1.113E + 04 7.350E3
9.4823E − 02 4.7343E + 00 1.6177E + 00 4.562E − 01 5.1693

7 1.1774E + 04 1.1242E + 04 1.1668E + 04 1.102E + 04 7.752E3
2.0734E − 01 4.3856E + 00 1.8600E + 00 2.326 9.7143

9 1.1805E + 04 1.1260E + 04 1.1695E + 04 1.101E + 04 7.974E3
1.5995E − 01 3.6223E + 00 4.0659E + 00 2.563 1.620E + 1
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