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Comparing performance of modern 
genotype imputation methods in 
different ethnicities
Nab Raj Roshyara1,2, Katrin Horn1, Holger Kirsten1,2,3, Peter Ahnert1,2 & Markus Scholz1,2

A variety of modern software packages are available for genotype imputation relying on advanced 
concepts such as pre-phasing of the target dataset or utilization of admixed reference panels. In this 
study, we performed a comprehensive evaluation of the accuracy of modern imputation methods on the 
basis of the publicly available POPRES samples. Good quality genotypes were masked and re-imputed 
by different imputation frameworks: namely MaCH, IMPUTE2, MaCH-Minimac, SHAPEIT-IMPUTE2 and 
MaCH-Admix. Results were compared to evaluate the relative merit of pre-phasing and the usage of 
admixed references. We showed that the pre-phasing framework SHAPEIT-IMPUTE2 can overestimate 
the certainty of genotype distributions resulting in the lowest percentage of correctly imputed 
genotypes in our case. MaCH-Minimac performed better than SHAPEIT-IMPUTE2. Pre-phasing always 
reduced imputation accuracy. IMPUTE2 and MaCH-Admix, both relying on admixed-reference panels, 
showed comparable results. MaCH showed superior results if well-matched references were available 
(Nei’s GST ≤ 0.010). For small to medium datasets, frameworks using genetically closest reference panel 
are recommended if the genetic distance between target and reference data set is small. Our results are 
valid for small to medium data sets. As shown on a larger data set of population based German samples, 
the disadvantage of pre-phasing decreases for larger sample sizes.

Genotype imputation is now common practice in Genome wide association (GWA) analysis1,2. Imputation facil-
itates meta-analyses of studies genotyped at different platforms3–5 and is supposed to increase the power of GWA 
analyses6. It is also used for fine mapping efforts7. Moreover, genome-wide DNA sequencing is still cost-intensive. 
Sequencing a part of the population and imputing the other individuals using the sequenced samples as reference 
is therefore a recommended strategy8.

Different reference panels of densely genotyped individuals are available and are used as templates of the 
haplotype structure for the target data sets9–14. For example, HapMap provides publicly available reference panels 
containing individuals with ancestry from West Africa, East Asia and Europe10,11. The latest generation of the 
HapMap reference panel10 is known as “HapMap3” and includes about 1.6 million common single nucleotide 
polymorphisms (SNPs) in 1,184 reference individuals from 11 populations. Thereby, ten 100-kilobase regions 
in a subset of these individuals were sequenced. Another relevant reference panel is phase3 of the 1000Genomes 
project9,13. This dataset comprises a haplotype map of 80 million single nucleotide polymorphisms from 2,504 
individuals derived from 27 populations. These reference panels are continuously improved both in sample size, 
density and quality.

Although genotype imputation is a well-established technique, algorithms and methodological processes 
are continuously refined. To deal with large reference panels, new imputation frameworks and methods were 
developed for faster computation. Among these, imputation with pre-phasing of the target dataset is the most 
popular method currently in use. This strategy is implemented in the frameworks MaCH15 plus Minimac 
(MaCH-Minimac) and IMPUTE27 plus SHAPEIT16 (SHAPEIT-IMPUTE2)17. Research on imputation relying on 
pre-phasing strategies claimed that this method results in comparable accuracy compared to no pre-phasing17. In 
the present paper, we aim at verifying this claim by comparing its performance with MaCH-Minimac using the 
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POPRES dataset. Moreover, these two frameworks were further compared with those not relying on pre-phasing, 
namely MaCH, MaCH-Admix18, and IMPUTE2.

Another issue during imputation is how to deal with the continuously increasing amount of mixed ethnic-
ities in large epidemiologic studies. This has raised the question to what extend genotype imputation accuracy 
may be affected by reference panels which do not exactly match with the ancestry of the target populations. 
To address this issue, imputation algorithms were further refined so that they can adopt reference panels with 
individuals from multiple populations. This is done by letting the software choose a “custom” reference panel 
either in a piecewise manner or for the whole genome. Utilizing recent releases of reference panels, different 
approaches for the selection of appropriate combined reference panels are discussed: Creating a cosmopolitan 
reference panel by selecting haplotypes from all of the available reference populations19–22, constructing a refer-
ence panel by weighted combination strategies23,24, by principal component clustering25, or by selection based on 
identity-by-state(IBS)18,20.

Several software packages are designed to deal with admixed populations. Here, we consider three of the most 
popular methods: IMPUTE2, SHAPEIT-IMPUTE2 and MaCH-Admix. All these three programs implement an 
IBS-based strategy for selecting an appropriate reference panel. In contrast to IMPUTE2 or SHAPEIT-IMPUTE2, 
this is done in a piecewise manner by MaCH-Admix. We compare these three programs with the software frame-
works requiring homogeneous populations as reference panel: MaCH and MaCH-Minimac. In summary, we 
compare a total of five imputation frameworks to assess, how pre-phasing and usage of admixed reference panels 
affect imputation accuracy in a variety of populations (POPRES26). An extensive simulation study was performed 
for this purpose.

Since sample size of the POPRES panel is small, we studied the dependence of our comparisons on sample size 
in a larger data set of a population based study of Germany.

Materials and Methods
Datasets.  We considered subsamples of different ethnic origins taken from a large set of Population 
Reference Samples (POPRES)26. We obtained the POPRES dataset from dbGaP27 through dbGaP accession 
number phs000145.v4.p2. Genome-wide genotyping of these individuals was performed on the Affymetrix 
(Mountain View, CA) GeneChip 500K Array set with the published protocol for 96-well-plate format. For our 
simulations study, we considered data of chromosome 22 consisting of 5,637 SNPs. As target sets for imputation, 
we selected a total of 20 populations for which at least 40 individuals were available. If more than 40 individuals 
were available, a random subset of N =​ 40 was selected. Among these populations, 15 were of Caucasian ori-
gin: Australian, Canadians, German, French, Swiss-French, Swiss-German, Swiss, Italian, Spanish, Irish, British, 
Belgian, Portuguese, individuals from former Yugoslavia, a mixed group of east European origin (i.e. a mixture of 
people from Czech-republic, Hungary, Poland); two populations of South-Asian origin: Indians and Punjabis, one 
east-Asian population: Japanese, one Mexican population: Mexican, and finally, a mixed-population of African-
Americans (AfAm). Since the POPRES subsets contained only small numbers of individuals, we also considered 
a larger German data set of 2,500 individuals of the LIFE-Adult study, a population-based study carried out in the 
city of Leipzig. Study design is described elsewhere28.

Quality Control and Masking of SNPs.  The original POPRES data was based on the Genomic assem-
bly Affymetrix release 25 NSP25 and STY25 with dbSNP Build 126, released on May 2006. However, the refer-
ence panel HapMap3 contains rsIDs and corresponding Affymetrix IDs are annotated with dbSNP build 128. 
Therefore, it was necessary to match the annotation of the variant names and strand orientation. Strand-matching 
was performed using “fcGENE”29. SNPs with ambiguous strand information were removed. 1,014 SNPs could not 
be matched and were excluded resulting in a total of 4,623 SNPs eligible for analysis.

The major idea of our simulation study is to define high quality (HQ) SNPs assumed to express true genotypes. 
These SNPs will then be masked, re-imputed and compared with the original genotypes to assess imputation 
accuracy. We aimed at masking a reasonable number of HQ SNPs for which imputation quality can be assessed 
without thinning out the linkage disequilibrium structure too much. Moreover, we prefer to mask common var-
iants which are more informative regarding comparisons of true and imputed genotypes. Therefore, we applied 
the following SNP filter in order to define HQ SNPs: call rate (CR ≥​ 95%), minor allele frequency (MAF ≥​ 0.1) 
and p-values of Hardy Weinberg Equilibrium Test p(HWE) ≥​ 0.01. For the latter, we applied an exact stratified 
test of HWE calculated over all POPRES populations considered30. Overall 457 SNPs passed these quality criteria 
in all data subsets.

Imputation quality of a SNP depends on the number of missing SNP (denoted as missingness here). To assess 
the impact of the degree of missingness, different percentages of HQ SNPs were masked, namely 50%, 70% or all. 
To ensure comparability, SNPs masked in the scenario of 50% missingness are also masked in the scenario of 70% 
missingness and so on.

To study the effect of sample size, we considered 2,500 samples from LIFE-Adult. Genotyping was performed 
using the Affymetrix Axiom CEU array. Affymetrix power tools with standard settings were used for primary 
SNP calling. Samples were filtered by the following criteria: dish QC <​ 0.82, call rate < 0.97, sex mismatch, 
implausible relatedness issues and PCA outliers (6 SD). SNPs were filtered by the following criteria: call 
rate < 0.97, Affymetrix cluster measures as recommended (FLD, HetSO and HomRO), number of minor 
allele <​ 3, deviation from Hardy-Weinberg equilibrium (p <​  −10 6), plate association (p <​ 10−7) and minor allele 
frequency.

For the analysis, we considered 2,474 SNPs in a 10 mega bases area of chromosome 22. HQ-SNPs are defined 
by MAF >​ =​ 0.2, p-value of exact Hardy-Weinberg test >​ =​ 0.5, call rate >​ =​ 0.995. A total of 522 SNPs fulfilled 
these criteria and were masked and re-imputed accordingly. To study the impact of sample size, we considered 
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randomly chosen subsets of the original data set of sizes 2500, 1000, 500, 250, 100 and 40. Here, the larger data set 
always contains the smaller one.

Reference Panel.  In HapMap project, genotyping was performed directly, while the 1000 Genomes dataset 
relies (at least partly) on low depth whole genome sequencing data. Therefore, HapMap has still the higher accu-
racy and was chosen as reference panel for the present study10,11. Here, we used the pre-formatted HapMap3 ref-
erence panel. Imputation with MaCH and MaCH-Minimac were performed using the reference panels that were 
best matched with the ancestry of the target population. This strategy was considered as standard to compare its 
results with those of MaCH-Admix, IMPUTE2 and SHAPEIT-IMPUTE2, the frameworks which adopt admixed 
reference panels. Appropriate reference panels: CEU, YRI, MEX and JPT +​ CHB provided by MaCH software 
developers through their homepage31 were used for imputing the target data sets. The best matched reference 
was selected by minimizing the genetic similarity measure Nei’s GST between the target populations and available 
reference panels as recommended elsewhere32.

IMPUTE2 uses a mixed cosmopolitan reference panel collected from a variety of sampling locations in Africa, 
Asia, Europe and America. It automatically selects a ‘custom’ reference panel separately for each individual dur-
ing imputation. We downloaded the mixed reference panel created from the samples of the HapMap3 project 
available at the IMPUTE2 website33 and used it for our purposes. This mixed reference panel consists of haplo-
types of a total of 1,011 individuals genotyped on 20,084 SNPs at chromosome 22. Since our aim is to compare 
IMPUTE2 and MaCH-Admix, we used the same mixed reference panel by converting the reference of IMPUTE2 
to MaCH-Admix format using fcGENE29.

Due to the fact that the overlap of HapMap3 and Axiom CEU array was rather small, we decided to impute our 
LIFE-Adult samples with 1000 Genomes reference (Phase 1 Release V3)34,35.

Imputation.  Imputation was performed separately for each data subset using five different imputation 
frameworks with or without pre-phasing or usage of admixed reference panels. Table 1 compares the frameworks 
regarding these options.

For imputation with MaCH, version 1.0.18.c, we first estimated imputation error rate and recombination rate 
in the haplotype panels by running the “greedy” algorithm for 30 iterations. These two model parameters were 
then used to determine the posterior probabilities of each genotype in the second step15. MaCH calculates the 
software specific measure “Rsq” to assess imputation quality15.

To perform imputation with MaCH-Minimac, we first determined the haplotypes of target data sets using 
MaCH software. Then the pre-phased data were imputed with Minimac, version Minimac2 from 2014.9.15.

For imputation with IMPUTE2, version 2.3.1 was used with default parameters. We performed imputation by 
splitting chromosome 22 in 6 chunks of equal size 5.711 MB as recommended33. This can be done by providing the 
lower and upper boundaries of base pair position with IMPUTE2 command option “-int”. Format conversion and 
IMPUTE commands including the lower and upper boundaries of each chunk were generated by fcGENE29. The 
population-genetic model used by IMPUTE2 requires an effective population size as input parameter. Although 
different human populations have different effective sizes, IMPUTE software providers recommend a large value 
of about 20000 for the parameter “−​Ne” as universal value through which they achieved high accuracy across all 
population groups. To avoid margin effects while chunking genotypic region, IMPUTE2 uses an internal buffer 
region (default is 250 kb) on either side of the analysis interval33. Imputation processes were run in a parallel way 
to speed up the computational runtime. At the end of each computation, we extracted the imputation quality 
scores. As suggested by the software providers33, the best strategy for imputing genotype data with IMPUTE2 is 
first to phase the study population with SHAPEIT16,36 and then impute the phased data with IMPUTE2. We fol-
lowed this strategy denoted as “SHAPEIT-IMPUTE2” (using SHAPEIT version v2 r790) in the following.

For imputation with MaCH-Admix18, version v2.0.203, we used the integrated default run mode where model 
parameters like recombination rate and error rates are automatically determined before calculating genotypes 
and imputation quality. Admixed reference panels used for MaCH-Admix were created from corresponding 
IMPUTE2-formatted reference panels which were downloaded from the home page of IMPUTE233. We also used the 
implemented two step method of MaCH-Admix which is similar to those of MaCH. Results were similar to those of 
the default strategy (not shown). All software-specific commands are provided in the supplement material S1.

Measures of imputation accuracy.  Direct comparison of true and imputed genotypes: Although, impu-
tation software usually provide measures of imputation accuracy, these measures typically are software specific, 
hampering comparisons across software. To circumvent this issue, we masked good quality SNPs and re-imputed 

Imputation software/framework Pre-phasing
Use of admixed 
reference panel

MaCH-Minimac Yes No

SHAPEIT-IMPUTE2 Yes Yes

Mach-Admix No Yes

MaCH No No

IMPUTE2 No Yes

Table 1.   Imputation Frameworks analysed: Frameworks differ with respect to usage of pre-phasing or 
admixed versus specific reference panels. We aim at comparing the impact of these features on imputation 
accuracy.
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them allowing an objective assessment of imputation accuracy. Comparisons of true genotypes and imputed 
genotype distributions were performed in the following ways: First, we compared the original true genotypes of 
masked HQ SNPs with corresponding best-guess genotypes. For this type of comparison, we also analysed the 
posterior probabilities of both, the correctly and incorrectly imputed best-guess genotypes. In another approach, 
we compared true genotypes with estimated posterior distributions by applying platform independent Hellinger 
and SEN scores37. While the SEN score essentially compares the expectations of genotype distributions, Hellinger 
score is a measure of the agreement of genotype probabilities. Hellinger score ≥​0.45 ensures that the probability 
of best-guess genotypes is at least 0.49 and the best-guess genotype matches with the original genotypes in almost 
all cases (see results below). Therefore, this cut-off was used to define well-imputed genotypes in the following.

To find out whether there are significant differences between the imputation scenarios, we formally compared 
percentages of well-imputed genotypes by McNemar’s test or raw quality measures by Wilcoxon signed rank test. 
Analyses were performed with the statistical software package R (www.r-project.org). We used 5% as significance 
threshold throughout all analyses, i.e. we refrained from correcting for multiple comparisons. Since we generally 
compared the best scenario against the others, we performed one-sided tests throughout. For these analyses, 
masked HQ SNPs were considered as independent in view of the relatively weak linkage structure of this subset. 
Only 1% of HQ SNP pairs showed a linkage disequilibrium of r2 ≥​ 0.1.

Comparisons using software specific scores: Software specific imputation accuracy measures comprise 
MaCH-Rsq and IMPUTE-info scores. Both are defined on a SNP-wise rather than genotype level. Although these 
quality scores do not allow comparisons across software, they are often used to remove poorly imputed SNPs in 
practice. Hence, we consider these scores in a secondary analysis.

Alternatively, one could calculate the correlation between imputed allele dosages and true genotypes sep-
arately for each SNP to assess its imputation quality. This measure is also software independent but does not 
account for random agreement due to the prior distribution of the imputed genotypes. Analysis shows that this 
measure is in strong agreement with MaCH-Rsq especially for larger sample sizes (Supplementary Figure S3).

Results
Characteristics of quality scores for comparing different imputation frameworks.  Initially, we 
characterized and compared our imputation accuracy scores (Hellinger score, SEN score and percentages of best 
guess genotypes matching original genotypes) and the software specific scores (MaCH-Rsq and IMPUTE-info). 
First, we aimed at identifying a cut-off for Hellinger score to distinguish between correctly imputed genotypes 

Figure 1.  Violin plot of Hellinger scores of genotypes imputed with five different frameworks. Results of 
African-Americans (AfAm) population are shown. We present results for all imputed genotypes, and separately, 
for cases where best guess genotypes match true genotypes (correctly imputed) or not (wrongly imputed). A 
Hellinger score >​ =​ 0.45 almost always ensured that the best-guess genotype matches the true genotype.

http://www.r-project.org
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(CIGs) and wrongly imputed genotypes (WIGs). Our analysis revealed that genotype distributions with Hellinger 
score >​ =​ 0.45 always had posterior probability of best-guess genotypes greater than 0.49 and this was sufficient 
to match the original genotype in almost all cases (see Fig. 1 for AfAm population, representation as boxplots can 
be found as Supplementary Figure S1). This applies for all POPRES populations considered.

Since most of the research work comparing software performance17,20 are based on the software specific meas-
ures (MaCH-Rsq and IMPUTE-info), we studied these measures in relation to the Hellinger score. Figure 2 shows 
the results of four example populations of POPRES (German, AfAm, Indian and Japanese). Here, MaCH-Rsq and 
IMPUTE-info score are only roughly correlated with Hellinger score. Interestingly, for a given value of Hellinger 
score, SHAPEIT-IMPUTE2 showed clearly higher info scores compared to IMPUTE2. Since Hellinger score is 
an objective measure of imputation accuracy, we conclude that the info measures of SHAPEIT-IMPUTE2 are 
inflated. The same trend was observed for MaCH-Minimac versus MaCH but with much lesser magnitude.

Of note, MaCH-Rsq and IMPUTE-info strongly depend on the underlying reference panel and can predict 
the imputation accuracy only under the assumption that the underlying reference panel is genetically very close 
to the target data set32. In contrast, Hellinger score is independent of software and makes no assumptions regard-
ing the underlying reference panel. Therefore we decided to consider Hellinger score as the primary measure for 
imputation accuracy in this analysis.

To study inflated accuracy scores for SHAPEIT-IMPUTE2 shown in Fig. 2 in more detail, we analyzed 
the probability of best-guess genotypes for each of the five frameworks. Results are shown in Fig. 3 (see also  
Supplementary Figure S2 for alternative representation as box-plots). Interestingly, while the distribution of pos-
terior probabilities of best-guess genotypes are similar for correctly imputed genotypes (CIGs), the distribution 
of the SHAPEIT-IMPUTE2 values is different for wrongly imputed genotypes (WIGs). In contrast to the other 
frameworks, SHAPEIT-IMPUTE2 apparently estimates high posterior probabilities also for WIGs. In the sense 
of Fig. 3, MaCH-Admix shows the most desirable behavior, i.e. low probabilities for wrong best-guess genotypes.

Comparison of Frameworks using Admixed Reference Panels vs Best Matched Reference 
Panels.  Next, we aimed at answering the question if and under which circumstances is the usage of admixed 
reference panels advantageous compared to specific references panels matched to the target population. More 
precisely, we analysed the impact of genetic similarity between reference and target population on imputation 
accuracy. For the imputation frameworks relying on a specific reference, we selected the reference with smallest 
value of Nei’s GST as explained in the methods section. We used percentage of Hellinger score >​ =​ 45% as primary 
quality score. A total of 20 populations were analysed with all five imputation frameworks considered (Table 2).

Population

MaCH and MaCH-Minimac framework
(Best-matched Reference Panel)

Mixed Reference Panel

MaCH-Admix IMPUTE2 SHAPEIT-IMPUTE2Reference Panel Nei’s GST MaCH MaCH-Minimac

Australian CEU 0.0078287 89.690 88.334* 89.031* 89.393 88.081*

British CEU 0.0078541 90.779 89.189* 89.973* 90.231* 88.547*

Canadian CEU 0.0078631 90.218 88.583* 89.603* 89.702* 87.985*

Swiss.French CEU 0.0079978 89.761 88.495* 89.098* 89.153* 87.864*

French CEU 0.0080226 90.085 88.277* 89.241* 89.291* 88.255*

German CEU 0.0080485 90.240 88.81* 89.478* 89.703* 88.338*

Irish CEU 0.0081449 90.286 89.155* 89.49* 89.704* 88.541*

Swiss CEU 0.0082549 89.774 88.151* 89.264* 89.357* 87.937*

Belgians CEU 0.0084603 90.273 89.062* 89.992 90.009 88.291*

Swiss.German CEU 0.0086417 89.706 88.456* 89.366* 89.081* 87.848*

eastEU CEU 0.0088483 89.500 88.256* 88.991* 89.144 87.851*

Portuguese CEU 0.0096742 88.569 87.34* 88.410 88.613 87.675*

Spanish CEU 0.0096786 89.220 87.909* 89.023 88.985 87.706*

Italian CEU 0.0105699 88.934 88.025* 88.781 88.742 87.28*

From Yugoslavia CEU 0.0108079 89.049 87.832* 88.643* 88.819 87.629*

Mexican MEX 0.0108799 89.137* 87.908* 89.477* 90.059 88.188*

AfAm YRI 0.0188273 82.603* 80.86* 86.211 86.123 83.437*

Punjabi CEU 0.0244462 86.767* 86.257* 87.951 88.137 87.14*

Indian CEU 0.0247062 86.441* 85.202* 87.527 87.845 86.315*

Japanese CHB.JPT 0.0330444 89.089* 88.391* 89.524* 90.132 88.575*

Table 2.   Comparison of percentages of genotypes with good Hellinger scores (> = 0.45) obtained for 20 
different POPRES samples with either MaCH, MaCH-Minimac, MaCH-Admix, IMPUTE2, or SHAPEIT-
IMPUTE2. For Imputation with MaCH and MaCH-Minimac framework, the best matched reference panels 
based on Nei’s GST were selected. Nei’s GST values and corresponding reference panels are also presented. 
Imputation frameworks with best results are marked with bold italic letter for each population and those 
scenarios which are significantly different from the best scenario are marked with an asterisk. McNemar’s test 
was used to determine significant differences of alternative scenarios to the best scenario.
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When considering frameworks without pre-phasing (MaCH, MaCH-Admix, IMPUTE2), we found that usage 
of admixed reference panels (MaCH-Admix, IMPUTE2) was advantageous only if the genetic difference between 
target and reference population was large. In more detail, performance was better when Nei’s GST was close to 
or greater than about 0.01 which is the case in 6 of the 20 POPRES samples. For POPRES population AfAm, for 
which no well-matched reference is available, MaCH is clearly outperformed by MaCH-Admix and IMPUTE2. 
In other words, for well-matched references and homogenous populations as in most of our POPRES samples, 
the usage of specific references results in superior imputation quality. Considering the pre-phasing frameworks 
(MaCH-Minimac and SHAPEIT-IMPUTE2) we found that both are clearly outperformed by their counter-
parts not relying on pre-phasing (MaCH and IMPUTE2, respectively). Results were similar when considering 
other measures of imputation quality like SEN score, percentages of correctly imputed genotypes based on best 
guess genotype, and software specific measures of imputation accuracy (supplementary Table S1, S2, and S3, 
respectively).

We observed a general trend of lower imputation qualities for larger genetic distances to the best matching ref-
erence. This also applies for imputation frameworks relying on mixed references (see Supplementary Figure S4).

Comparison of Frameworks Using Admixed Reference Panels.  Table 3 shows the results of the 
comparison of imputation frameworks relying on admixed reference panels (MaCH-Admix, IMPUTE2 and 
SHAPEIT-IMPUTE2). For this purpose, we also consider three different missing scenarios to account for the 
impact of missingness on efficacy of the imputation frameworks. Again, we used McNemar’s test to compare the 
scenarios.

Figure 2.  Scatterplot between average Hellinger score and Mach-Rsq/IMPUTE-info score for four different 
POPRES populations imputed with MaCH (using YRI reference panel), MaCH-Minimac (using YRI 
reference panel), MaCH-Admix, IMPUTE2 and SHAPEIT-IMPUTE2 (using admixed reference panels). 
For the same Hellinger score, Info scores of SHAPEIT-IMPUTE2 are clearly inflated compared to IMPUTE2.



www.nature.com/scientificreports/

7Scientific Reports | 6:34386 | DOI: 10.1038/srep34386

MaCH-Admix and IMPUTE2 showed comparable performance. IMPUTE2 had an advantage compared to 
MaCH-Admix especially for larger percentages of missingness but the difference was insignificant in general. In 
contrast, SHAPEIT-IMPUTE2 always showed significantly inferior results.

Results for SEN score are similar (results not shown). We also determined the percentage of correctly imputed 
best-guess genotypes (Table 4). Results are similar to those of the Hellinger score except for the fact that here, one 
can observe a slight but insignificant advantage of MaCH-Admix compared to IMPUTE2. Hence, IMPUTE2 tends 
to be more confident at certain SNPs while MaCH-Admix has a slightly higher average yield of correctly guessed 
genotypes. Again, SHAPEIT-IMPUTE2 showed significantly poorer performance than the other frameworks.

Comparison of frameworks relying on pre-phasing.  Table 5 shows results of the comparison of frame-
works using pre-phasing (MaCH-Minimac and SHAPEIT-IMPUTE2). As primary quality measure, percentage of 
genotypes with good Hellinger score (≥​0.45) was used. As observed in Table 2, small Nei’s GST between reference 
and target population were advantageous for MaCH-Minimac relying on specific reference panels. However, there 
was a trend that the difference to SHAPEIT-IMPUTE2 became smaller when missingness increases. For those 
populations, whose genetic distances from the best-matching reference population is large, SHAPEIT-IMPUTE2 
performed slightly better than MaCH-Minimac, however in many cases the difference was insignificant.

Similar results are obtained for the SEN score (see Supplementary Table S4). Again, we analysed the per-
centage of correctly guessed genotypes (Table 6). We found that MaCH-Minimac performed always better than 
SHAPEIT-IMPUTE2 except in the case of 70% and 100% missing scenarios for “AfAm” population. In these two 
scenarios, SHAPEIT-IMPUTE2 showed insignificantly better performance. This underlines the importance of 
admixed references for imputation of AfAm for which no well matching reference is available.

Impact of sample size.  The impact of sample size on the performance of imputation frameworks was stud-
ied in LIFE-Adult. Results are shown in Table 7. Again, methods without pre-phasing have higher accuracy than 
their counterparts relying on pre-phasing. But the difference becomes smaller with increasing sample size. MaCH 
is superior to IMPUTE2 for small datasets but for larger datasets, the opposite is true.

Discussion
In the present paper, we compared the imputation frameworks MaCH, IMPUTE2, MaCH-Admix, 
MaCH-Minimac and SHAPEIT-IMPUTE2 in a comprehensive simulation study of POPRES samples. We were 
interested if and under which circumstances pre-phasing or usage of admixed references panels is advantageous.

Figure 3.  Violin plot of posterior probabilities of best guess genotypes in AfAm population. All imputation 
frameworks were used with default parameters and reference panels. SHAPEIT-IMPUTE2 shows considerably 
higher posterior probabilities for wrongly imputed SNPs.



www.nature.com/scientificreports/

8Scientific Reports | 6:34386 | DOI: 10.1038/srep34386

Country MaCH-Admix IMPUTE2 SHAPEIT-IMPUTE2

Missing percentage 50% 70% 100% 50% 70% 100% 50% 70% 100%

German 91.28 90.26 90.06 91.1 90.37 90.07 89.2* 89.17* 88.88*

Swiss-German 90.37 89.37 89.63 91.08 90.02 89.4 88.19* 88.29* 88.28*

Belgians 91.34 90.5 90.34 91.75 90.75 90.23 89* 88.83* 88.63*

Spanish 90.36 89.7 89.29 90.35 89.77 89.52 88.19* 88.00* 88.06*

French 90.75 89.67 89.32 90.84 89.9 89.59 88.85* 88.59* 88.89*

Irish 90.84 90.07 89.62 91.19 90.3 89.93 88.64* 88.59* 88.92*

Italian 90.57 89.94 89.56 90.46 89.57 89.56 87.93* 88.03* 87.94*

Portuguese 90.29 89.15 88.61 90.23 89.35 89.13 87.84* 87.78* 87.99*

Swiss-French 90.77 89.76 89.39 91.13 90.1 89.79 89.02* 88.69* 88.71*

Swiss 90.65 89.73* 89.8 91.01 90.53 89.87 88.72* 88.77* 88.64*

British 91.62 90.51 90.61 91.79 90.94 90.71 89.16* 89.35* 89.15*

FromYugoslavia 90.1 89.15 88.87 90.26 89.39 89.34 88.23* 87.83* 88.09*

Canadian 91.41 90.23 90.08 91.32 90.61 90.25 89.08* 88.86* 88.7*

Mexican 91.49 90.64 90.37* 91.87 91.07 91.13 89.54* 89.42* 89.07*

Australian 90.91 89.7* 89.29 91.12 90.29 89.8 88.62* 89.08* 88.68*

Japanese 91.7 90.59* 90.34* 91.84 91.11 91.16 89.84* 89.86* 89.76*

AfAm 87.89 87.34 86.25 87.85 86.87 86.34 83.49* 83.36* 83.8*

Punjabi 90.14 89.14 88.91 89.95 89.43 89.1 87.69* 88.03* 88.04*

Indian 89.61 88.78 88.44 90.09 88.78 88.67 87.37* 87.36* 87.27*

eastEU 90.8 89.6 89.27 90.8 89.8 89.52 88.17* 88.21* 88.17*

Table 3.   Percentage of Genotypes with good Hellinger score (> = 0.45) for three imputation frameworks 
considering mixed reference panels: 20 Popres population were studied. Different percentages of HQ-SNPs were 
masked (50%, 70%, and 100%) and re-imputed. The best software framework for each population and degree of 
missingness is presented in bold italic letters. An asterisk (*) indicates whether the other software frameworks 
perform significantly worse for the corresponding missingness scenario.

Software-> MaCH-Admix IMPUTE2 SHAPEIT-IMPUTE2

Country 50% 70% 100% 50% 70% 100% 50% 70% 100%

German 92.00 91.18 91.00 91.35* 90.64* 90.26* 89.03* 89.29* 88.76*

Swiss-German 91.09 90.27 90.44 91.10 90.20 89.8* 88.22* 88.31* 88.33*

Belgians 91.67 91.10 90.75 91.44* 90.47* 90.08* 88.54* 88.44* 88.16*

Spanish 91.10 90.43 90.29 90.56* 89.99* 89.84 87.96* 87.87* 87.98*

French 91.44 90.31 90.15 91.12 90.07 89.84 88.85* 88.62* 88.82*

Irish 91.51 90.74 90.62 91.23 90.43 90.20 88.53* 88.47* 88.71*

Italian 91.15 90.60 90.38 90.80 89.77* 89.97* 87.98* 88.07* 87.98*

Portuguese 90.81 89.95 89.60 90.34 89.55* 89.34 87.63* 87.63* 87.93*

Swiss-French 91.43 90.63 90.16 91.21 90.24* 90.02 88.86* 88.74* 88.73*

Swiss 91.36 90.40 90.47 91.29 90.68 90.13 88.59* 88.7* 88.58*

British 92.33 91.28 91.33 91.92* 91.18 91.03 89.16* 89.24* 89.03*

FromYugoslavia 90.92 90.01 89.80 90.51* 89.64 89.53 88.24* 87.81* 87.98*

Canadian 91.99 91.15 91.21 91.52* 90.94 90.57* 89.07* 88.78* 88.6*

Mexican 91.82 91.23 91.02 91.93 90.98 91.21 89.27* 89.19* 88.84*

Australian 91.47 90.63 90.01 91.20 90.45 90.03 88.41* 88.92* 88.46*

Japanese 92.17 91.23 90.97 91.7* 91.19 91.00 89.52* 89.5* 89.43*

AfAm 88.80 87.89 87.16 88.02* 87.24* 86.79 83.48* 83.42* 83.69*

Punjabi 90.86 90.08 89.88 90.28* 89.73 89.47* 87.62* 88.07* 88.05*

Indian 90.33 89.67 89.20 90.22 89.21 89.14 87.28* 87.29* 87.17*

eastEU 91.51 90.22 90.24 91.10 90.07 89.75* 88.07* 88.17* 88.11*

Table 4.  Percentage of most likely genotypes which agree with the original genotypes for three imputation 
frameworks considering mixed reference panels: 20 Popres population were studied. Different percentages of 
HQ-SNPs were masked (50%, 70%, and 100%). The best software framework for each population and degree of 
missingness is presented in bold italic letters. An asterisk (*) indicates whether the other software frameworks 
perform significantly worse for the corresponding missingness scenario.
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Genotype imputation is nowadays common in genome-wide data analysis. Although, frameworks such as 
MaCH, IMPUTE2 and Beagle are well established and result in generally good imputation quality, there are sev-
eral attempts regarding further improvements. First, in order to deal with larger data sets, pre-phasing was estab-
lished which significantly accelerates imputation speed17. According to this strategy, the haplotypes underlying 
the target dataset are estimated first. Then, these haplotypes were used to estimate the genotypes. The two impu-
tation frameworks SHAPEIT-IMPUTE2 and MaCH-Minimac adopt this concept17. While SHAPEIT-IMPUTE2 
uses an admixed reference panel as input and let the software choose a “custom” reference panel, MaCH-Minimac 
basically depends on a reference panel that is best matched with the target dataset. Second, admixed populations 
becoming more and more frequent in genetic epidemiologic research. Therefore, frameworks accepting admixed 
reference populations were developed18,20. There is also some hope that admixed references might improve the 
imputation accuracy for populations for which no well-matching reference is at hand. The software IMPUTE2 
and MaCH-Admix implemented this approach. Both software implemented an IBS-based strategy for selecting 
the reference panel but the latter’s IBS-matching strategy is in a piecewise manner. So far, only few published 
studies compared the relative performance of imputation concepts of pre-phasing or accounting for admixture17. 
Conclusions from these studies are limited since their findings were based on the IMPUTE-Info score as quality 
measure, only. According to our results (Fig. 2), IMPUTE-Info score strongly depends on the reference panel 
used. In our study, we used scores that allow a direct comparison of imputed and true genotypes. Using these 
measures, we compared the above mentioned imputation frameworks in a comprehensive simulation study.

Our simulation study is based on the general idea of masking SNPs, re-imputing them and comparing the 
results using a variety of measures. Only good quality SNPs were masked to ensure that expressed genotypes 
are correct with high certainty. As in earlier studies37, we considered Hellinger score as the primary outcome 
of the comparison of masked and re-imputed genotypes. The score is maximal if and only if the two genotype 
distributions coincide. In our simulation study, we showed that a Hellinger score >​ =​ 0.45 almost ensures that 
the best-guess genotype is correct. This applies for all software and simulation scenarios considered. We studied 
SEN score and percentage of correct best-guess genotypes as alternative objective measures of imputation quality. 
Results were in general similar to those of Hellinger score.

Although, software specific measures of imputation quality such as MaCH-Rsq and IMPUTE-info are widely 
used to assess imputation accuracy, our results suggest that these measures should not be used as objective 
(absolute) measures of imputation accuracy. First, these measures depend on the reference panel considered32. 
Second, we observed a strong inflation of IMPUTE-info for the framework SHAPEIT-IMPUTE2 and numer-
ous best-guess genotypes are wrong even if IMPUTE-info is high. This could explain for example the results of 
Howie et al.17 which was based on IMPUTE-info scores. This study concluded that SHAPEIT-IMPUTE2 and 

Country 

Genetic similarity MaCH-Minimac SHAPEIT-IMPUTE2

Reference 
Panel Nei’s GST 50% 70% 100% 50% 70% 100%

Australian CEU 0.0078287 90.58 89.26 88.67 88.62* 89.08 88.68

British CEU 0.0078541 90.95 90.02 89.88 89.16* 89.35* 89.15*

Canadian CEU 0.0078631 90.74 89.34 88.88 89.08* 88.86 88.7

Swiss.French CEU 0.0079978 90.13 89.03 88.95 89.06* 88.69 88.71

French CEU 0.0080226 89.9 89.64 88.56 88.85* 88.59* 88.89

German CEU 0.0080485 90.9 89.72 89.37 89.20* 89.17 88.88

Irish CEU 0.0081449 90.43 89.54 89.38 88.64* 88.59* 88.92

Swiss CEU 0.0082549 90.44 89.1 88.74 88.73* 88.77 88.64

Belgians CEU 0.0084603 90.9 89.84 89.54 88.10* 88.83* 88.64*

Swiss.German CEU 0.0086417 90.14 88.87 88.69 88.19* 88.29 88.28

eastEU CEU 0.0088483 89.93 88.83 88.59 88.18* 88.21* 88.17

Portuguese CEU 0.0096742 89.33 88.29 87.77 87.84* 87.78 87.99

Spanish CEU 0.0096786 89.51 88.45 88.26 88.19* 87.1 88.06

Italian CEU 0.0105699 89.47 88.63 88.62 87.93* 88.03 87.94*

From Yugoslavia CEU 0.0108079 89.86 88.58 88.51 88.23* 87.83* 88.09

Mexican MEX 0.0108799 90.03 89.33 88.78 89.54 89.42 89.07

AfAm YRI 0.0188273 83.11 81.92* 81.72* 83.49 83.36 83.8

Punjabi CEU 0.0244462 87.96 87.39 86.98* 87.69 88.03 88.04

Indian CEU 0.0247062 87.66 86.79 86.13* 87.37 87.36 87.27

Japanese CHB.JPT 0.0330444 89.9 88.88* 89.06 89.71 89.71 89.67

Table 5.   Percentage of genotypes with good Hellinger score (> = 0.45) for imputation frameworks with 
pre-phasing strategy: The rows of the table are arranged with increasing order of genetic distance between 
target population and best matched reference. Different percentages of HQ-SNPs were masked (50%, 70%, 
and 100%). The best software framework for each population and degree of missingness is presented in bold 
italic letters. An asterisk (*) indicates whether the other software framework perform significantly worse for 
the corresponding scenario. MaCH-Minimac tends to be advantageous for small distances between target and 
reference population and for lower percentages of missingness.
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IMPUTE2 perform similarly. However, our simulation study shows that IMPUTE2 without pre-phasing is con-
siderably better. Moreover, we recommend applying higher IMPUTE-info thresholds for SHAPEIT-IMPUTE2 
than for IMPUTE2 to achieve similar imputation quality. We generally observed that software frameworks with 
pre-phasing strategy performed inferior compared to their equivalents without pre-phasing. Thus, there is a 
trade-off between imputation accuracy and cost of computational time. However, our analysis of LIFE-Adult 
shows that the disadvantage of pre-phasing decreases for larger sample sizes.

Regarding the performance of admixed reference panels, it was necessary to study a variety of genetic ethnic-
ities. Therefore, we created 20 different ethnic data subsets of chromosome 22 from the POPRES project26. Each 
ethnic data subset consisted of equal numbers of individuals (N =​ 40). Limitations of this approach are the rela-
tively low number of cases as well as the fact that no true admixed target population was considered. Therefore, 
results might be valid only for small or medium-sized data sets.

As imputation references, we considered the HapMap3 samples CEU, YRI, MEX and JPT +​ CHB as possible  
best-matched references. For our POPRES samples, we selected the reference with minimal Nei’s GST as  

Reference Panel

MaCH and MaCH-Minimac framework 
(Best-matched Reference Panel) Mixed Reference Panel

MaCH MaCH-Minimac MaCH-Admix IMPUTE2 SHAPEIT-IMPUTE2

CEU CEU Mixed Mixed Mixed

Sample size

  40 92.35 90.05* 90.86* 92.23 90.06*

  100 92.38 91.38* 90.83* 92.27 91.11*

  250 92.39 91.86* 90.64* 92.27* 91.57*

  500 92.29 91.80* 90.30* 92.33 91.69*

  1000 92.31* 91.86* 90.18* 92.41 91.83*

  2500 92.18* 91.90* 89.47* 92.51 91.96*

Table 7.  Dependence of imputation accuracy on sample size studied in LIFE-Adult. Percentages of 
genotypes with good Hellinger scores (>​ =​ 0.45) were analysed. Frameworks showing best performance are 
written with italic bold letters and the frameworks showing significantly lower performance than the best one 
are marked with an asterisk (*).

Country

MaCH-Minimac SHAPEIT-IMPUTE2

Best matched 
reference Nei’s GST 50% 70% 100% 50% 70% 100%

Australian CEU 0.0078287 91.29 90.41 89.82 88.77* 89.28* 88.82*

British CEU 0.0078541 91.58 90.98 90.7 89.34* 89.41* 89.20*

Canadian CEU 0.0078631 91.44 90.28 89.93 89.28* 88.98* 88.81*

Swiss.French CEU 0.0079978 90.81 90.02 89.9 89.05* 88.93* 88.92*

French CEU 0.0080226 90.73 90.68 89.74 89.06* 88.83* 89.02*

German CEU 0.0080485 91.54 90.68 90.29 89.16* 89.43* 88.88*

Irish CEU 0.0081449 91.11 90.56 90.34 88.83* 88.76* 89.00*

Swiss CEU 0.0082549 91.08 90.03 89.71 88.83* 88.94* 88.82*

Belgians CEU 0.0084603 91.45 90.77 90.29 89.14* 89.04* 88.76*

Swiss.German CEU 0.0086417 90.72 89.63 89.47 88.37* 88.45* 88.48*

eastEU CEU 0.0088483 90.63 89.76 89.49 88.22* 88.32* 88.27*

Portuguese CEU 0.0096742 90.02 89.01 88.77 87.88* 87.88* 88.18

Spanish CEU 0.0096786 90.24 89.4 89.15 88.16* 88.073* 88.18*

Italian CEU 0.0105699 90.2 89.43 89.54 88.12* 88.19* 88.11*

From Yugoslavia CEU 0.0108079 90.36 89.43 89.41 88.45* 88.01* 88.18*

Mexican MEX 0.0108799 90.72 90.2 89.72 89.58* 89.51 89.15

AfAm YRI 0.0188273 84.09 82.79 82.72 83.66 83.59 83.86

Punjabi CEU 0.0244462 88.68 88.31 88.03 87.8 88.25 88.22

Indian CEU 0.0247062 88.67 87.97 87.24 87.52 87.53 87.41

Japanese CHB.JPT 0.0330444 90.77 90.05 90.18 89.80* 89.76 89.75

Table 6.   Percentage of well-imputed best-guess genotypes for two imputation frameworks relying on pre-
phasing. The rows of the table are arranged with increasing order of genetic distance between target population 
and best matched reference measured by Nei’s GST. Different percentages of HQ-SNPs were masked (50%, 
70%, 100%). The best software framework for each population and degree of missingness is presented in bold 
italic letter. An asterisk (*) indicates whether the other software framework perform significantly worse for the 
corresponding scenario.
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recommended32. For software relying on admixed references, a corresponding HapMap reference was selected. 
Usage of HapMap references is a limitation of our study. However, in view of the small case numbers of POPRES 
populations, imputation of rare and low frequency variants is futile (see also supplementary figure S5), and there-
fore, we have to focus on common variants which are well represented in the HapMap panels.

Comparison of MaCH-Admix using an admixed reference versus MaCH using a specific reference showed 
that the specific references are advantageous as long as there is a well-matching reference population. A cut-off 
of Nei’s GST of 0.01 could serve as a rough decision rule whether an admixed reference should be preferred. The 
software relying on admixed references without pre-phasing, MaCH-Admix and IMPUTE2, performed similarly. 
However, one has to acknowledge here that this was shown only for small genetically homogeneous populations 
as those of POPRES.

In summary, admixed references outperformed best-matched references only if the genetic distance was large 
(Nei’s GST >​ 0.01). Pre-phasing reduces imputation accuracy, but the difference becomes smaller for larger data sets. 
Relative measures of imputation accuracy such as MaCH-Rsq and IMPUTE-info should be considered with caution 
when interpreting and comparing imputation accuracy, since they depend on the reference and the imputation 
framework. Our conclusions are valid for genetically homogenous populations of small to moderate sample size.
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