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Prediction of transition from ultra-high risk to first-episode
psychosis using a probabilistic model combining history,
clinical assessment and fatty-acid biomarkers
SR Clark1, BT Baune1, KO Schubert1, S Lavoie2, S Smesny3, SM Rice2, MR Schäfer2, F Benninger4, M Feucht5, CM Klier5, PD McGorry2 and
GP Amminger2

Current criteria identifying patients with ultra-high risk of psychosis (UHR) have low specificity, and less than one-third of UHR
cases experience transition to psychosis within 3 years of initial assessment. We explored whether a Bayesian probabilistic
multimodal model, combining baseline historical and clinical risk factors with biomarkers (oxidative stress, cell membrane fatty
acids, resting quantitative electroencephalography (qEEG)), could improve this specificity. We analyzed data of a UHR cohort
(n= 40) with a 1-year transition rate of 28%. Positive and negative likelihood ratios were calculated for predictor variables with
statistically significant receiver operating characteristic curves (ROCs), which excluded oxidative stress markers and qEEG
parameters as significant predictors of transition. We clustered significant variables into historical (history of drug use), clinical
(Positive and Negative Symptoms Scale positive, negative and general scores and Global Assessment of Function) and biomarker
(total omega-3, nervonic acid) groups, and calculated the post-test probability of transition for each group and for group
combinations using the odds ratio form of Bayes’ rule. Combination of the three variable groups vastly improved the specificity
of prediction (area under ROC= 0.919, sensitivity = 72.73%, specificity = 96.43%). In this sample, our model identified over
70% of UHR patients who transitioned within 1 year, compared with 28% identified by standard UHR criteria. The model classified
77% of cases as very high or low risk (P40.9, o0.1) based on history and clinical assessment, suggesting that a staged approach
could be most efficient, reserving fatty-acid markers for 23% of cases remaining at intermediate probability following bedside
interview.
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INTRODUCTION
The concept of clinical ultrahigh risk (UHR) for psychosis has been
developed to facilitate early detection and intervention and is
defined by a cluster of subthreshold psychotic symptoms affecting
perception (for example, hallucinations) and thinking (for exam-
ple, ideas of reference, odd beliefs or magical thinking) or trait risk
factors (for example, family history of psychosis), accompanied by
impairment in day-to-day function.1 Recent meta-analysis shows
that less than 30% of UHR patients will have transitioned to
psychosis 3 years after identification.2 Such poor specificity of UHR
criteria poses a major challenge to indicated prevention for at-risk
patients.3

Previous work has identified clinical and biological predictors
for transition from UHR to psychosis. Static clinical features such as
age, gender, duration of symptoms, traumatic experiences, a
history of substance use and impaired premorbid psychosocial
functioning are all associated with an increased risk of
transition.4–7 Dynamic clinical factors include the extent of
baseline mood and psychotic symptoms.1,8 In addition, specific
patterns of cognitive function, particularly deficits in verbal
fluency, memory and emotional processing,9,10 as well as impaired

general function are associated with a higher risk of transition.6,11

Biological predictors include abnormalities of structural and func-
tional neuroimaging,12 electrophysiology,13–15 and genetic16,17

and proteomic markers.18 Individually all of these predictors are of
small effect size and integrative models are required to combine
multimodal information in the clinical setting to inform the risk of
transition for an individual patient.3 Beyond simple multivariate
regression, machine-learning techniques, including support vector
machines, linear discriminant analysis and k-nearest neighbor
analysis, have been utilized to extract patterns across multiple
variables in large data sets. These approaches have been
particularly useful for the analysis of neuroimaging data sets
containing many thousands of variables.19 Recently, Amminger
et al.20 used a supervised machine-learning technique known as
Gaussian Process Classification to identify the pattern of fatty acids
derived from erythrocyte membrane associated with 12-month
functional outcomes in a UHR sample. Few studies have extended
these techniques to include multimodal data.
We have recently reported on a Bayesian modeling technique

that may have utility in overcoming this problem.3 The odds
ratio form of Bayes Rule21,22 offers a relatively simple method
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to combine multivariate data in a probabilistic manner that
approximates the stepwise accumulation of data collected in the
diagnostic process.3,23–27 Using this type of modeling, we
demonstrated that predictive accuracy at first presentation with
UHR could be improved by combining several modes of
assessment (for example, cognitive, neuroimaging and electro-
physiology). Our simulation based on published results suggests
that even in a help-seeking cohort with a high probability of
transition to a first episode of psychosis (FEP) at least two
other modalities of assessment in addition to UHR criteria
are required at initial presentation to differentiate patients into
high-, intermediate- and low-risk groups.3,27 In the present
study, we sought to extend and validate our simulation model,
using an original single data set containing blood-based and
resting quantitative electroencephalogram (qEEG) biomarkers and
clinical data from a sample of UHR patients followed up for
1 year.28

We considered erythrocyte membrane fatty acids and markers
of oxidative stress as a reflection of the balance of protective
and degenerative mechanisms acting on neuronal membranes in
psychotic illness.29 Oxidative stress occurs when reactive oxygen
or nitrogen molecules generated through biochemical reactions
interact with membrane lipids, proteins and DNA causing
oxidative damage.30–32 In FEP patients, antioxidant enzymes and
cofactors such as superoxide dismutase and glutathione (GSH) are
low, whereas oxidative metabolites of membrane phospholipids
such as thiobarbituric acid-reactive substances and malondialde-
hyde are increased, indicating higher rates of membrane
damage.30 In patients with established schizophrenia, markers of
oxidative stress are related to the severity of psychotic symptoms,
impairment in cognitive and general function and brain volume
loss.29,30,33,34

Polyunsaturated fatty acids (PUFAs) are themselves vulnerable
to oxidation but have anti-inflammatory and neuroprotective
properties.31,35 Omega-3 fatty-acid supplementation acts to
restore neuronal membrane bilayer composition resulting in
normalized membrane fluidity and function. Supplementation
also inhibits phospholipase A2 activity, reducing the subsequent
production of arachidonic acid, inflammatory eicosanoids and
cytokines. The metabolism of omega-3 PUFAs by cyclo-oxygenase
and lipo-oxgenase also produces anti-inflammatory resolvin and
protectin mediators.35,36 Omega-3 supplementation reduces the
rate of transition to FEP for up to 7 years in UHR.28,37 High PUFA
levels in schizophrenia are associated with improved myelin
integrity, reduced psychotic symptoms and better function.20,38–40

However, low PUFA levels are associated with psychotic
illness.41–43 Specifically, low nervonic acid, a monounsaturated
very-long-chain fatty acid involved in myelin synthesis, is
associated with transition to FEP.40

We chose qEEG as a further mode for psychosis risk modeling
to reflect underlying abnormalities in oscillation synchrony of
neuronal circuits associated with symptoms in psychotic illness.44

Increased slow wave (delta and theta) activity in frontal regions is
common in psychosis45,46 and is associated with negative
symptoms in UHR, FEP and established schizophrenia.15,47,48 One
recent study found that increased frontal delta and theta spectra
and decreased alpha peak frequency significantly predicted
transition to FEP.49

In the present study, we used the odds ratio form of Bayes’ Rule
to develop a multimodal model combining historical and clinical
data and a set of biomarkers identified from oxidative, fatty-acid
and qEEG candidates. We hypothesized that combined multi-
modal data are better than single markers in predicting transition,
and that biomarkers of oxidative stress, PUFA levels and qEEG
could be relevant for this prediction. By adding these biomarkers
we sought to improve the specificity of current UHR criteria to
reduce the false-positive rate, allowing more definitive indicated
prevention.

MATERIALS AND METHODS
Study participants
We analyzed data from the placebo group (n= 40) of a 12-week trial of the
effect of omega-3 PUFA supplementation on 12-month transition to
psychosis in a help-seeking UHR cohort. Following Morrison et al.,50 UHR
was identified with the Positive and Negative Syndrome Scale (PANSS)
using criteria proposed by Yung et al.51 Inclusion criteria included a history
of attenuated positive psychotic symptoms, transient psychosis or trait plus
state risk factors as indicated by family history in a first-degree relative of
psychosis plus a decrease in functioning of 30% in the Global assessment of
function (GAF) scale.28,50,51 These criteria were implemented before the
availability of tools such as the Comprehensive Assessment of At-Risk
Mental States (CAARMS) but are equivalent. Findings from this trial have
been included in meta-analyses with studies using the CAARMS.52–54 The
Structured Clinical Interview for DSM-IV-TR Axis I Disorders was used to
confirm psychiatric diagnoses at baseline and 12-month follow-up in the
original study. Exclusion criteria included the following: history of a previous
psychotic disorder or manic episode (both treated or untreated); substance-
induced psychotic disorder; acute suicidal or aggressive behavior; a current
DSM-IV diagnosis of substance dependence (except cannabis dependence);
neurological disorders (for example, epilepsy); intelligence quotient of less
than 70; structural brain changes apparent on magnetic resonance imaging,
except for enlargement of the ventricles or sulci or other minor
abnormalities without pathological relevance (for example, white matter
lucencies or temporal horn asymmetry); previous treatment with an
antipsychotic or mood-stabilizing agent (1 week); having taken omega-3
supplements within 8 weeks of being included in the trial; laboratory values
more than 10% outside the normal range for transaminases, thyroid
hormones, C-reactive protein or bleeding parameters; and another severe
intercurrent illness that may have put the person at risk or influenced the
results of the trial or affected their ability to take part in the trial. The study
was approved by the Medical University of Vienna Ethics Committee.
Two hundred and fifty-six individuals consecutively presenting to the

psychosis detection unit of the Department of Child and Adolescent
Psychiatry at Vienna General Hospital between April 2004 and May 2006
were assessed for eligibility, 81 of whom met the inclusion criteria and
consented to the study. The details of this study have been described
elsewhere.28

Experimental design
In the clincal trial a computer-generated random sequence based on a
block-randomized design (two strata with block size of four within each
stratum) was used. Random assignment to omega-3 treatment or placebo
group was stratified using the Montgomery Asberg Depression Rating
Scale (total score o21 or ⩾ 21), as depressive symptoms may affect illness
progression. The primary outcome measure of the trial was transition to
psychosis defined using the Positive and Negative Symptoms Scale
(PANSS; score of 4 on hallucinations, 4 on delusions or 5 on conceptual
disorganization, sustained for at least 1 week). Data available included
historical risks (gender, age, family history of psychosis, duration of
symptoms at presentation and any history of drug use), standardized
clinical assessments (PANSS-positive, -negative and general scales,
Montgomery Asberg Depression Rating Scale and GAF score) and blood
biomarkers including measures of oxidative stress, fatty acids and resting
brain activity. The details of laboratory analyses of oxidative stress
markers, fatty acids and of electrophysiological recordings are described
elsewhere.15,35,55,56 Total fatty acids and nervonic acid were analyzed from
erythrocyte membranes. The fatty-acid-releasing enzyme phospholipase
A2 was analyzed in serum. Oxidative markers included the enzyme
superoxide dismutase, GSH (reduced form), oxidized GSH (GSSG)) and the
ratio of reduced to oxidized GSH (GSH/GSSG) were measured in
erythrocyte lysates.56 Resting EEG recordings, log-transformed absolute
power, were obtained at each of 19 electrodes arranged in the 20/10
configuration for delta (1.0–4.0 Hz), theta (4.0–8.0 Hz), alpha (8.0–12.5),
beta1 (12.5–18.5 Hz) and beta2 (18.5–30.0 Hz) frequency bands. On the
basis of analysis by Lavoie et al.,15 delta EEG power was averaged between
all electrodes in the whole frontal, the frontal left (F3, F7 and FP1) and the
frontal right (F4, F8 and FP2) regions. Similarly, alpha power was averaged
in the same frontal regions and beta1 power was averaged in the parieto-
occipital, parieto-occipital left (P3 and O1) and parieto-occipital right (P4
and O2) regions. We included delta frontal, alpha frontal and beta1
occipitoparietal values as predictors for receiver operating characteristic
curve (ROC) analysis because of their association with psychotic symptoms
in Lavoie et al.15
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Statistical analysis
All statistical analyses were performed using the Medcalc statistical
software package.57 The power of this analysis was 0.8 at a moderate effect
size of 0.44 based on fixed model regression (F = 2.31). Odds ratio form of
Bayes’ Rule models and probability plots were constructed in Microsoft
Excel 2011 for Mac (Version 14.4.5). As a first step, we calculated ROCs58 for
all predictor variables using the Youden index to establish the optimal
threshold for cutoffs of continuous variables.59 We selected variables with
area under the ROC (AUROC) significantly greater than 0.5 (P40.05) for the
final odds ratio form of the Bayes’ Rule model. At an AUROC of 0.5, a test
has no ability to differentiate between two groups.60 To internally validate
the full model, calculations of 95% confidence intervals for model
sensitivity at fixed specificity were bootstrapped at 1000 iterations with
the Medcalc program using the BCa algorithm.61,62 Oxidative markers and
qEEG parameters were not significantly associated with transition and
were excluded from further modeling.
As a second step, we calculated positive and negative likelihood ratios

(LRs) for each significant baseline predictor using the following formulae:26

Positive Likelihood ratio (LR+) = Sensitivity/(1− Specificity); Negative Like-
lihood ratio (LR− ) = (1− Sensitivity)/Specificity. The LR+ is a measure of the
probability of a positive test result in affected persons divided by the
probability of a positive result in non-affected persons. In contrast, the
LR− is a measure of the probability of a negative test result in diseased
persons divided by the probability of a negative result in non-diseased
persons.26 A test with a LR equal to 1 has no predictive value. When the LR
+ is greater than 1, a positive test result suggests an increased probability
of the disease. A LR+ of 10 or greater provides strong evidence to rule in a
diagnosis. When the LR− is less than 1, a negative test result indicates a
reduced probability of a disease. A LR− less than 0.1 provides strong
evidence to rule out a diagnosis.63

As a third step, variables were combined into logical assessment groups
based on the type of data: history of drug use (historical); PANSS-positive,
-negative and general scores (clinical); GAF score (clinical); total omega-3
(alpha-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid and
docosahexaenoic acid); and nervonic fatty acids (biomarkers). Starting with
the baseline odds of transition in the population of interest, LRs (positive or
negative depending on the result) were combined sequentially to
determine the post-test odds for each case. The post-test odds were then
transformed to post-test probability. One case that had not transitioned at
12 months was excluded from the analysis because of missing data.
Figure 1 provides a graphical representation of the evolution of transition
risk across modes of assessment using the model. Each new finding either
increases (LR+) or decreases (LR− ) the probability of transition. The steps
in the calculation of the odds ratio model used the following formulae: (1)
pretest odds =probability of transition /(1−probability of transition); (2)
odds of transition = pretest odds × LR history of drug use × LR clinical
assessment (LR PANSS-positive × LR PANSS-negative × LR PANSS general ×
LR GAF) × LR fatty-acid markers (LR nervonic acid × LR total omega-3 fatty

acids); (3) probability of transition =odds of transition/ (1+odds of
transition). ROCs were calculated for each assessment group and for
factorial combinations of these groups again using the Youden Index to
identify the optimal model threshold.59 Pairwise comparisons between
these curves were calculated using the method of Delong et al.58

To visualize the utility of adding each subsequent mode of testing and
explore misclassified cases, we plotted evolving probability of transition for
each case.64,65 In these probability plots, the assessment group (historical,
clinical and biomarker) was represented on the x axis, and the probability
of transition from UHR to psychosis on the y axis (Figure 1).

RESULTS
Sample characteristics
Transition rate to psychosis assessed 12 months after entry into
the trial was 28% (n= 11) in the analyzed UHR cohort (n= 40).
Eight patients transitioned to schizophrenia, paranoid type; 1 to
schizophreniform disorder, 1 to schizoaffective and 1 to bipolar I
disorder with psychotic features. Age range was 12.9–22.3 years.
The sample was predominantly early youth-aged females with
high rates of smoking and regular alcohol use. One-third was
treated with antidepressant medication. Sixty-two percent had a
family history of psychiatric disorder, with nearly one-third a
family history of depression and 15% a family history of psychosis.
The predominant presenting UHR symptoms were attenuated
psychotic symptoms (55%), with 33% reporting both attenuated
symptoms and transient psychosis (see Supplementary Table 1).

ROC analysis implicates a limited number of historical, clinical and
biological variables as predictors of transition to psychosis
Drug use was the only significant historical predictor of transition
indicated by ROC analysis (Table 1). PANSS-positive, -negative and
general psychosis symptom scores, and the GAF scores were
significant clinical predictors. Of the blood biomarkers, only total
omega-3 and nervonic acid levels significantly predicted transition
to psychosis. Variance was similar in transitioned and non-
transitioned groups for all continuous variables included in the
final model. Differences were larger for PANSS-negative, -positive
and total omega-3 (see Supplementary Table 2). No individual
oxidative markers or qEEG parameters were associated with
transition. qEEG was available for 34 subjects, and this group
included nine individuals who transitioned to psychosis.

Figure 1. Stepwise evolution of probability of transition with new information using the odds ratio form of Bayes Rule model. LR+, positive
likelihood ratio; LR� , negative likelihood ratio.
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Odds ratio modeling suggests that the combination of historical,
clinical and biological variables can improve the accuracy of
prediction of transition to psychosis
To develop the odds ratio model, we then calculated the
sensitivity, specificity and LRs for variables that significantly
predicted transition to psychosis (Table 2). Individually, each
predictor’s LR+ and LR− was small. General PANSS score was the
strongest positive predictor at 3.01, whereas high nervonic acid

was the strongest negative predictor of transition at 0.17. The
specificity of individual markers was low, ranging from 51 to 72%.
In contrast, sensitivity was relatively high, ranging from 72 to 90%.
Using the odds ratio form of Bayes’ Rule we combined

significant predictors of transition into relevant groups, and then
explored the accuracy of each group and of all possible group
combinations using ROCs (see Table 3). All models were significant
predictors of transition. Clinical assessment using the PANSS and

Table 1. Receiver operating characteristic curve statistics and cutoff thresholds for transition predictors

Variable group Variables n Youden index Score threshold AUROC P

Historical Gender 40 0.05329 1 0.527 0.7613
Age 40 0.2414 ⩽ 17.2841 0.517 0.8563
Family history of psychosis 39 0.06207 1 0.531 0.6758
Duration of symptoms at presentation 40 0.2571 ⩽ 7 0.57 0.5125
Any history of drug usea 40 0.4514 1 0.726 0.006b

Clinical assessment PANSS positive 40 0.4734 414 0.699 0.0226b

PANSS negative 40 0.4169 412 0.723 0.027b

PANSS general 40 0.4859 431 0.768 0.0043b

MADRS 40 0.3448 412 0.666 0.0664
GAF—low 40 0.4263 ⩽60 0.774 0.0002b

Blood biomarkers Nervonic acid 39 0.5357 ⩽ 0.2902 0.688 0.0235b

PLA2 39 0.276 ⩽ 0.6473 0.562 0.6056
Total Omega 3 39 0.4968 ⩽ 5.0727 0.724 0.0405b

SOD 36 0.24 40.0318 0.502 0.9859
GSH 36 0.3855 ⩽ 40.024 0.691 0.0522
GSSG 36 0.1455 ⩽ 16.25 0.527 0.7958
GSH/GSSG 36 0.2036 ⩽ 1.877 0.571 0.5142

qEEG measures Delta frontal 34 0.2933 ⩽ 1.82 0.542 0.7482
Alpha frontal 34 0.1733 ⩽ 1.71 0.507 0.9573
Beta1 occipitoparietal 34 0.2800 ⩽1.6 0.636 0.2111

Abbreviations: AUROC, area under the receiver operating characteristic curve; GAF, Global assessment of functioning; GSH, glutathione; GSSG, glutathione
disulfide (oxidized form); MADRS, Montgomery Asberg Depression Rating Scale; PANSS, Positive And Negative Symptom Scale; PLA2, Phospholipase A2; qEEG,
resting quantitative electroencephalography; SOD, superoxide dismutatse. For continuous variables cutoff thresholds were set at the optimum balance
between sensitivity and specificity as determined by calculation of the Youden index. The threshold value for dichotomous variables was 1. aAny history of
drug use= illicit, tobacco or alcohol. bSignificant predictors of transition at Po0.05 are in bold.

Table 2. Sensitivity, specificity and likelihood ratios used in the odds ratio form of Bayes’ Rule model

Variable group Variables Sensitivity (%) Specificity (%) LR+ LR−

Historical Any history of drug use 72.73 72.41 2.64 0.38
Clinical PANSS positive 81.82 65.52 2.37 0.28

PANSS negative 72.73 68.97 2.34 0.40
PANSS general 72.73 75.86 3.01 0.36
GAF—low 90.91 51.72 1.88 0.18

Fatty acid marker Nervonic acid 90.91 53.57 1.96 0.17
Total Omega-3 81.82 67.86 2.55 0.27

Abbreviations: GAF, Global assessment of function; LR− , negative likelihood ratio; LR+, positive likelihood ratio; PANSS, Positive And Negative Symptom Scale.

Table 3. Receiver operating characteristic curve statistics for prediction of transition to psychosis

Model variable groups Threshold probabilitya AUROC Sensitivity (%) Specificity (%) s.e. 95% CI AUROC P AUROC

Any history of drug use 40.126 0.721 72.73 72.41 0.0828 0.554–0.852 0.0076
Any history of drug use+fatty-acid markers 40.0709 0.86 90.91 75 0.067 0.712–0.950 o0.0001
Fatty-acid markers 40.1672 0.8 81.82 78.57 0.0775 0.642–0.911 0.0001
Any history of drug use+clinical 40.0847 0.891 90.91 82.14 0.0593 0.750–0.968 o0.0001
Clinical 40.6705 0.864 63.64 92.86 0.0607 0.716–0.952 o0.0001
Clinical+fatty-acid markers 40.4933 0.898 72.73 92.86 0.0577 0.758–0.971 o0.0001
Any history of drug use+clinical+fatty-acid
markers

40.6894 0.919 72.73 96.43 0.0469 0.786–0.982 o0.0001

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; Clinical markers, Positive and Negative Symptom Scale
Positive, Negative and General scales and Global Assessment of Functioning; fatty acid, total omega 3 and nervonic acid; Historical, history of any drug use.
aThreshold probability calculated using the Youden Index.
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GAF was the most accurate individual predictor group based on
AUROC, followed by the fatty-acid biomarkers and history of
substance use. Combining modes of data improved model
performance in all cases. Pairwise comparisons of AUROC for
each of these models indicated that all permutations of combined
assessment modes were significantly superior to fatty acid or
historical data alone (see Supplementary Table 3).
The most accurate and specific model, including history, clinical

assessment and fatty-acid markers, reached a sensitivity of 72.73
at a specificity of 96.43. The bootstrapped 95% confidence interval
for model sensitivity with a fixed specificity of 96.43 equaled
36.36–90.91, suggesting that the model is internally valid. At this
sensitivity with a sample transition rate of 28%, the positive
predictive value equaled 88.5% and negative predictive value
equaled 90.3%. Suggesting both positive and negative test results
would be accurate in ~ 90% of cases. When historical, clinical and
fatty-acid markers were combined, the total model LR+ was strong
at 17.82, whereas the LR− was moderate at 0.38.

Probability plots support a stepped approach to assessment of
transition risk in clinical practice
Figure 2 shows probability plots for each patient of the analyzed
cohort, calculated with the full odds ratio model (history+clinical
+fatty acid) in a stepwise manner from the baseline probability of
transition of 28%. Figure 2a illustrates that at a threshold
probability of 0.6894 the model produced only 1 false-positive
(above model threshold) in cases that did not transition. Figure 2b
indicates three false-negative cases below model threshold. When
the three groups of predictors were combined, the majority of
cases were identified correctly as low risk (24/28 at probability
o0.1) or high risk (8/11 at probability 40.75). Fatty-acid
biomarkers improved accuracy in some cases at an intermediate
probability of transition based on clinical data. In general, where
conditional probability following historical and clinical assessment
was very low (o10%) or very high (490%), biomarker results had
little impact on final probability, suggesting that fatty acids have
low utility in these groups.

DISCUSSION
Our study demonstrates that a probabilistic model combining
historical and clinical data with blood fatty-acid levels could be
used to improve the specificity of UHR criteria and reduce the
associated false-negative rate. A recent meta-analysis showed that
the specificity of current UHR criteria lies between 59 and 67%.66

In this sample only 28% of those identified as UHR transitioned in
1 year. In comparison, our model identified 72.73% of these

transitions at a high specificity of 96.43%, resulting in only one
false-positive prediction. In translation, lowering of the false-
positive rate for FEP prediction could improve the effectiveness
and minimize the risks of indicated prevention with known
interventions.67 Risk enrichment using our model also may help to
reduce heterogeneity in future studies of the UHR phenotype.68

Our data suggest that UHR patients presenting with a high level
of subthreshold psychotic symptoms and functional difficulty may
represent a subgroup at higher 1-year risk for developing
psychosis. In comparison, the broader group identified by current
UHR criteria includes more distal risk factors such as retrospective
psychotic symptom assessment and family history of
psychosis.18,69 On the basis of meta-analysis, Fusar-Poli et al.54

have suggested that the state-trait risk UHR criteria are not
predictive of transition across studies. In our analysis of variable
groups, structured clinical assessments with PANSS and GAF at
baseline alone showed relatively high predictive utility (sensitivity
63.64% and specificity 92.86%; Table 3). In comparison, nervonic
acid and total omega-3, when combined at threshold levels
identified by ROC analysis, were more sensitive (81.82%) but less
specific (78.57%; Table 3). Our final multimodal model, combining
clinical, historical and biological variables, further improved
specificity (96.43%) but not sensitivity (72.73%) as compared with
the biomarker assessments alone (Table 3). These analyses allow
for comparison of assessment modalities with other published
approaches in improving risk prediction in UHR. For example, a 15-
analyte panel for transition prediction developed from 185
candidate blood biomarkers achieved sensitivity of 60% and
specificity of 90% with AUROC 0.88.18

Oxidative stress markers were not associated with transition.
However, GSH approached significance at P= 0.0522, suggesting
that an association may be present in a larger sample or with a
longer follow-up where more prodromal subjects are likely to
have transitioned. Individual parameters of qEEG were also not
predictive of transition in ROC analysis. Lavoie et al.15 have
previously shown a significant positive correlation between
negative symptoms and increased frontal delta activity in UHR
patients who transitioned to psychosis in this data set. Consistent
with this finding, the combination of negative symptoms and
frontal delta using our model produced a sensitivity of 88.89% and
specificity of 76.00% (AUROC of 0.842; Po0.0001), with a LR
+= 3.70 and LR –= 0.15. However, the addition of frontal delta to
the full multimodal model produced a small but nonsignificant
increase in AUROC (0.929) and sensitivity (77.78%) at a specificity
of 96%. These results suggest that a subset of UHR patients
with negative symptoms and associated frontal slow wave
pathology are at higher risk for transition. The relationship
between frontal delta and transition reached significance in a

Figure 2. Plots of probability of transition to first episode of psychosis (FEP), given historical, clinical and biomarker information. (a) Stepwise
probability of transition for individual cases not transitioned to psychosis at 1 year. (b) Stepwise probability of transition for individual cases
transitioned to psychosis at 1 year.
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larger study (n= 113; 19.5% transition),49 suggesting that our
analysis was underpowered.
Overall, results presented here are consistent with our previous

simulation, suggesting that at least two modalities of investigation
additional to UHR criteria are required to accurately differentiate
the risk of transition to psychosis 1 year after presentation to a
specialized clinic.3 Probability plots of individual cases show that
the addition of fatty-acid markers was most useful where historical
and clinical assessments yielded an intermediate probability of
transition. A staged approach to risk assessment would then be
the most efficient, using fatty-acid markers only when the
probability following history and clinical assessment is between
0.1 and 0.9, that is, 23% of participants in the current study.
Extending this staged approach, resource-intensive neuroimaging
or electrophysiology could be reserved for cases that remain at
intermediate risk based on clinical and blood biomarker assess-
ments. In this way our modeling approximates the standard
clinical assessment sequence in which investigations are ordered
based on hypotheses derived from the initial bedside interview. In
practice, once LRs are established and the local base rate of
transition is known, our model requires only simple bedside
calculations, making it suitable for implementation into the early
stages of frontline clinical assessment. Further study is required to
define the utility of fatty-acid levels for the prediction of omega-3
fatty-acid treatment responsiveness.28,31,35,37 Our findings empha-
size the importance of interpreting these biomarkers in the
context of the clinical presentation of the patient, as should occur
in effective clinical practice.26

Limitations
Some caution in the interpretation of this study is warranted
because of some differences in variance for predictor variables
between the transition and non-transitioned groups. Ultimately,
these findings need validation in a larger, longitudinal, prospective
clinical sample. Particularly, the relationships of increased frontal
slow waves and of GSH level to FEP need further exploration in a
larger data set with complete information. Further longitudinal
assessment of the single false-positive case could help to clarify
whether the follow-up period was too short to identify transition.
It is possible that FEP occurred shortly after the 12-month review.
We were able to explore this case visually using the probability
plot (see Figure 2a) and found a high risk of transition based on
history and clinical assessment, with low nervonic acid but above
threshold omega-3 levels. The three false-negative cases were at
low to intermediate probability of transition based on clinical
assessment, and two of the three cases had low risk based on
fatty-acid markers. Given the heterogeneity in psychotic illness,
the underlying mechanisms of psychosis in this group may not be
related to fatty-acid metabolism and 100% accuracy may be
difficult to achieve with many investigations in those with low-risk
clinical presentation. Exploration of such subgroups may help to
uncover new etiological mechanisms and identify specific markers
that could be combined in sequence with fatty acids to improve
prediction accuracy. Our model’s focus on transition excludes
other important primary outcomes such as psychosocial function-
ing, which may be impaired at long-term follow-up regardless of
transition status.70 Poor functioning at first presentation as
indicated by the GAF score was a predictor of transition to
psychosis in our sample. Early interventions to improve psycho-
social function are an important part of the management of those
at high risk. Our simple Bayesian approach could also be applied
to the prediction of functional outcomes to facilitate indicated
functional prevention strategies.

CONCLUSIONS
This explorative analysis suggests that the specificity and false-
negative rate of predicting transition from UHR to FEP can be
improved by combining historical and clinical data with fatty-acid
levels using a simple probabilistic model. In translation, a
reduction in false-negative rate would lead to more certainty
around the implementation of indicated prevention and to risk
enrichment in future UHR studies. The priming of the model with
historical and clinical data was important to optimize specificity
and overall accuracy. Fatty-acid biomarkers had limited value
when risk of transition was very high or very low based on history
and structured clinical assessment using the PANSS and GAF. If
our model was replicated in independent UHR samples, a possible
implication for an individual patient could be that a staged
assessment protocol using a combination of bedside clinical
assessment followed by fatty-acid markers is likely to be the most
efficient approach to separate patients at either high or low risk of
a first psychotic episode over the coming 12 months. Whereas
those patients at an estimated higher risk should receive more
assertive intervention with evidence-based treatments, the group
at low risk may not require an assertive approach.
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