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Abstract

Cancer cell metabolism has received increasing attention. Despite
a boost in the application of clinical metabolic profiling (CMP) in
cancer patients, a meta-analysis has not been performed. The
primary goal of this study was to assess whether public accessibil-
ity of metabolomics data and identification and reporting of
metabolites were sufficient to assess which metabolites were
consistently altered in cancer patients. We therefore retrospec-
tively curated data from CMP studies in cancer patients published
during 5 recent years and used an established vote-counting
method to perform a semiquantitative meta-analysis of metabo-
lites in tumor tissue and blood. This analysis confirmed well-
known increases in glycolytic metabolites, but also unveiled
unprecedented changes in other metabolites such as ketone bodies
and amino acids (histidine, tryptophan). However, this study also
highlighted that insufficient public accessibility of metabolomics
data, and inadequate metabolite identification and reporting
hamper the discovery potential of meta-analyses of CMP studies,
calling for improved standardization of metabolomics studies.
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Introduction

Clinical metabolomics investigates how metabolite levels are altered

in various (patho)physiological conditions, often with the objective

to find new roles of metabolism in disease, to discover novel meta-

bolic drug targets, or to identify biomarkers (Fernie et al, 2004).

Hopes have been raised that clinical metabolic profiling (CMP)

could reshape our understanding of cell biology and pathophysiol-

ogy, and even improve clinical practice (Patti et al, 2012). However,

apart from a few high-profile discoveries (Dang et al, 2009; Wang

et al, 2011), these expectations have not been fully met and the

impact of CMP studies has remained relatively modest (Sevin et al,

2015). This has raised concerns about the robustness, consistency,

and translational potential of CMP studies (Gika et al, 2014). In

contrast, the clinical impact of transcriptomics, genomics, and

proteomics has greatly benefited from standardized data reporting

and accessibility, permitting efficient data mining and quantitative

meta-analyses (Fernie et al, 2004; Rosenberg et al, 2010; Hu et al,

2013a,b; Nilsson et al, 2014).

Tools have been developed to deposit CMP results in databases

for managing (meta)data of metabolome analyses, but not for

performing meta-analyses (Haug et al, 2013; Ara et al, 2015; Salek

et al, 2015; Rocca-Serra et al, 2016). Surprisingly, however, even

though descriptive meta-studies that overview CMP data have been

reported (Shah et al, 2012; Abbassi-Ghadi et al, 2013; Huynh et al,

2014; Nickler et al, 2015; Guasch-Ferre et al, 2016), not a single

study performed a quantitative meta-analysis, in particular in

cancer. Nonetheless, the aggregation of information from multiple

studies in a meta-analysis leads in many cases to higher statistical

(discovery) power and therefore higher impact of individual studies

(Green, 2005). It remains undetermined whether a meta-analysis of

cancer CMP studies would offer novel insight, since cancer is a

heterogeneous disease, and CMP studies greatly vary in (i) how and

how many metabolites are measured, identified, and reported; (ii)

how such studies are designed; and (iii) whether and how they are

validated (Dunn et al, 2012). Only very recently, the first in class

meta-analysis of CMP was reported. However, this meta-analysis

was performed only on a subset of prospective CMP studies in

diabetic patients and even though this study associated elevated

plasma levels of branched-chain amino acids with the risk of devel-

oping type 2 diabetes (T2DM), it did not attempt to aggregate and

analyze the data of all the metabolites reported in all individual

studies (Guasch-Ferre et al, 2016).

For genomics, transcriptomics and proteomics data, the availabil-

ity of raw data such as abundances of transcript and protein levels

offers the possibility to compare the datasets in their original form

(Brazma et al, 2003; Jones et al, 2006; Barrett et al, 2013). When
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such quantitative data are not available, the results can still be

analyzed in a semiquantitative meta-analysis by vote counting, a

technique that is generally applicable and does not rely on the avail-

ability of raw data (Rikke et al, 2015). Vote counting has been

successfully used in previous meta-analyses to identify metabolic

targets, the expression of which was consistently deregulated across

multiple cancer types (Nilsson et al, 2014).

In this study, focusing on cancer, we retrospectively generated a

curated list of metabolites, based on MEDLINE search filter criteria,

from previous CMP studies in cancer patients published during 5 recent

years, and used vote counting to perform a semiquantitative meta-

analysis. The primary goal of this study was to assess whether public

accessibility of metabolomics data, metabolite identification and report-

ing were sufficient to obtain, novel insight in consistent metabolite

changes in cancer patients. It was not the primary goal of this study to

identify new metabolic drug targets or biomarkers, or to create a

comprehensive, widely useful cancer metabolite database per se.

Rather, we explored whether a meta-analysis of CMP studies is feasible,

and how these CMP studies can be improved to meet the same stan-

dards as routinely used in the genomics, transcriptomics and proteo-

mics fields.

Results

Compilation of a curated cancer metabolomics dataset

Since deposition of metabolomics data in publicly available repos-

itories is generally not required by scientific journals to date,

comprehensive datasets for meta-analysis have to be created by

alternative approaches, for instance, by retrospective manual

curation. We therefore conducted a systematic review of the liter-

ature to identify all CMP studies in cancer published between

June 2010 and June 2015. For all studies, we extracted data on

key methodological parameters using a pre-defined data extraction

protocol such as the type of disease, number of patients included,

the analytical platform, outcome measures, the level of metabolite

identification, and major findings among others. We also

extracted information on all reported metabolites, such as raw

abundance, fold change, and whether a metabolite was up- or

downregulated in cancer. Because the vast majority of studies

reported metabolites using ambiguous common names but not

unique identifiers, we used (bio)informatics tools to extensively

curate the extracted data of each study (see Materials and Meth-

ods). The resulting collection contains curated quality-checked

data of 136 cohorts reported in 126 studies, spanning 18 tumor

types and over 5,300 “disease versus control” comparisons of

approximately 1,900 unique metabolites in blood, urine, and

tumor tissue (denoted as “tissue” from here onwards) from an

estimated 21,000 individuals (Fig 1 for study outline; Table EV1;

see Materials and Methods for details).

Clinical metabolic profiling: methods and limitations

Data reporting

To assess how complete the reporting of the measured metabolites

was done relative to all previously reported metabolites, we

indicated for each study whether the metabolite was reported or

not. Current metabolic profiling technologies are capable of measur-

ing tens to hundreds of metabolites. However, surprisingly, most

individual studies published only a very small subset of all earlier

reported metabolites. This is clearly visible from the heat maps

shown in Fig 2A (for blood) and Fig EV1A and B (for tumor tissue

and urine), where a dark blue mark denotes that the metabolite was

reported to be increased or reduced in cancer. From the abundant

white “empty” space, it is obvious that reporting of metabolites was

highly incomplete. Even metabolites associated with a major chemi-

cal class (such as amino acids, carbohydrates) were reported on

average in only 6.4% of the studies. This finding can be explained

in part by the use of different profiling methodologies across

studies.

Notably, however, the majority of studies reported only metabo-

lites presumably deemed to be relevant to the authors and used

heterogeneous statistical outcome measures without providing full

datasets (Table 1). In fact, even though CMP studies have the poten-

tial to assess many hundreds of metabolites, the median number of

reported metabolites per study was only 22 (Table 1). Moreover,

while most, but not all, studies provided information regarding the

magnitude of the change (“effect size”), only 22.8% of the studies

reported measures of variance (Table 1). Also, only a mere 18.7%

of all studies reported data on all measured metabolites.

Taken together, it appears that in general, metabolite reporting

was highly incomplete and presumably subjective. This is in sharp

contrast to the genomics, proteomics, and transcriptomics analyses,

where full dataset deposition in publically available repositories is

often required.

Metadata reporting

Cancer is a heterogeneous disease. Therefore, cancer patients are

often clinically stratified based on demographic factors (such as age

and gender), tumor staging, histological parameters, molecular

tumor characteristics, treatment response, and others. However, it

is generally acknowledged that clinical and experimental metadata

reporting is problematic in most CMP studies, thus not only for

cancer (Ara et al, 2015). Indeed, we noticed that metadata have

been only scarcely reported, even though specialized databases exist

to collect such data from metabolic profiling experiments specifi-

cally (Ara et al, 2015). This precluded us from factoring patient and

tumor heterogeneity into our meta-analysis.

Study design

A total of 122 of the CMP studies (96.8%) included in our study

employed an observational, cross-sectional research design, in

which cancer patients were compared to a control group at a

particular time point. While such CMP studies may discriminate

between cancer and control and could provide novel insight in

disease pathogenesis, such experimental design is not (necessar-

ily) optimal to discover novel metabolic biomarkers for patient

stratification. A major goal of modern medicine is to stratify

patients for personalized treatment and to identify biomarkers

that can predict disease course or treatment response. However,

the majority of CMP studies did not consider any factors that

could aid in patient stratification other than the presence of

disease. Also, biomarker discovery and validation requires a

prospective research design in which patients are followed up

over time to associate metabolite levels with the course of disease
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or treatment response. Of the cancer studies we considered, only

4 (3.2%) had a longitudinal research design or compared early

with late-stage cancer to assess metabolic alterations over the

course of disease.

Metabolite identification

Metabolite identification is a major bottleneck in CMP, but is

nonetheless essential for adequate biological interpretation of the

results. The Metabolomics Standards Initiative (see http://cosmos

-fp7.eu/msi for more information) defined four levels of identifi-

cation, of which only “level one” results in unambiguous annotation

(Salek et al, 2013). Notably, only half (52%) of the CMP studies

provided “level one” metabolite identification for at least a subset of

the reported metabolites, and even fewer studies identified all

reported metabolites unambiguously, often studies that profiled a

small set or specific class of metabolites.

Clinical or orthogonal validation

Metabolic profiling produces high-dimensional data (a typical

dataset may contain values for hundreds to thousands of metabolites

for each sample analyzed). Statistical analysis of such data is prone

to type I errors (“false positives”). Therefore, results should be best

validated in independent cohorts or verified by using orthogonal

models or by using different independent technologies (e.g. tran-

scriptomics, proteomics) and/or targeted analysis. However, only

17.9% of the CMP studies reported validation cohorts and only

~10% used orthogonal models. Even though metabolic profiling is

ideally suited to combine with other (orthogonal) omics data, only

6.8% of the studies performed multi-omics analysis (Table EV2).

Thus, the findings of the majority of CMP studies remain uncon-

firmed. In principle, a meta-analysis is useful to validate the results

of individual studies in independent cohorts.

Identification of metabolic signatures in cancer

Incomplete and heterogeneous reporting of metabolite data and

summary statistics prevented us from performing a quantitative

meta-analysis and precluded us from determining the average

fold changes of metabolite levels across all studies for any

metabolite. Also, scarce availability of metadata prevented us

from stratifying cancer patients and from assessing an associa-

tion between metabolite changes and patient or tumor character-

istics. These omissions in data reporting likely explain why

previous metabolomics meta-studies did not perform statistical

aggregation of the results from individual studies (Rocca-Serra

et al, 2016). However, all studies in our dataset reported the

directionality (increased or decreased levels) of the deregulated

metabolites. We therefore performed a meta-analysis by vote

counting (Rikke et al, 2015), a semiquantitative technique that

only requires such information, allowing us to include all studies

in the analysis for improved statistical power. Nonetheless, our

meta-analysis was still (relatively) underpowered, and we

obtained only statistical significance for a subset of metabolites,

even though other metabolites showed clear trends that could

become statistically significant with more power, and hence may

be of clinical relevance.

Meta-analysis approach

To explore how consistently metabolites are altered across cancer

types, we indicated for each metabolite per study whether it was

increased (denoted by “+1”) or decreased (“�1”) in cancer patients

relative to controls. These controls were “healthy” individuals with-

out cancer for analysis of blood and urine, and, for tumor tissue,

controls included subjects (i) without cancer, (ii) with premalignant

lesions, or (iii) with cancer but using adjacent healthy tissue as

control. The vote-counting statistic (VCS, reported as VCS/number

of reporting studies; Benjamini–Hochberg adjusted P-value)

assumes a high positive value if the metabolite was consistently

increased and conversely a negative value for consistently decreased

metabolites. In this context, a zero value implies that the studies

provide conflicting evidence on whether the metabolite was

decreased or increased. The Benjamini-Hochberg adjusted P-value

was only calculated for metabolites reported in at least six cohorts.

While the statistical power of urine meta-analysis was limited due

Figure 1. Overview of the study design and dataset compilation.
We included 126 studies in our curated cancer metabolomics dataset, studies that described profiling in multiple cancer types were counted once for each type, giving rise to
136 “cancer versus control” cohorts spanning 18 different cancer types, 71 assessing blood, 39 tissue, and 26 urine. We also included 18 diabetes mellitus type 2 studies to
determine whether our vote-counting method could identify distinct metabolic signatures in cancer versus diabetes.
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to a small number of studies (Fig EV2; Tables EV1 and EV3), our

analysis revealed profiles of consistently deregulated metabolites in

blood (Fig 2B and C; Table EV4) and tumor tissue (Figs 2D and 3;

Table EV5) across cancer types.

Cancer-associated metabolic changes

We then assessed whether the vote-counting method identified

particular metabolites that were consistently up- or downregulated

in cancer. In agreement with the known increase of glycolysis in

cancer cells (Vander Heiden et al, 2009), this analysis showed

increased tumor lactic acid levels consistently across all cancer types

examined (VCS = 26/26, P-value = 1.5 × 10�6) (Figs 2D and 3).

Interestingly, glutamic acid ranked second (only after lactic acid)

among the most increased metabolites in tumor tissue (VCS = 16/18,

P-value = 3.6 × 10�3; Figs 2D and 3) and was the most frequently

increased metabolite in blood (VCS = 11/15, P-value = 5.5 × 10�2;

Fig 2B and C). The glutamic acid precursor glutamine was the

second most decreased metabolite in blood (VCS = �18/26,

P-value = 8.0 × 10�3) and was frequently increased in tumor tissue

(VCS = 7/13, P-value = 1.1 × 10�1; Figs 2B–D and 3). The findings

in the blood may indicate systemic depletion of glutamine and

other amino acids (see below) as observed in chronic catabolic

states (Souba, 1993). Overall, this analysis confirms that the vote-

counting method can identify changes in metabolites, which have

been previously implicated in cancer cell metabolism (Lunt &

Vander Heiden, 2011).

A novel finding was that the ketone body 3-hydroxybutyric acid

was upregulated in the blood of cancer patients (VCS = 9/15,
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Figure 2. Metabolite reporting & vote-counting analysis in tissue and blood.

A Heat map of all reported cancer blood metabolites (each dark blue mark denotes that the metabolite was reported to be increased or decreased) in various cancer
types, illustrating that most individual studies report only a small subset of all previously measured metabolites. It is typically not described whether the metabolites
that were not reported (white “empty” space) were not measured, or measured but not reported. Labeling: x-axis (top): ribbon color code, denoting the cancer type
(right; indicated by red arrow); x-axis (bottom): cohorts, arranged from 1 to 71; y-axis (right): all 1,206 metabolites reported in at least one of the studies; y-axis (left):
ribbon color code, denoting the metabolite class (amino acids, carbohydrates, etc.; “other” refers to all other metabolites than the listed classes). See also Table EV4.

B Vote counting of cancer blood metabolites (reported in at least six cohorts) showed consistently deregulated metabolites. Blue bars: decreased metabolites; red
bars: increased metabolites. An asterisk (*) in front of the name of the metabolite indicates at least a statistical trend (P < 0.1) obtained using the sign test; red
arrowheads denote metabolites mentioned in the main text.

C, D Volcano plots of blood metabolites (C) and tissue metabolites (D), reported in at least six cancer studies, with the vote-counting score on the x-axis and the �log10
adjusted P-value on the y-axis. Cyan indicates deregulated metabolites that show a trend (P < 0.1; for blood, corresponding to metabolites marked with * in panel
B; for tissue, corresponding to metabolites marked with * in Fig 3) or statistical significance (P < 0.05; above black dashed horizontal line); red indicates
metabolites with a P-value > 0.1. A subset of metabolites is annotated (see Tables EV4 (blood) and EV5 (tissue) for full annotation, vote-counting statistics were
calculated using the sign test).
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P-value = 1.3 × 10�1) (Fig 2B). This ketone body has been reported

to stimulate tumor growth and has been associated with cancer

cachexia (Tisdale & Beck, 1990; Shukla et al, 2014), though its role

remains debated (Bonuccelli et al, 2010; Poff et al, 2014; Shukla

et al, 2014). We also identified significant deregulation of less

investigated metabolites. In the blood, tryptophan (VCS = �22/26,

P-value = 3.2 × 10�4) and histidine (VCS = �14/18, P-value =

1.3 × 10�2) were among the top three most decreased metabolites

(Fig 2B and C), while they were increased in tumor tissue

(VCS = 8/10, P-value = 4.6 × 10�2 for both tryptophan and histi-

dine) (Fig 3). Interestingly, histidine has been implicated in tumor-

associated inflammation (Yang et al, 2011), while the tryptophan

metabolite kynurenine (frequently increased in tumor tissue;

VCS = 7/9, P-value = 5.9 × 10�2; Fig 3) suppresses anti-tumor

immune responses (Opitz et al, 2011). In addition, both tryptophan

and histidine are potential one-carbon donors to tetrahydrofolate,

which contributes to nucleotide metabolism and redox homeostasis,

perhaps reflecting the augmented proliferative potential of cancer

cells. These results indicate that vote counting can identify metabo-

lites that are often up- or downregulated in cancer patients.

Sensitivity analysis

We performed a sensitivity analysis to assess whether the cross-

cancer results were driven/largely influenced by individual cancer

types. To this end, the vote-counting procedure was separately

repeated by excluding in turn each cancer type for studies in urine,

blood, and tissue. The top deregulated metabolites were consistently

deregulated, regardless of which cancer type was taken out of the

analysis, confirming that no individual cancer type dominated the

analysis (not shown).

Type 2 diabetes

To determine whether metabolic alterations could also be detected

with the vote-counting method in another disease, we constructed a

second dataset of blood metabolites in T2DM patients (18 studies,

~1,200 metabolite measurements in estimated 4,000 patients;

Table EV1) and repeated our meta-analysis. Due to the limited

number of CMP studies, the study was relatively underpowered.

Nevertheless, using our approach, we identified a number of vali-

dated T2DM biomarkers, including, as expected, glucose (VCS = 7/7,

P-value = 7.0 × 10�2). However, we also observed elevations of

the (branched-chain) amino acids leucine (VCS = 9/11, P-value =

7.0 × 10�2), valine (VCS = 7/11, P-value = 1.1 × 10�1), isoleucine

(VCS = 5/7, P-value = 1.4 × 10�1), and phenylalanine (VCS = 7/9,

P-value = 8.8 × 10�2) (Fig EV3, Table EV6). Interestingly, these

data are consistent with a recent report based on previously

published prospective studies that elevated levels of these amino

acids are associated with an increased risk to develop T2DM

(Guasch-Ferre et al, 2016), thus validating our approach. Further-

more, the same study also found that glycine blood levels were

inversely associated with T2DM risk. Of note, we identified glycine

as the most decreased metabolite in our analysis (VCS = �5/7,

P-value = 1.4 × 10�1) (Fig EV3, Table EV6). These concordances

further validate the potential of the vote-counting method to iden-

tify changes in metabolites that can be clinically relevant. Another

noteworthy observation is that blood levels of 1,5-anhydrosorbitol

were consistently reduced in all three studies that reported this

metabolite (Table EV6). This metabolite is a clinical biomarker of

diabetes and has been developed in a FDA-approved blood glucose

test (Halama et al, 2016). Overall, these results indicate that our
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Figure 3. Vote-counting analysis in cancer tissue.
Vote counting of cancer tissue metabolites (reported in at least six cohorts) showed consistently deregulated metabolites. Blue bars: decreased metabolites; red bars:
increased metabolites. An asterisk (*) in front of the name of the metabolite indicates at least a statistical trend (P < 0.1) obtained using the sign test; red arrows denote key
metabolites mentioned in the main text (see Table EV5 for full annotation).

Table 1. Metabolomics data reporting.

Cancer All

Blood Urine Tissue cohorts

Median number of
reported metabolites

19 19.5 29 22

Effect size reported (%) 98.5 92 100 97.9

Variance measure
reported (%)

30.8 20 10.3 22.8

Full dataset available (%) 23.1 8 17.9 18.7
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semiquantitative meta-analysis is capable of identifying distinct

metabolite signatures for cancer versus T2DM.

Discussion

Despite incomplete reporting of CMP data, the semiquantitative

meta-analysis approach used in this study was capable of identifying

distinct metabolite signatures in cancer and T2DM. Not only did this

method provide confirmatory evidence for the up- or downregula-

tion of particular metabolites, previously involved in cancer cell

metabolism (Vander Heiden et al, 2009; Lunt & Vander Heiden,

2011), but the approach used also identified metabolites that were

less well/only minimally appreciated in cancer cell metabolism.

While our analysis reveals that meta-analyses of CMP studies

provide novel opportunities, our study was also confronted by a

number of challenges that need to be addressed in order to maxi-

mize the discovery potential of this approach.

Challenges

Despite the promising results of our analysis, several hurdles limit

the amenability of current CMP studies for quantitative meta-

analysis: (i) The lack of availability of full datasets reduces the

statistical power of data mining approaches and precludes re-

analyzing the original data to replicate the results. Moreover, with-

out the availability of full datasets, it is impossible to determine

whether a metabolite was measured but not deemed relevant, or not

measured, leading to a particularly pernicious bias in outcome

reporting that cannot be adequately resolved with current statistical

methods. (ii) Scarce reporting of metadata and lack of raw data for

each analyzed sample limits the possibilities for stratified analysis,

while such analysis of inter-patient heterogeneity is key to modern

personalized medicine. (iii) Many studies use cross-sectional or

case–control research designs to prove that the metabolic profile in

cancer is distinct from controls. Such studies can validate the

discriminatory power of the metabolic profiling technology, but the

results are not necessarily clinically relevant or applicable to

improve personalized medicine. (iv) The use of inconsistent report-

ing formats renders data extraction highly labor-intensive and error-

prone. (v) Ambiguous metabolite annotation and identification limit

confidence in the interpretation of data mining outcomes. (vi) The

lack of quantitative data (absolute levels of metabolites) precludes

the development of reference values to which individual patients

can be compared. (vii) The use of a wide variety of profiling tech-

nologies and analytical methods complicates direct comparison

between studies. And, (viii) the lack of validation in independent

replication cohorts, in preclinical models or by orthogonal experi-

ments, is a shortcoming of many profiling studies.

Opportunities

Nonetheless, despite these limitations, a semiquantitative meta-

analysis of a limited number of studies appeared to be sufficient to

identify a number of known and new metabolites, some under-

scored by a significant P-value, others more by a trend (likely due to

insufficient power). Clearly, standardizing the design, execution,

and reporting of CMP studies will only increase the discovery

potential of quantitative meta-analyses. Today, only a minority of

CMP data is readily available, and retrospective collection and cura-

tion from past publications is an enormous effort. To maximize the

value of CMP studies, metabolomics data could be submitted to a

public metabolomics repository (Haug et al, 2013). Eventually, to

improve the feasibility and power of future data mining approaches,

the research community and journals can adopt reporting standards

that require data annotation in an accessible electronic format

(Larsson & Sandberg, 2006; Rocca-Serra et al, 2016).

Limitations

Our study was designed to test whether a meta-analysis could be

performed with currently available CMP studies in cancer. Given

the aforementioned challenges, the scope of our study was not to

discover new metabolic targets per se, or to create a database for

broad usage. Because comprehensive metabolomics repositories do

not exist, we performed a meta-analysis on reported metabolites, an

approach that is susceptible to publication bias. In conclusion, the

largest limitation is the insufficient number of studies and lack of

full dataset availability, which reduced statistical power, prevented

detection of metabolic signatures within cancer types, and precluded

stratified analyses.

Materials and Methods

Rationale and objectives

We performed a meta-analysis of metabolite profiling in cancer with

the following objectives: (i) to provide a cross-section of metabolic

profiling methods and implementations; and (ii) to assess the poten-

tial of metabolomics data mining. The aim of this study was not to

identify, nor to functionally verify new metabolic mechanisms,

discovered through this meta-analysis.

Dataset compilation

General strategy

Since no datasets of metabolic profiling in cancer exist, we first

set out to construct such a dataset. We used a pre-defined search

filter to search MEDLINE for studies reporting on metabolic profil-

ing of blood (plasma and/or serum), tissue, and urine in cancer.

Next, we included studies based on predetermined in- and exclu-

sion criteria (Table EV7) and extracted metabolite data as well as

methodological metadata using a standardized data extraction

sheet. In addition, we noted for each metabolite whether it was

reported as increased or decreased. The same strategy was used

to construct a second dataset of metabolic profiling in type 2

diabetes mellitus (T2DM) in order to assess disease specificity of

identified metabolic alterations.

Search method for identification of studies

Our first search filter combined the search term “metabolic” and

its synonyms with the Boolean operator “OR”. Our second search

filter combined the term “profiling” and its synonyms with the

Boolean operator OR. The third search filter combined the terms

“diabetes” and “cancer” with the operator OR. We then combined
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these searches with the Boolean operator AND. We added addi-

tional filters to specifically exclude studies on metabolic syndrome,

review articles, and editorials. We limited the search to studies

published from June 1, 2010, to June 1, 2015, in the English litera-

ture, to ensure that the data examined reflected current state-of-

the-art profiling platforms. This filter retrieved 4,260 references of

articles. To identify potentially relevant studies, two reviewers

(A.P. and J.G.) independently screened all studies on title and

abstract. To further increase coverage and retrieval of relevant

studies, we complemented our automated search with manual

searches (J.K., L.C.C., and J.G.) in relevant journals and identified

30 additional papers.

Inclusion and exclusion of studies

Next, three teams of two reviewers assessed the eligibility of the

identified papers (A.P./J.G., L.C.C./J.G., J.K./J.G.) by applying

the in- and exclusion criteria. Briefly, we considered global meta-

bolic profiling studies performed in humans, in whom metabolic

profiling was done on serum, plasma, urine, or tumor tissue.

Studies profiling other bodily fluids (such as cerebrospinal fluid

and sweat) and feces only or solely in other organisms were

excluded. We considered both clinical biomarker studies and

studies where metabolic profiling was used as a discovery

strategy to identify novel biological mechanisms. We only

included studies profiling cancer or T2DM that had a well-

defined control group. We further limited inclusion to studies

that used either nuclear magnetic resonance spectroscopy (NMR)

or mass spectrometry (MS) in a global profiling approach. An

overview of included studies is provided in Tables EV8, EV9,

EV10 and EV11.

Quality assessment, data extraction and integrity

For all selected papers, the reviewers used a pre-defined evalua-

tion/data extraction protocol to assess (methodological) study

parameters such as the type of disease, number of patients

included, the analytical platform, outcome, the level of

metabolite identification (see below), and major findings among

others. Because the vast majority of studies annotated reported

metabolites using ambiguous common names and did not use

unique identifiers, which limits bioinformatics possibilities, we

used specific algorithms of the OpenRefine software to standard-

ize spelling and the ConvertTool of the MetaboAnalyst 3.0 soft-

ware to assign unique identifiers if available. Retrospective

manual curation of metabolomics data from published studies is

time-consuming and relatively error-prone, but currently the only

available method to construct a comprehensive metabolomics

dataset. We performed data quality checks at each step of the

dataset construction and randomly re-reviewed 25% of the

included references post-dataset construction.

Metabolite identification levels as defined by the Metabolomics

Standards Initiative

Level “one” (identified metabolites) identification necessitates

that two or more orthogonal properties of an authentic chemi-

cal standard, analyzed in the researcher’s laboratory, are

compared to experimental data acquired in the same laboratory

with the same analytical methods. By contrast, annotation of

level “two” (putatively annotated compounds) and level “three”

(putatively characterized compound classes) does not require

matching to data for authentic chemical standards acquired

within the same laboratory. Level “four” refers to unidentified

compounds.

Statistical analyses

Vote-counting procedure

Because there are no standardized approaches available for meta-

bolomics meta-analysis and full quantitative data (fold changes,

abundances, etc.) are lacking, we devised a statistical approach to

quantify metabolite deregulation. For each study, a score of “+1”

or “�1” was assigned to each reported metabolite, depending on

whether the metabolite was found increased or decreased, respec-

tively, regardless of the fold change. Metabolites that were

reported more than once per study, for example, as measured by

different methods were only annotated once. For these metabo-

lites, we determined directionality (whether it was increased or

decreased) by applying vote counting within the study. This

resulted in an assigned score of “0” if the study reported it

The paper explained

Problem
It has become increasingly clear that cellular metabolic alterations
are involved in the pathogenesis of multiple diseases, including
cancer. Clinical metabolic profiling (CMP) offers the opportunity to
characterize the metabolome and is being increasingly used to iden-
tify disease-associated metabolic signatures. Metabolic profiling of
body fluids and excretions such as blood, urine, and feces was antici-
pated to identify novel biomarkers, while profiling of diseased tissue
was expected to provide insight into molecular pathogenesis.
However, despite technological advances and increasing use of CMP,
progress and clinical translation of these data have been more modest
than expected. Surprisingly, a meta-analysis of CMP has not been
performed, even though (i) such studies could provide insight into
current methods and application of metabolic profiling; and (ii) similar
meta-analyses have contributed to the impact in the genomics, tran-
scriptomics and proteomics fields. Here, we performed a meta-analysis
of CMP in cancer.

Results
We manually compiled a dataset of cancer studies published during
five recent years. Insufficient raw data and metadata availability and
reporting prevented quantitative meta-analysis. We therefore
performed a semiquantitative meta-analysis by vote counting (com-
paring the number of studies that report a metabolite to be increased
or decreased in order to identify metabolites that are consistently
deregulated across studies) to demonstrate the potential of CMP data
mining, as highlighted by the identification of several known but also
previously less appreciated metabolic alterations in cancer.

Impact
Our results suggest that the clinical impact of metabolic profiling
could be improved by adhering to standards for designing clinical
studies, more extensive validation of the results and, most impor-
tantly, by improved metabolomics data reporting (and metabolite
identification) and deposition of full datasets in public repositories for
reuse in meta-studies. Scientific journals may facilitate this process by
demanding full dataset availability as is already required for geno-
mics, transcriptomics, and proteomics data.
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equally often as increased and decreased, because directionality

could not be determined (21, 42, and 1 metabolite in blood,

urine, and tissue samples, respectively). We then performed a

semiquantitative meta-analysis by vote counting, that is, summing

the scores for each metabolite, to quantify deregulation (i.e. the

consistency with which a metabolite is reported to be increased

or decreased across studies). The vote-counting statistic (VCS,

reported as VCS/number of reporting studies; Benjamini–

Hochberg adjusted P-value) assumes a high positive value if the

metabolite is consistently increased, and conversely a negative

value for consistently decreased metabolites. In this context, a

zero value implies that the studies provide conflicting evidence

on whether the metabolite is increased or decreased.

We also used the sign test to assign a P-value to assess whether

the vote-counting results were merely due to chance. The null

hypothesis was that the directionality of deregulation of a given

metabolite is not consistent across studies. Under this null hypoth-

esis, we assumed that studies would report the metabolite as

either increased or decreased with approximately equal probabil-

ity. With this assumption, we could model the global score for a

given metabolite as the result of a binomial process, where (i) the

number of trials equals the number of studies reporting the

metabolite, (ii) success is defined as a study with the same sign of

the global score, and (iii) the probability of success is set to 0.5.

The one-tailed P-value assessing the probability of obtaining an

equal or greater (in absolute terms) global score under the null

hypothesis was obtained from the binomial distribution and

adjusted for multiple testing with the Benjamini–Hochberg proce-

dure (Benjamini & Hochberg, 1995). The significance of metabo-

lites reported in 5 or fewer studies was not assessed for lack of

statistical evidence.

An alternative, permutation-based test was also employed. For

each metabolite, the null distribution was built by computing

several times the global score on a simulated set of reporting stud-

ies. Each simulated set was built by randomly assigning with proba-

bility 0.5 an up/down directionality to each study reporting the

metabolite. A one-tailed P-value was computed by comparing the

original global score against its respective null distribution. The

results of this permutation test were almost identical to the P-values

provided by the binomial test (correlation > 0.9) and are thus not

reported.

Expanded View for this article is available online.
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