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Abstract

The control of human bipedal locomotion is of great interest to the field of lower-body brain 

computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI 

system for the control of a lower body exoskeleton has been recently shown, multi-day closed-

loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be 

demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint 

angles from scalp electroencephalography (EEG) during treadmill walking to control the walking 

movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric 

walking gait patterns of the avatar were also introduced to investigate gait adaptation using the 

closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of 

using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor 

perturbations, which involved cortical adaptations. These findings have implications for the 

development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical 

plasticity induced by a closed-loop BCI system.
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I. Introduction

Spinal cord injury (SCI) and stroke are the leading causes of long-term disability around the 

world. In the United States, more than 795,000 people have a stroke every year [1], and the 

number of people who have SCI is estimated to be 276,000 [2]. Gait deficit is a debilitating 

outcome from stroke and SCI. Therefore, restoration of gait function is crucial and it has 

been a long-standing focus in rehabilitation research.

Walking is a complex task and its quality is usually determined by a smooth and symmetric 

walking gait pattern. However, patients with cerebral damage from stroke often adopt 

asymmetric walking patterns [3,4]. Prior studies of gait adaptation to a spit-belt perturbation, 

which creates asymmetric walking, demonstrated that temporal and spatial control for 

symmetric gait can be adapted separately [5]. Moreover, the understanding of motor 

adaptation mechanisms may suggest appropriate intervention for gait rehabilitation. 

Analyses of aftereffects following split-belt treadmill adaptation showed that the walking 
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adaptation partially transfers to over-ground walking in patients post-stroke. This could 

imply that the persistence of improved symmetry can be used in gait restoration in post-

stroke gait rehabilitation [6]. The advantages of visuomotor adaptation in improving task 

performance in patients post-stroke have also been demonstrated [7,8].

Rehabilitation based on Virtual Reality (VR) (or Virtual Environments, VE) is an emergent 

area of research that provides several advantages to the patients and researchers [9,10]. 

Some of the advantages of using VR are its interactivity and its tendency to motivate 

subjects. VE creates an interactive environment that immerses the user in the experimental 

setting. This is important in rehabilitation to ensure patient’s engagement and motivation to 

improve performance [11]. Applications of VR/VE in rehabilitation as growing; for 

example, a virtual reality soccer game was used to improve walking performance for 

pediatric rehabilitation [12]. Another study showed the advantages of using VR in gait 

rehabilitation by creating an obstacle avoidance VE system during walking in chronic post-

stroke patients [13]. Moreover, there are a few randomized controlled trial (RCT) studies 

that assessed the use of VR during stroke rehabilitation. A Cochrane review has reported that 

there was not enough evidence to conclude the effectiveness of VR compared to the 

conventional therapy in improving gait speed [14]. On the other hand, Yang et al. reported 

that VR could be beneficial for gait rehabilitation [15]. Llorens et al. conducted a RCT study 

on improving balance during gait using VR with chronic stroke patients [16]. Interestingly, 

some research showed that a VR intervention is effective on triggering cortical 

reorganization and associated locomotor recovery [17].

Although locomotor adaptation, visuomotor adaptation and VR-based neurorehabilitation 

have been used to improve motor function, surprisingly little is known about the neural 

mechanisms of locomotor recovery [18] [19]. Previous studies of functional near-infrared 

spectroscopy (fNIRS) have shown the involvement of frontal, premotor and supplementary 

motor areas during walking [20]. In addition, functional magnetic resonance imaging (fMRI) 

studies have demonstrated that treadmill exercise alters brain activation of paretic leg 

movements in stroke patients, evoking new connections at the subcortical and cerebellar 

levels [21]. These brain activation changes are associated with improved walking function 

after treadmill training, which also positively affects spatio-temporal gait parameters during 

over-ground walking [22]. The use of transcranial magnetic stimulation (TMS) shows that 

brief exposures to treadmill walking altered corticospinal excitability to lower extremities in 

chronic stroke survivors [23]. However, these approaches lack the temporal resolution 

required to uncover the time course of the cortical contributions to the control of gait.

Neural engineering approaches to the study and restoration of gait function have 

demonstrated the possibility of reconstructing gait kinematics from patterns of cortical 

activity acquired via intracortical electrode arrays in non-human primates [24] and non-

invasive scalp electroencephalography (EEG) in human subjects [25] with the same accuracy 

(for a review see [26]). More recently, Bulea et al. decoded sit-to-stand and stand-to-sit 

movements from EEG signals recorded immediately prior to those actions suggesting EEG 

can be used to predict locomotive and non-locomotive actions [27]. Moreover, Kilicarslan et 
al. pioneered the deployment of EEG-based BCI systems to control lower-body powered 

robotic exoskeletons by subjects with SCI [28]. Applications of BCI systems for gait 
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rehabilitation using VR/VE represent a new form of personalized neuro-rehabilitation based 

on putative shared brain networks involved in action observation and action execution (for a 

review see [29]). However, little is known about brain networks adapt during gait adaptation 

based on BCI-VR systems.

In this study, an EEG-BCI system based on the unscented Kalman filter has been designed to 

infer lower limb joint angles during treadmill walking in real-time from EEG signals in 

healthy subjects. The predicted lower limb joint angles were used to control a walking avatar 

in a virtual environment, thereby closing the loop through the brain. Virtual kinematic 

perturbations of the subject’s walking patterns were also introduced to investigate the 

changes in brain activity to gait during adaptation using the closed-loop BCI-VR. The virtual 

kinematic perturbations resulted in an asymmetric walking pattern of the walking avatar. We 

hypothesized that with practice the subjects can gain more BCI control and reduce the gait 

asymmetry of the walking avatar through EEG signals.

II. Materials and Methods

A. Experimental Setup and Procedure

Two healthy male subjects, aged 23 with no history of neurological disease or lower limb 

pathology participated in this study. All participants provided voluntary consent and 

performed study procedures that were approved by the Institutional Review Board at the 

University of Houston. Each subject participated in eight trials, which are identical but 

happened on different days. The full protocol usually lasted less than an hour. Except for a 

short period of standing still in the beginning and end, the subject walked on a treadmill at a 

fixed speed of 1 mile/hour (mph). A display was placed in front of the treadmill, displaying 

an avatar of the subject standing/walking in a straight hallway VE (Fig. 2A). Only body 

parts below waist were shown on the screen, because only lower limb movements were 

studied. During baseline performance, the avatar followed the movement of the subject 

precisely in real-time by matching the joint angles on hip, knee, and ankle on both legs. 

These angles were measured using six goniometers, one on each joint, measuring angles in 

the sagittal plane.

As illustrated inFig. 1, each trial began with the subject standing still on the treadmill for 2 

minutes. The treadmill was then slowly sped up to 1 mph by the experimenters. The subject 

was able to see the avatar following his/her movement correctly. The first 15 minutes of 

walking served as a baseline condition, in which the subject also got familiar with the VE. In 

this article, we call this the gonio-control phase. The parameters of the unscented Kalman 

filter were updated every minute in this phase. A detailed description of this algorithm is 

provided in Section II. D and E. The gonio-control phase was followed by an EEG-control 
phase, in which the right hip, knee, and ankle joints of the avatar followed the outputs of the 

real-time BCI decoder instead of the goniometers. The EEG-control phase consists of three 

parts: pre-exposure (8 mins), exposure (15 mins), and post-exposure (8 mins). During the 

exposure time, a visual-kinematic perturbation was introduced into the avatar: all joint 

angles on the right leg of the avatar were linearly scaled down into 70% of original value. 

All subjects were briefly informed before the experiment that there would be gonio-control, 
EEG-control and perturbation, but details of the protocol were not revealed. They were 

Luu et al. Page 3

Int Conf Virtual Rehabil. Author manuscript; available in PMC 2016 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



instructed to correct the avatar's gait pattern once any abnormality is noticed. Meanwhile, 

they continued to walk on the treadmill during all phases. In the end, the trial terminated 

after the subject stood still on the treadmill for another 2 minutes.

B. Data Collection

Whole scalp 64-channel active EEG data were collected (actiCap system, Brain Products 

GmbH, Germany) and labeled in accordance with the extended 10–20 international system. 

EEG data were online referenced to channel FCz. The sampling rate was 100 Hz. 

Goniometer data (SGI 50 & SG110/A Gonio electrodes, Biometrics Ltd, UK) were also 

sampled at 100 Hz, and recorded in sync with EEG data using our own software.

Three wireless OPAL sensors (OPAL, APDM Inc., Portland, OR) were mounted on the 

head, left heel, and right heel of the subject. Each sensor included accelerometer, gyroscope, 

and magnetometer sampled at 128Hz. The sensor on head was used to rule out possibility 

that EEG may be contaminated by motion artifacts. The other two sensors on the feet 

provided timing for the gait cycles (seeFig. 2B). OPAL data was synchronized with EEG and 

goniometer data. A raster plot showing these three modalities of data are shown inFig. 2C.

C. Signal Pre-processing

All processing was carried out in custom C++ software in real-time. Peripheral EEG 

channels were immediately removed as they are most susceptible to artifacts from eye-

blinks, head movements, and facial/cranial muscle activity .Removed channels are labeled 

with a red "x" inFig. 2A. EEG data were band-pass filtered at 0.1–3 Hz (delta band), and 

then normalized to the same scale (zscore). Studies show that delta band EEG contains 

intended movement-related information, in particularly for lower limb BCI [25,30]. Joint 

angles from goniometers were low-pass filtered at 3 Hz also in real-time. Because subjects 

walked at a very slow speed (1 mph), the 0–3 Hz band covers most power in joint angle 

signals [31].

D. Unscented Kalman Filter Decoder

Linear decoders such as Wiener filters and Kalman filters are most commonly used in BCI 

applications [32]. However, these models cannot handle a non-linear relationship between 

neural activities and limb movements. Recently, Li et al. showed that the unscented Kalman 

filter (UKF) outperformed the Kalman filter and the Wiener filter in both offline and real-

time BCI operation [33], and thus, we adopted the UKF as the decoder for the BCI-VR 

system.

E. Online Updates of UKF Parameters

BCI decoders are typically trained offline by fitting neural signals against kinematic data. 

During closed-loop BCI, the subjects can alter their neural activity and affect the accuracy of 

the trained decoder which does not account for the difference in neural activity. Recently, 

Orsborn et al. showed that closed-loop decoder adaptation (CLDA) where decoder 

parameters are updated during closed-loop can yield performance improvements [34]. To 

apply CLDA for UKF decoder in this study, the pre-processed EEG and lower limb joint 

angles were first streamed to a buffer. The buffer size was pre-defined to store 1 minute of 
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collected data (6000 samples).Fig. 3 depicts the neural decoder steps in the BCI-VR system 

based on [32] and [33].

III. Results

EEG signals were first analyzed by mean, standard deviation (STD), and signal to noise ratio 

(SNR). These values were calculated from sliding windows with window size of 30s and 

step size of Is. EEG artifacts from stereotypical (e.g. eye blinks) and non-stereotypical (e.g. 

movement, muscle bursts) were removed using Artifact Subspace Reconstruction (ASR) 

method which is available as a plug-in for EEGLAB software [35]. The output from ASR 

method and EEG raw data were used to calculate SNR values. The results were grouped 

based on EEG sensor locations: peripheral (PERI), Frontal (F), Central (C), and Posterior 

(P) electrodes. The analysis of EEG data and r-values between decoder outputs and lower 

limb joint angles of subject S2 across 8 days (trials) are shown inFig. 4.

Our decoding method was able to predict lower limb joint angles in the sagittal plane from 

scalp EEG signals. To quantify the level of accuracy for real-time decoding of lower limb 

joint angles, the Pearson's r values between measured and predicted joint angles were 

computed for EEG-control phase.Table I reports the mean and standard deviation (STD) of 

Pearson's r values for lower limb joint angles decoding of all subjects across all days. In 

general, the r-values for knee joint angle were higher than for hip and ankle joint angles of 

both subject SI and S2. r-values for knee joint angles were significantly improved after 8 

days (e.g., Subject SI: from 0.34± 0.14 to 0.51± 0.10 and subject S2: from 0.14± 0.12 to 

0.48± 0.09). In the best cases, the real-time decoder were able to reach the accuracy r=0.51 

± 0.10 (SI, knee joint) and r=0.51 ±0.08 (S2, knee joint).

We observed changes in both actual and predicted gait patterns as subjects adapted to the 

visual perturbation.Fig. 5A depicts mean and standard deviation (STD) of actual and 

predicted lower limb joint angles of the right leg during gonio-control, pre-, early-, late- and 

post-exposure for one day. In the gonio-control phase, the subject’s walking pattern was 

consistent and STD values of lower limb joint angles were small. However, in early-

exposure, the sudden introduction of the visual perturbation resulted in increased STD 

values. By late-exposure, the STD values were decreased and the subject’s walking gait 

pattern was more stable. The differences between predicted and actual joint angles increased 

during early-exposure. However, the predicted joint angles were close to the actual joint 

angles in late- and post-exposure.

The quality of the prediction of lower limb joint angles from EEG signals is shown inFig. 

5B. The plot shows an example of the actual and predicted 3D trajectories of lower limb 

joint angles for day 4 of subject SI. As can be seen, the predicted trajectories became closer 

to the actual trajectories from pre- to late-exposure stage demonstrating visuomotor 

adaptation.

Pearson's r values between predicted lower limb joint angles in each phase and measured 

angles in gonio-control phase (baseline) were calculated across all days to assess the 

subjects’ performance in controlling the avatar. The median and third quartile of r values are 
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depicted in polar plot inFig. 5C. Statistical analysis (t-test, significance level α=0.05) was 

also performed. The results showed that r values in gonio-control phase of the first day are 

significantly smaller than those of the last day (p=0.027 for SI and p=0.021 for S2). A 

similar result was found in post-exposure phase for subject S2 (p<0.001).

Gait symmetry provides information about the control of human walking. Analyzing gait 

symmetry is clinically significant and it may have a role in helping clinicians make decisions 

[36]. In general, there are two components that determine a symmetry metric: an equation to 

calculate gait symmetry and the spatio-temporal gait parameters used in the equation (e.g. 

stride length, step length, range of motion, cadence, stance time, swing time, etc) [37]. The 

symmetry ratio (SR) and range of motion (ROM) of the avatar's lower limbs were used to 

calculate gait symmetry and thus, the quality of EEG-based avatar control.

(1)

where g represents the hip, knee or ankle joints; r, and 1 are right and left legs.

SR scores are reported inTable II. Phase 1 is when the avatar was under gonio-control. 
Phases 2 to 5 are early-, pre-, late- and post-exposure, respectively. As can be seen, SR 

values are close to 1 during phase 1, and significantly decreased at phase 2 when the avatar 

was under EEG-control. Overall, SR values continue to decrease during phases 3 and 4, and 

increase during phase 5.

IV. Discussion

In this study, a neural decoder was designed to translate neural activity acquired via scalp 

EEG into lower limb movements in real time. The predicted joint angles were used to 

control a walking avatar in a virtual environment. Virtual kinematic perturbations of gait 

patterns in healthy subjects were also introduced to investigate cortical adaptations during 

gait adaptation using a closed-loop BCI.

Asymmetric walking gait patterns are commonly found in patients post-stroke. Study of 

walking adaptation to a split-belt perturbation, which creates early asymmetric walking, 

demonstrated that with practice, subjects can improve phasing and reduce gait asymmetry 

[5]. Moreover, the understanding of gait adaptation may suggest appropriate interventions 

for gait rehabilitation. In this study, a closed-loop BCI was used to investigate if changes in 

brain activity contribute to gait adaptation during virtual kinematic perturbation of a walking 

avatar in a virtual environment. The results show that the visual kinematic perturbation 

affected the walking gait patterns of both the subjects and the walking avatar. Interestingly, 

with practice the subjects gained more control of the walking avatar and improved gait 

symmetry suggesting the BCI-avatar system triggered cortical plasticity. We found that 

decoding accuracies (or r-values) varied with mean, STD and SNR scores of the EEG 

signals, suggesting that signal stability within and across days may be influenced by global 

internal states of the subjects such as attention, motivation and fatigue.
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We also observed that the subjects were able to adapt the avatar's gait patterns controlled via 

the BCI. This suggests that the visuomotor adaptation can be triggered directly from brain 

activity and thus the proposed system can also be used as a platform to examine cortical 

plasticity in the human brain. Studies have shown the CNS’s capacity to adapt its structural 

organization after the development of a brain lesion [38]. Such brain lesion can also be 

simulated in our settings by deliberately removing certain EEG channels that go to the 

decoder. With such change, decoder performance is expected to drop and trigger neural 

adaptation to restore function.

Besides, observational therapy in stroke rehabilitation has been found to be beneficial. In a 

typical observational therapy, persons with stroke observe a video clip or other people 

demonstrating a movement before they try it by themselves. Reports suggest that patients 

with observational therapy show significant improvement in functional assessment, 

including fMRI, before and after the treatment [39]. Inspired by this fact, we propose to 

enhance patient involvement by forcing them to use their neural activity to control an avatar 

instead of passively watching movement from other people. In fact, we also looked at how 

visual disruption affected the gonio-control phase. A clear adapting phase and learning curve 

can be seen during the perturbation, showing that the subjects were actively learning the new 

motor coordination skills.

Preliminary results showed that motion artifacts due to walking were minimal at slow speed 

(1 mph). Since peripheral channels are mainly affected by eye blinks and muscle artifacts, 

they were removed at data preprocessing. The lack of real-time artifact removal techniques 

is one of the limitations in this study and it is considered as future work. Further analysis is 

required in this regard. Neural decoders play a central role in BCI applications. Improving 

the performance and accuracy of the decoder is an important part in future research. This 

could be done by analyzing and selecting optimal EEG channels, improving the SNR, and 

examining the history of EEG data that has the best correlation with kinematic data. EEG 

source localization will also be important to understand the neural sources of cortical 

plasticity during BCI learning and during gait adaptation.
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Fig. 1. 
The experimental procedures for each day. The time for each day is approximately 50 mins. 

Real-time decoding started 2 mins after starting the C++ program. Decoder parameters were 

updated every 1 minute and they were fixed by the end of gonio-control.
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Fig. 2. 
(A) Experimental setup in this study. Each subject was instructed to walk on a treadmill at 1 

mph while looking at an avatar in a VE in front of them. Recorded data included 

electroencephlography (EEG), lower limb joint angles of both left and right leg, and 

accelerations of head, left heel, and right heel. Locations and EEG channel labels were also 

displayed. Channels marked with an "x" were not used in the decoder. (B) Illustration of a 

full walking gait cycle. (C) Raw data during pre-, early-, mid-, late- and post-exposure in 

one day.
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Fig. 3. 
Flow chart of the signal processing, unscented Kalman filter parameters updates and avatar 

control used in this study.
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Fig. 4. 
Mean, STD and signal to noise ratio (SNR) of EEG data of subject S2 across 8 days. The 

values were calculated from sliding windows (window size: 30s. and step size of Is). EEG 

channels were grouped into peripheral (PERI), Frontal (F), Central (C), and Post (P) 

location. Broken line divides each trial into gonio-control (Gonio-) and EEG-control (EEG-

ctrl) mode, r-values between decoder outputs and actual joint angles are shown in the last 

row.
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Fig. 5. 
(A) Mean and standard deviation (STD) of actual and predicted lower limb joint angles of 

the right leg during gonio-control, pre-, early-, late- and post-exposure (Si-Day 8). (B) 

Actual and predicted 3D trajectories for lower limb joint angles. (C) Plots of Pearson’s r of 

the predicted angles in each phase against the actual angles in gonio-control phase (baseline) 

for subjects SI and S2 in all days.
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