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Abstract

We have recently described a novel form of hyperalgesic priming (type II) induced by agonists at 

two clinically important Gi-protein coupled receptors (Gi-GPCRs), mu-opioid and A1-adenosine. 

Like mu-opioids, the anti-migraine triptans, which act at 5-HT1B/D Gi-GPCRs have been 

implicated in pain chronification. We determined if sumatriptan, a prototypical 5-HT1B/D agonist 

produces type II priming. Characteristic of hyperalgesic priming, intradermal injection of 

sumatriptan (10 ng) induced a change in nociceptor function such that a subsequent injection of 

prostaglandin-E2 (PGE2) induces prolonged mechanical hyperalgesia. However, onset to priming 

was delayed 3 days, characteristic of type I priming. Also characteristic of type I priming, a 

protein kinase Cε (PKCε), but not a PKA inhibitor attenuated the prolongation phase of PGE2 

hyperalgesia. The prolongation of PGE2 hyperalgesia was also permanently reversed by 

intradermal injection of cordycepin, a protein translation inhibitor. Also, hyperalgesic priming did 

not occur in animals pre-treated with pertussis toxin or IB4-positive nociceptor toxin, IB4-saporin. 

Finally, as observed for other agonists that induce type I priming, sumatriptan did not induce 

priming in female rats. The prolongation of PGE2 hyperalgesia induced by sumatriptan was 

partially prevented by co-injection of antagonists for the 5-HT1B and 5-HT1D, but not 5-HT7, 

serotonin receptors, and completely prevented by co-administration of a combination of the 5-

HT1B and 5-HT1D antagonists. Moreover, the injection of selective agonists, for 5-HT1B and 5-

HT1D receptors, also induced hyperalgesic priming. Our results suggest that sumatriptan, which 

signals via Gi-GPCRs, induces type I hyperalgesic priming, unlike agonists at other Gi-GPCRs, 

which induce type II priming.

Corresponding author: Jon D. Levine, M.D., Ph.D., University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 
94143-0440, Phone: 476-5108, Fax: 476-6305, Jon.Levine@ucsf.edu. 

Conflict of Interest: The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Pain. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:
Pain. 2016 August ; 157(8): 1773–1782. doi:10.1097/j.pain.0000000000000581.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

hyperalgesic priming; hyperalgesia; 5-HT1B receptor; 5-HT1D receptor; Gi-protein coupled 
receptors (GPCRs); chronic pain; triptans

Introduction

While the mechanism underlying the transition from acute to chronic pain remains poorly 

understood, it has been suggested that some analgesics can produce pain chronification. 

Thus, opioids, which are used clinically to treat moderate-to-severe pain, especially agonists 

at the mu-opioid receptor (MOR), may come to exacerbate or actually produce pain during 

their chronic administration, a phenomenon referred to as opioid-induced hyperalgesia 

(OIH) [6; 60; 63]. Similarly, the triptan class of drugs, used to treat migraine [25; 35; 76], 

also facilitates pain chronification and/or contributes to migraine chronification, a condition 

referred to as medication overuse headache (MOH; [9; 11; 26; 28; 38; 41; 45; 77]). The 

target for the therapeutic effect of triptans is thought to be 5-HT1B and 5-HT1D receptors 

that, like MOR are inhibitory G-protein coupled receptors (Gi-GPCRs) [37; 42; 64; 86; 95; 

96]. Therefore, in the present study we explored the possibility that, like MOR and A1-

adenosine receptor agonists [7; 8], triptans would also induce type II hyperalgesic priming. 

In addition, we explored the 5-HT receptor subtypes at which triptans act (5-HT1B, 5-HT1D 

and 5-HT7) to induce priming. We report that while sumatriptan, a prototypical 5-HT1B/D 

receptor agonist induces hyperalgesic priming, this priming meets the criteria for type I 

rather than type II priming.

Methods

Animals

Experiments were performed on 230–280 g male and female Sprague–Dawley rats (Charles 

River Laboratories, Hollister, CA, USA). Rats were housed in a controlled environment in 

the animal care facility at the University of California, San Francisco, under a 12-h light/

dark cycle. Food and water were available ad libitum. The experimental protocols were 

approved by the Institutional Animal Care and Use Committee at UCSF and adhered to the 

guidelines of the American Association of Laboratory Animal Care, the National Institutes 

of Health (NIH), and the Committee for Research and Ethical Issues of the International 

Association for the Study of Pain (IASP), for the use of animals in research. In the design of 

experiments, all efforts were made to minimize the number of animals used and their 

suffering.

Mechanical nociceptive threshold testing

Mechanical nociceptive threshold was quantified using an Ugo Basile Analgesymeter® 

(Randall-Selitto paw-withdrawal test; Stoelting, Chicago, IL), which applies a linearly 

increasing mechanical force to the dorsum of the rat's hind paw, as previously described [32; 

78; 80]. Nociceptive threshold was defined as the force in grams at which the animal 

withdrew its paw; baseline paw-pressure nociceptive mechanical threshold was defined as 

the mean of the 3 readings taken just before a test agent was injected. Each paw was treated 
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as an independent measure and each experiment performed on a separate group of rats. Data 

are presented as mean change from baseline mechanical nociceptive threshold.

Drugs and their administration

The chemicals used in this study were: cordycepin 5′-triphosphate sodium salt (protein 

translation inhibitor; [7; 8; 34]), prostaglandin E2 (PGE2; a hyperalgesic agent that acts at 

receptors on nociceptors to sensitizes them), sumatriptan succinate (a 5-HT1B and 5-HT1D 

receptor agonist), CP-93129 dihydrochloride hydrate (a 5-HT1B receptor agonist), pertussis 

toxin (Gi-protein inhibitor) and SB-269970 (a 5-HT7 receptor antagonist), all from Sigma-

Aldrich (St. Louis, MO, USA); PKCεV1–2 (PKCε-I, a PKCε-specific translocation inhibitor 

peptide; [7; 8; 48; 58]), from Calbiochem (La Jolla, CA, USA); H-89 dihydrochloride 

(inhibitor of protein kinase A [PKA]; [7; 8]) from Santa Cruz Biotechnology (Dallas, TX, 

USA); L-694,247 (a 5-HT1D receptor agonist), BRL 15572 (a 5-HT1D receptor antagonist) 

and NAS-181 (a 5-HT1B receptor antagonist), all from Tocris Bioscience (Avonmouth, 

Bristol, UK).

The selection of doses was based on previous studies that showed their effectiveness when 

injected intradermally on the dorsum of the hind paw [3; 7; 8; 32; 52]. The stock solution of 

PGE2 (1 μg/μL) was prepared in 10% ethanol and additional dilutions made with 

physiological saline (0.9% NaCl), yielding a final ethanol concentration of less than 1%. 

Cordycepin, sumatriptan, CP-93129, pertussis toxin, PKCεV1–2 and SB-269970 were 

dissolved in saline. All other drugs were dissolved in 100% DMSO (Sigma-Aldrich) and 

further diluted in saline containing 2% Tween 80 (Sigma-Aldrich). The final concentration 

of DMSO and Tween 80 was 2%. All drugs were injected intradermally on the dorsum of 

the hind paw, in a volume of 5 μL, using a 30-gauge hypodermic needle adapted to a 50 μl 

Hamilton syringe (Reno, NV, USA). The injection of cordycepin, H-89, PKCεV1–2 and 

pertussis toxin, was preceded by a hypotonic shock (2 μL of distilled water, separated by a 

bubble of air to avoid mixing in the same syringe), to facilitate the entry of compounds into 

the nerve terminal [14; 16].

Intrathecal administration of IB4-saporin or SSP-saporin

IB4-saporin—Isolectin B4 (IB4)-saporin, an IB4-positive nociceptor neurotoxin 

(Advanced Targeting Systems, San Diego, CA), was diluted in saline, and a dose of 3.2 μg, 

in a volume of 20 μL was administered intrathecally, 14 days prior to the priming 

experiments. The dose of IB4-saporin and time protocol were chosen based on previous 

reports from us and other groups [7; 8; 51; 52; 66; 89].

SSP-saporin—The neurotoxin [Sar9,Met(O2)11]-substance P-saporin (SSP-Saporin, 

Advanced Targeting Systems, San Diego, CA) was diluted in saline, and a dose of 100 ng, in 

a volume of 20 μL was administered intrathecally, 14 days prior to the priming experiments. 

The addition of [Sar9Met(O2)11] to substance P conjugated to saporin makes the agent more 

stable and potent than when substance P is bound to saporin. The dose and pre-treatment 

interval that we used were based on previous reports [22; 93], that demonstrated the 

effectiveness of this agent to deplete substance P-containing fibers with no loss of lumbar 
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dorsal horn neurons expressing the neurokinin 1 (NK1) receptor in deeper laminae and 

prominent loss of NK1 receptor in laminae I [56; 59; 87; 92].

Rats were briefly anesthetized with 2.5% isoflurane (Phoenix Pharmaceuticals, St. Joseph, 

MO, USA) in 97.5% O2. Then, a 30-gauge hypodermic needle was inserted, on the midline, 

into the subarachnoid space, between the L4 and L5 vertebrae. The control treatment 

consisted of intrathecal injection of saline (vehicle; 20 μL). Animals regained consciousness 

approximately 1 min after removal from the anesthetic chamber. There was no effect of IB4-

saporin or SSP-saporin on the mechanical nociceptive threshold per se.

Sumatriptan-induced changes in nociceptor function

Our group has previously shown that a single intradermal injection of a selective 5-HT1 

receptor agonist produced mechanical hyperalgesia (Fig. 1A; [2; 79; 81]). To investigate the 

changes in nociceptor function produced by the injection of sumatriptan (a 5-HT1B/1D 

receptor agonist, 10 ng), 5-HT1B receptor agonist (CP-93129, 10 or 100 ng) or 5-HT1D 

receptor agonist (L-694,247, 10 or 100 ng) — measured as prolonged response to a 

hyperalgesic mediator, at a point in time when the mechanical nociceptive threshold was not 

different from pre-sumatriptan baseline-PGE2 (100 ng) was injected at the same site, and the 

change in nociceptive threshold evaluated 30 min and 4 h later. Presence of hyperalgesia at 

the 4th h is characteristic of priming [4; 7; 8; 31]. To evaluate the intracellular signaling 

pathways that play a role in priming induced by sumatriptan, and to investigate the 

mechanisms that play a role in the induction of the changes in nociceptor function produced 

by the activation of the 5-HT1B/D receptor, pharmacological agents were injected before 

sumatriptan (prevention protocol). To investigate the second messengers involved in the 

expression of the neuroplasticity, inhibitors were administered before the injection of PGE2 

in the already primed paw (inhibition protocol), at a time when mechanical nociceptive 

threshold was not different from pre-sumatriptan levels.

Statistics

In all experiments, the dependent variable was mechanical paw-withdrawal threshold, 

expressed as percentage change from baseline. The average paw withdrawal thresholds 

before the injection of sumatriptan and before the tests with PGE2 (3 or more days, 

depending on the experiment) were 123.0 ± 1.05 g and 123.3 ± 1.12 g, respectively; paired 

Student's t-test showed no significant difference between these values (t125 = 0.4285, p = 

0.6753). The total number of paws used in this study was 126. To compare the mechanical 

hyperalgesia induced by injection of the neuroplasticity-inducing agents (i.e., sumatriptan, 

5-HT1B [CP-93129] or 5-HT1D [L-694,247] receptor agonists) and to compare the effect of 

PGE2 in different groups, in the presence or absence of inhibitors of signaling pathways, 

two-way repeated-measures ANOVA, followed by Bonferroni post hoc test, was performed. 

Graph Pad Prism 5.0 (GraphPad Software, Inc., San Diego, CA, USA) was used to plot 

graphs and to perform statistical analyses; a p-value less than 0.05 was considered 

statistically significant. Data are presented as mean ± SEM.
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Results

Sumatriptan-induced hyperalgesic priming

One of the defining features of both type I and II priming is the prolongation of hyperalgesia 

induced by pronociceptive mediators, prototypically prostaglandin E2 (PGE2) [4; 12; 33; 57; 

69; 73]. To determine if sumatriptan induces hyperalgesic priming we injected PGE2 

intradermally, at the site of nociceptive testing. We report that a single low dose of 

sumatriptan (10 ng) induces mechanical hyperalgesia (Fig. 1A). This differs from the 

pronociceptive effects of MOR and A1-adenosine agonists that took repeated administration 

before they induced hyperalgesia [7; 8]. Therefore, in the following experiments, we tested 

for priming after a single administration of sumatriptan. Unlike type II priming, in which the 

prolongation of PGE2 hyperalgesia is observed immediately after the repeated injections of 

mu-opioid or A1-adenosine receptor agonists, no prolongation of PGE2 hyperalgesia was 

observed when PGE2 was administered 24 hours post sumatriptan (Fig. 1B). However, when 

it was injected 72 hours (Fig. 1C) or 30 days (Fig. 1D) after sumatriptan, we observed 

prolonged hyperalgesia. This demonstrates the time course for the onset of priming to be 

similar to that observed for type I hyperalgesic priming [4; 12].

Role of 5-HT1B and 5-HT1D receptors in sumatriptan-induced priming

Since triptans are agonists at two Gi-GPCRs, 5-HT1B and 5-HT1D [5; 24; 35; 39; 43; 82; 84] 

we evaluated the ability of antagonists at these two receptors to prevent sumatriptan-induced 

hyperalgesic priming. We found that, while alone the 5-HT1B and 5-HT1D antagonists 

(NAS-181 and BRL 15572, respectively) each partially attenuate the magnitude of the 

prolongation of PGE2 hyperalgesia (Fig. 2, gray and white bars), the co-administration of 

the two antagonists completely prevented sumatriptan-induced prolongation of PGE2 

hyperalgesia (Fig. 2, dotted bars). Since, it has been suggested that triptans also produce 

some of their effects by action at the 5-HT7 receptor [71; 75; 88; 90; 91], we also 

determined if a 5-HT7 receptor antagonist (SB-269970) would attenuate sumatriptan-

induced priming. We found that the SB-269970 did not attenuate sumatriptan-induced 

priming (Fig. 2, horizontally striped bars).

Direct activation of 5-HT1B and 5-HT1D receptors induces hyperalgesic priming

We found that the prolongation of PGE2-induced hyperalgesia by injection of sumatriptan 

(10 ng) is dependent of activation of both 5-HT1B and 5-HT1D receptors (Fig. 2). Therefore, 

we next tested the effect of selective agonists for 5-HT1B (CP-93129; Fig. 3, gray bars) and 

5-HT1D (L-694,247; Fig. 3, white bars). We observed that the dose of 100 ng, but not 10 ng, 

of both agonists, induced priming as manifest by prolongation of PGE2-induced 

hyperalgesia (Fig. 3).

PKCε dependence in expression of sumatriptan-induced priming

Another mechanism that distinguishes type I from type II priming is the second messengers 

mediating the prolongation of PGE2 hyperalgesia, PKCε for type I priming [4; 70] and PKA 

for type II [7; 8]. Compatible with the above findings, which support the suggestion that 

sumatriptan induces type I priming, we observed that the prolongation of PGE2 hyperalgesia 
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induced by sumatriptan was attenuated by a PKCε (Fig. 4A), but not by a PKA (Fig. 4B) 

inhibitor.

Peripheral protein translation dependence of sumatriptan-induced priming

A third distinction between type I and type II priming is the dependence of type I [30] but 

not type II [7; 8] priming, on protein translation in the peripheral terminal of the primary 

afferent nociceptor. We report that intradermal injection of cordycepin, an inhibitor of 

protein translation, permanently reversed sumatriptan-induced priming (Fig. 5), further 

suggesting that sumatriptan induces type I priming.

Role of the inhibitory G-protein αi subunit in sumatriptan-induced priming

Since the 5-HT1B and 5-HT1D receptors are Gi-GPCRs [37; 42; 64; 86; 95; 96], to determine 

the signaling pathway downstream of the 5-HT1B/D receptor that contributes to the 

prolongation of PGE2-induced hyperalgesia, we tested the effect of the treatment with the G-

protein αi subunit inhibitor, pertussis toxin (PTX), injected before sumatriptan. We found 

that the prolongation of PGE2-induced hyperalgesia was inhibited by PTX (Fig. 6). Of note, 

the ability of PTX to inhibit the induction of sumatriptan-induced priming (Fig. 6), the 

expression of type II priming induced by A1-adenosine receptor agonist CPA [8] and also 

type I hyperalgesic priming [29; 33; 57] contrasts with mu-opioid receptor agonist 

DAMGO-induced type II priming where PTX failed to inhibit the prolongation of PGE2-

induced hyperalgesia induced by DAMGO [7].

IB4-positive nociceptor dependence of sumatriptan-induced priming

We have previously demonstrated that the induction of type I priming is prevented by spinal 

intrathecal treatment with IB4-saporin, a neurotoxin that eliminates IB4-positive nociceptors 

[7; 8; 51; 52; 66; 89], whereas type II priming induction by the MOR agonist DAMGO is 

prevented by intrathecal administration of a stabilized form of substance P, conjugated to 

saporin (SSP-saporin; unpublished results), a specific neurotoxin that destroys neurons with 

processes containing NK1 receptors in the superficial but not the deeper laminae of the 

dorsal horn [22; 59; 62; 93], by eliminating substance P (SP) containing sensory neurons. In 

the present experiments we found that, in rats pretreated with IB4-saporin, but not SSP-

saporin, the injection of sumatriptan did not induce prolongation of PGE2 hyperalgesia, 

evaluated 4 days later (Fig. 7).

Sexual dimorphism in sumatriptan-induced priming

We have previously shown that the administration of agonists for cell surface receptors (such 

as TNF-α, MCP-1 and IL-6), induce type I priming only in male rats [53]. On the other 

hand, induction of type II priming by Gi-GPCR agonists is observed in females as well as 

males [7; 8]. In the present study we observed that sumatriptan did not induce priming in 

female rats (Fig. 8), another characteristic feature of type I hyperalgesic priming [53].

Discussion

The triptans, agonists at serotonin 5-HT1B and 5-HT1D receptors, are an important class of 

drugs used in the treatment of migraine [1; 35; 36; 40; 47; 55; 84]. One limitation in their 
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clinical use is that they can contribute to migraine chronification and more frequent episodes 

of headache, a condition referred to as medication overuse headache (MOH), recently 

characterized as a global epidemic [9; 11; 27; 28; 38; 41; 45; 77]. The triptan receptors are 

both Gi-protein coupled, which they share with other classes of analgesics, including those 

that act at mu-opioid or CB cannabinoid receptors [67; 74]. Importantly, opioids can also 

produce exacerbation of the pain for which they are clinically administered [21; 23; 44; 60; 

65], a phenomenon referred to as opioid-induced hyperalgesia (OIH). We have studied 

opioid-induced hyperalgesia, using a model in the primary afferent nociceptor, hyperalgesic 

priming (type II) [7; 8]. Therefore, in the present experiments we determined if sumatriptan, 

a clinically used triptan [35; 36; 49; 83] would also induce type II priming.

In the present experiments we observed that intradermal injection of sumatriptan produces 

mechanical hyperalgesia at the injection site, as has been reported in patients being treated 

for migraine [17; 18; 68; 85]. Also, the frequent use of triptans can lead to transition to 

MOH or chronic migraine [9; 10; 27; 28; 38; 41; 68; 77; 85]. We observed that sumatriptan 

produces a neuroplastic change in nociceptor function such that PGE2-induced mechanical 

hyperalgesia is markedly prolonged, a characteristic feature of both type I [4; 29; 33; 50; 57; 

69; 73] and type II [7; 8] hyperalgesic priming. However, the mechanism underlying priming 

induced by sumatriptan resembled type I rather than type II priming. Thus, unlike type II 

priming, which develops within a matter of a few hours [7; 8], that induced by sumatriptan 

required 3 days to develop, characteristic of type I priming [4; 12]. A second difference was 

that, unlike type II priming, in which the prolongation of PGE2 hyperalgesia is PKA 

dependent, that induced by sumatriptan was PKCε dependent, another characteristic feature 

of type I priming [4; 70]. Furthermore, characteristic of type I [30], but not type II priming 

[7; 8], that induced by sumatriptan was reversed by administration of a protein translation 

inhibitor to the peripheral terminal of the primed nociceptor. Moreover, the ability of 

pertussis toxin to inhibit the induction of sumatriptan-induce priming is also characteristic of 

type I priming [33; 52; 57] and type II priming induced by CPA [8], but not type II priming 

induced by DAMGO [7]. In addition, sumatriptan is unable to produce priming in rats in 

which IB4-positive (non-peptidergic), but not IB4-negative (peptidergic), nociceptors have 

been destroyed, a further feature of type I [29] but not type II priming [7; 8]. Finally, unlike 

the type II priming induced by mu-opioid or A1-adenosine receptor agonists [7; 8], which 

occurs in female as well as male rats, sumatriptan induced priming only in males. Thus, we 

conclude that while the triptans act at Gi-protein coupled receptors, which are involved in 

pain chronification as well as analgesia, when tested in a preclinical model, unlike other Gi-

protein coupled receptor agonists, sumatriptan induces type I priming. However, the 

downstream signaling pathway through which an agonist at a Gi-protein coupled receptor 

induces type I priming remains to be established. In Fig. 9 the signaling pathways that 

participate in sumatriptan-induced type I hyperalgesic priming are illustrated.

Since the triptans act at two serotonin receptors, 5-HT1B and 5-HT1D, both of which are 

GPCRs, we evaluated the role that each subtype of receptor plays in the induction of 

hyperalgesic priming. We observed that while alone the antagonists of 5-HT1B and 5-HT1D 

partially attenuate the prolongation of PGE2 hyperalgesia, their co-administration 

completely prevented sumatriptan-induced prolongation of PGE2 hyperalgesia. Furthermore, 
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when agonists for each of these two serotonin receptors were injected, alone, each induced 

prolongation of PGE2-induced hyperalgesia.

Why agonists at 5-HT1B and 5-HT1D induce type I priming, while agonists at other Gi-

protein coupled receptors, namely mu-opioid and A1-adenosine, induce type II priming 

remains to be explained. One possible way to address the underlying differences would be to 

determine if repeated administration of agonists at mu- or A1-receptors induce a state 

whereby triptan agonists will now produce prolonged hyperalgesia, or vice versa. In 

preliminary experiments we observed that while the repeated administration of the A1-

adenosine receptor agonist CPA induces a state whereby the mu-agonist DAMGO induces 

hyperalgesia, the repeated administration of the mu-opioid receptor agonist DAMGO did not 

induce a state whereby the CPA induced hyperalgesia (unpublished results). Given this 

initial complexity, even for receptors whose agonists both induce type II priming, these 

experiments are beyond the scope of the present analysis.

In conclusion, in a model of pain chronification, induced by agonists at the triptan receptors 

5-HT1B and 5-HT1D, key to the treatment of migraine, we have demonstrated that a 

clinically used member of this class of agonists, sumatriptan, induces both mechanical 

hyperalgesia at the site of injection and type I hyperalgesic priming, in nociceptors 

innervating the cutaneous injection site. While our studies were executed outside of the 

trigeminal system, the site of migraine, the basic neurovascular unit at both spinal and 

trigeminal levels is innervated by nociceptors that contain 5-HT1B and 5-HT1D [13; 15; 46; 

61; 71; 72; 94]. Moreover, support for shared mechanisms in spinal and trigeminal 

distributions comes from both the presence of a migraine variant, abdominal migraine [20], 

which has been reported to be treatable with triptans in some patients [54], as well as the 

observation that migraineurs do have lowered threshold in extra-cranial sites [19].
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Figure 1. Sumatriptan induces mechanical hyperalgesia and hyperalgesic priming in male rats
A. Rats were treated with a single intradermal injection of vehicle (5 μL; black bar) or 

sumatriptan (10 ng in 5 μL; white bar) and 30 min later, mechanical nociceptive threshold 

was evaluated by the Randall-Sellitto paw withdrawal test. The group treated with 

sumatriptan showed significant mechanical hyperalgesia, when compared with the group 

treated with vehicle (***p < 0.0001; Unpaired Student's t-test), indicating that sumatriptan 

produces a pronociceptive effect. Average mechanical nociceptive threshold before the 

injection was 126.2 ± 2.7 g, for vehicle, and 118.5 ± 1.5 g, for sumatriptan group. B. 
Twenty-four hours later, when the mechanical nociceptive threshold was no longer different 

from pre-injection baseline (t5 = 1.667; p = 0.1942, for the vehicle group; t5 = 0.2116; p = 

0.8460, for the sumatriptan group; paired Student's t-test), PGE2 (100 ng) was injected 

intradermally at the same site on the dorsum of the hind paw, and mechanical nociceptive 

threshold evaluated 30 min and 4 h later. In both groups PGE2 induced significant 

hyperalgesia at 30 min, which was no longer present at the 4th h, in the both groups (NS, p > 

0.05, when both groups are compared; two-way repeated-measures ANOVA followed by 

Bonferroni post hoc test), indicating that hyperalgesic priming was not present 24 hours 

after the injection of vehicle or sumatriptan. However, 72 hours later (C) and 30 days later 

(D) when PGE2 (100 ng) was again injected, at the same site, hyperalgesia induced by PGE2 

Araldi et al. Page 14

Pain. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was present 30 min after injection in the group previously treated with sumatriptan, and was 

still present at the 4th h (F1,20 = 72.97, ***p < 0.0001, when both groups are compared at the 

4th h; two-way repeated-measures ANOVA followed by Bonferroni post hoc test). These 

data demonstrate that a single injection of sumatriptan, 72 hours or 30 days prior, produced 

long-term changes in nociceptor function characteristic of hyperalgesic priming. (N = 6 

paws per group)
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Figure 2. Role of 5-HT1B and 5-HT1D, but not 5-HT7, receptors in sumatriptan-induced 
prolongation of PGE2-induced hyperalgesia
Male rats received vehicle (5 μL; black bars), NAS-181 (1 μg; 5-HT1B antagonist; gray 
bars), BRL 15572 (1 μg; 5-HT1D antagonist; white bars), the combination of NAS-181 (1 

μg)/BRL 15572 (1 μg; dotted bars) or SB-269970 (1 μg; 5-HT7 antagonist; horizontally 
striped bars) on the dorsum of the hind paw. Ten minutes later, sumatriptan (10 ng) was 

injected at the same site. Four days later, when the mechanical nociceptive thresholds were 

not different from pre sumatriptan-injection control baseline (t5 = 0.8165; p = 0.4740, for the 

vehicle group; t5 = 1.260; p = 0.2967, for the NAS-181 group; t5 = 0.3015; p = 0.7827, for 

the BRL 15572 group; t5 = 1.000; p = 0.3910, for the NAS-181/BRL 15572 group; t5 = 

1.667; p = 0.1942, for the SB-269970 group; paired Student's t-test), PGE2 (100 ng) was 

injected at the same site, and the mechanical nociceptive threshold evaluated. In all groups 

of rats evaluated 30 min after its injection PGE2 induced significant hyperalgesia. However, 

in the groups previously treated with NAS-181 (gray bars) or BRL 15572 (white bars), the 

prolongation of PGE2-induced hyperalgesia was significantly attenuated, and completely 

eliminated in the group previously treated with the combination of NAS-181/BRL 15572 

(dotted bars; F2,30 = 507.75; ***p < 0.0001, when NAS-181, BRL 15572 and 

NAS-181/BRL 15572 groups are compared with the vehicle-treated group; two-way 

repeated measures ANOVA followed by Bonferroni post hoc test), indicating the 
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participation of both 5-HT1B and 5-HT1D, but not 5-HT7, receptors in the induction of 

hyperalgesic priming by sumatriptan. (N = 6 paws per group)
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Figure 3. Agonists for 5-HT1B and 5-HT1D receptors induced hyperalgesic priming
Male rats were injected intradermally with agonists for 5-HT1B (CP-93129; 10 or 100 ng; 

gray bars) or 5-HT1D (L-694,247; 10 or 100 ng; white bars) receptors. Four days later, PGE2 

(100 ng) was injected at the same site and the mechanical nociceptive threshold was 

evaluated 30 min and 4 h after its injection. In all groups of rats PGE2 induced significant 

hyperalgesia, evaluated 30 min after injection. Also, we observed prolongation of PGE2-

induced hyperalgesia in the groups previously treated with 100 ng of agonist for 5-HT1B 

(F1,20 = 94.06, ***p < 0.0001) and 5-HT1D (F1,20 = 127.07, ***p < 0.0001; two-way 

repeated-measure ANOVA followed by Bonferroni post hoc test showed) receptor, when the 

4th h of the groups were compared. BL: baseline. (N = 6 paws per group)
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Figure 4. PKCε but not PKA plays a role in the expression of hyperalgesic priming induced by 
sumatriptan
A. Male rats received a single injection of sumatriptan (10 ng) on the dorsum of the hind 

paw. One week later, when the mechanical nociceptive thresholds were not different from 

pre sumatriptan-injection baseline (t5 = 0.3203; p = 0.7697, for black bars; t5 = 0.2089; p = 

0.8479, for white bars; paired Student's t-test), PGE2 (100 ng) was injected at the same site, 

in the presence of vehicle (control, black bars) or PKCε inhibitor (1 μg, white bars). The 

mechanical nociceptive threshold was then evaluated 30 min and 4 h later, by Randall-

Sellitto paw withdrawal test. In both groups PGE2 induced significant hyperalgesia, 

evaluated 30 min after injection. However, we observed significant attenuation of PGE2-

induced prolongation of hyperalgesia in the group previously treated with PKCε inhibitor 

(F1,15 = 132.58, ***p < 0.0001, when the vehicle and PKCε inhibitor group were compared; 

two-way repeated-measures ANOVA followed by Bonferroni post hoc test). B. A different 

group of male rats were primed with an intradermal injection of sumatriptan (10 ng) and, 

one week later, received at the same site, vehicle (5 μL) or a PKA inhibitor (H-89; 1 μg). Ten 

min later, PGE2 (100 ng) was injected on the dorsum of the hind paw and the mechanical 

nociceptive thresholds were evaluated 30 min and 4 h later. While PGE2-induced 

hyperalgesia was still present after 30 min, in the group that received vehicle, in the group 

treated with H-89 it was significantly attenuated. However, it was present at the 4th h (F2,12 
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= 132.95, ***p < 0.0001, when vehicle and H-89 groups are compared at 30 min; two-way 

repeated-measures ANOVA followed by Bonferroni post hoc test), indicating that the 

expression of priming induced by previous injection of sumatriptan is not dependent on 

PKA. BL: baseline. (N = 6 paws per group)
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Figure 5. Hyperalgesic priming induced by sumatriptan is dependent on local protein translation
Male rats that were treated with intradermal injection of sumatriptan (10 ng) on the dorsum 

of the hind paw received, three days later, PGE2 (100 ng) injected at the same site, in the 

presence of vehicle (5 μL, black bars) or the inhibitor of protein translation, cordycepin (1 

μg, white bars), administered 15 min before. Mechanical nociceptive threshold was 

evaluated 30 min and 4 h after injection of PGE2. While the hyperalgesia induced by PGE2 

was present 30 min after injection in the group previously treated with cordycepin, it was 

significantly inhibited at the 4th hour (F1,15 = 104.94, ***p < 0.0001, when both groups are 

compared at the 4th h; two-way repeated-measures ANOVA followed by Bonferroni post hoc 
test). BL: baseline. (N = 6 paws per group)
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Figure 6. Role of inhibitory G-protein αi subunit in sumatriptan-induced priming
Male rats were treated with vehicle (5 μL, black bars) or pertussis toxin (PTX; 1 μg, white 
bars) by intradermal injection and, 30 min later, sumatriptan (10 ng) was injected at the same 

side. Five days later, PGE2 (100 ng) was injected intradermally at the same site on the 

dorsum of the hind paw, and the mechanical hyperalgesia was evaluated 30 min and 4 h 

later, by Randall-Sellitto paw withdrawal test. In both groups PGE2 induced significant 

hyperalgesia, evaluated 30 min after injection. However, we observed significant attenuation 

of PGE2-induced prolongation of hyperalgesia in the group previously treated with PTX 

(F2,12 = 169.04, ***p < 0.0001, when the vehicle and PTX group were compared; two-way 

repeated-measures ANOVA followed by Bonferroni post hoc test), indicating that the αi 

subunit plays a role in the induction of sumatriptan-induce priming. BL: baseline. (N = 6 

paws per group)
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Figure 7. Type I priming induced by sumatriptan is dependent on IB4-positive neurons
Male rats were treated with vehicle (5 μL, black bars), IB4-saporin (3.2 μg/20 μL; white 
bars) or SSP-saporin (100 ng/20 μL; gray bars) by intrathecal injection. Fourteen days later, 

sumatriptan (10 ng) was injected on the dorsum of the hind paw. Four days later, when 

mechanical thresholds were not different from pre-sumatriptan baseline, (t5 = 1.663; p = 

0.2010, for the vehicle group; t5 = 1.667; p = 0.1942, for the IB4-saporin group; t5 = 0.6547; 

p = 0.5799, for the SSP-saporin group; paired Student's t-test), PGE2 (100 ng) was injected 

intradermally at the same site on the dorsum of the hind paw, and the mechanical 

hyperalgesia evaluated 30 min and 4 h later. Two-way repeated-measures ANOVA followed 

by Bonferroni post hoc test showed PGE2-induced hyperalgesia at 30 min in all groups, that 

was still present at the 4th h, in vehicle (black bars) and SSP-saporin (gray bars)-treated 

groups, but not in IB4-saporin (white bars) treated-group, which at the 4th hour, the PGE2-

induced hyperalgesia was significant blocked (F1,15 = 26.95, ***p = 0.0006, when vehicle-

treated groups are compared at the 4th h with IB4-saporin-treated group; two-way repeated-

measures ANOVA followed by Bonferroni post hoc test), indicating that the prolonged 

hyperalgesia induced by PGE2 observed in the priming induced by sumatriptan occurs in 

IB4-positive neurons. BL: baseline. (N = 6 paws per group)
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Figure 8. Sumatriptan did not induce prolongation of PGE2 hyperalgesia in female rats
Female rats received intradermal injection of sumatriptan (10 ng, white bars) or vehicle 

(black bars) on the dorsum of the hind paw. Three days later, when the mechanical 

thresholds were not different from pre-vehicle or pre-sumatriptan baseline levels (t5 = 

0.7559; p = 0.4838, for the vehicle group; t5 = 2.150; p = 0.0842, for the sumatriptan group, 

paired Student's t-test), PGE2 (100 ng) was injected at the same site, and the mechanical 

hyperalgesia was evaluated 30 min and 4 h later. Two way ANOVA followed by Bonferroni 

post hoc test showed that PGE2 induced significant hyperalgesia at 30 min in both groups, 

that was not present at the 4th h after its injection (F1,15 = 0.83; p = 0.3779, when compared 

both groups). BL: baseline. (N = 6 paws per group)
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Figure 9. Schematic representation of the signaling pathways involved in sumatriptan-induced 
type I hyperalgesic priming
As shown in “A”, the administration of sumatriptan (a 5-HT1B/D receptor agonist), applied 

at the terminal of the IB4-positive nociceptor, triggers the events that will lead to mechanical 

hyperalgesia and the development of type I hyperalgesic priming. Activation of 5-HT1B and 

5-HT1D receptors by administration of sumatriptan and the following activation of G-protein 

αi subunit (Gαi), ultimately producing neuroplastic changes that are expressed as 

prolongation of the PGE2-induced hyperalgesia. B. PGE2-induced hyperalgesia, which is 

dependent only on PKA in the normal state [34], in the primed state is prolonged due to 

activation of an additional pathway involving PKCε and protein translation. Abbreviations: 

1B, 5-HT1B receptor subtype; 1D, 5-HT1D receptor subtype; PKCε, protein kinase C 

epsilon; PGE2, prostaglandin-E2.
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