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Sleep is critical tohealth andfunctionality, and several studieshave

investigated the inherited component of insomnia and other sleep

disorders using genome-wide association studies (GWAS). How-

ever, genome-wide studies focused on sleep duration are less

common. Here, we used data from participants in the Coriell

Personalized Medicine Collaborative (CPMC) (n¼ 4,401) to ex-

amine putative associations between self-reported sleep duration,

demographic and lifestyle variables, and genome-wide single

nucleotide polymorphism (SNP) data to better understand genetic

contributionstovariationinsleepduration.Weemployedstepwise

ordered logistic regression to select our model and retained

the following predictive variables: age, gender, weight, physical

activity, physical activity at work, smoking status, alcohol con-

sumption, ethnicity, and ancestry (as measured by principal

components analysis) in our association testing. Several of our

strongest candidate genes were previously identified in GWAS

related to sleep duration (TSHZ2, ABCC9, FBXO15) and narco-

lepsy (NFATC2, SALL4). In addition, we have identified novel

candidate genes for involvement in sleep duration including

SORCS1 and ELOVL2. Our results demonstrate that the self-

reported data collected through the CPMC are robust, and our

genome-wide association analysis has identified novel candidate

genes involved in sleep duration. More generally, this study con-

tributes toabetterunderstandingof thecomplexityofhumansleep.

� 2015 The Authors.American Journal of Medical Genetics Part B: Neuropsychiatric

Genetics Published by Wiley Periodicals, Inc.

Key words: genomic; genetic; self-reported; ordered logistic

regression
Medicine Collaborative; DNA, deoxyribonucleic acid; GWAS, genome-

wide association studies; kb, kilobase; PCA, principle components

analysis; PC, principal component; PTSD, post traumatic stress disorder;

SNP, single nucleotide polymorphism; QC, quality control.
�Correspondence to:

Laura B. Scheinfeldt, Coriell Institute for Medical Research, 403 Haddon

Ave., Camden, NJ 08103. E-mail: lscheinfeldt@coriell.org

Article first published online in Wiley Online Library

(wileyonlinelibrary.com): 3 September 2015

DOI 10.1002/ajmg.b.32362
INTRODUCTION

Sleep is a complex and critical biological process that is impacted by

both genetic and non-genetic factors in humans. Inadequate sleep

can lead to several health issues such as impaired immune function

[Aldabal and Bahammam, 2011], increased risk for type II diabetes

and obesity [Knutson et al., 2007], and cognitive impairment [Van

Dongen et al., 2003;Durmer andDinges, 2005]. Furthermore, sleep
015 The Authors. American Journal of Medical Genetics Part B: Neu
deprivation is associatedwith commonpsychiatric conditions such

as anxiety and depression [vanMill et al., 2010]. While it is unclear

to what extent sleep deprivation may be contributing to these

conditions as opposed to resulting from them [van Mill et al.,

2010], one study of military personnel has shown that individuals

reporting symptoms of pre-deployment insomnia or short sleep

(<6 hr of sleep a night) are more likely to suffer from new-onset

post-deployment post-traumatic stress disorder (PTSD) Gehrman
ropsychiatric Genetics Published by Wiley Periodicals, Inc. 697
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et al., 2013]. Thus, lifestyle changes and medical interventions that

improve sleep quantity may lead to improved physical and emo-

tional health.

Here, we have interrogated self-reported sleep data, demograph-

ic and lifestyle data, as well as genome-wide single nucleotide

polymorphism (SNP) data collected through the Coriell Personal-

ized Medicine Collaborative (CPMC) to identify genetic variants

that contribute to variation in sleep duration. The CPMC is a

prospective study designed to evaluate the utility of genomics in

clinical decision-making and health management [Keller et al.,

2010]. Participants self-report information related to family histo-

ry, demographics, and lifestyle. They then receive personalized

reports that incorporate their genetic and non-genetic risk factors

[Stack et al., 2011]. We believe that a better understanding of both

genetic and non-genetic factors involved in sleep duration will

improve our ability to identify individuals that will most benefit

from lifestyle changes and/or medical management to improve

sleep quantity.

To date, several studies have identified non-genetic and genetic

risk factors for inadequate sleep duration and insomnia. One of the

more recent studies included more than 100,000 individuals and

identified age, ethnicity, smoking status, alcohol consumption,

education, socio-economic status, marital status, weight, and

activity level among other non-genetic variables as associated

with sleep duration [Krueger and Friedman, 2009]. Several candi-

date genes for involvement in sleep duration, a sub-set of which are

involved in related biological mechanisms and have supporting

functional data [Allebrandt et al., 2013; Byrne et al., 2013], have

also been identified in previous genome-wide association studies

(GWAS) [Gottlieb et al., 2007, 2014; Ollila et al., 2014]; however,

due to limitations in sample size, many of the reported candidate

variants have neither reached genome-wide significance nor been

replicated in independent analyses. Results from our current

analyses lend further support to several previously identified

candidate genes involved in sleep duration: ABCC9 [Allebrandt

et al., 2013; Ollila et al., 2014], TSHZ2 [Gottlieb et al., 2007], and

FBXO15 [Byrne et al., 2013]. Moreover, we have identified several

novel sleep duration candidate genes, including SORCS1 and

ELOVL2.
MATERIALS AND METHODS

Samples
The CPMC is a prospective study comprised of several cohorts

included in the current study [Keller et al., 2010; Stack et al., 2011]:

a CPMC community cohort recruited from the general population

(n¼ 2,686), a cancer (breast and prostate) cohort recruited

through oncologists at Fox Chase Cancer Center (n¼ 74), a

chronic disease (congestive heart failure and hypertension) cohort

recruited through primary care physicians or cardiologists at Ohio

State University Medical Center (n¼ 191), a community cohort

recruited through Ohio State University (n¼ 188), and an Air

Force Medical Service cohort recruited through the United States

Air Force (n¼ 1,262). All participants are adults (at least 18 years

old) that have givenwritten informed consent to enroll in the study.

No participants were excluded based on comorbidities including
any health conditions related to heart disease, stroke, or sleep

apnea. In total, information from 4,401 participants was included

in the current study. The Coriell Institute Institutional Review

Board (IRB) has reviewed and approved protocols for each of the

abovementioned cohorts. In addition, the Institutional Review

Boards of Fox Chase Cancer Center, Virtua Health System,

Ohio State University Medical Center, and the United States Air

Force have approved their respective cohort-specific protocols.
Genotyping
Each participant has provided a saliva sample to the study from

which DNA was extracted using the Oragene method (DNA

Genotek, Inc., Ottawa, Ontario, Canada). Coriell’s in-house Clini-

cal Laboratory Improvement Amendments (CLIA) certified Gen-

otyping and Microarray Center [Keller et al., 2010; Stack et al.,

2011] used theAffymetrix 6.0GeneChip to genotype 909,622 SNPs.

In total, 901,083 SNPs passed our research quality control (QC)

filters (no more than 10% missing data for any given marker) and

were retained for further analyses. All individual samples with

genetic data (n¼ 3,948) had at least 97% complete SNP data and

were retained for downstream analyses.
Non-Genetic Data Collection
CPMC participants use a secure web-based portal [Keller et al.,

2010; Stack et al., 2011] to provide information related to medical

history, family history, lifestyle, and demographics, including the

information used in the current study (average amount of sleep per

night, gender, age, weight, physical activity, smoking status, alcohol

intake, and ethnicity).

The physical activity question includes the following options:

none, recent, occasional, want to start, or regularly for at least

6months. However, anyone who responded “want to start” was re-

coded as “none” for the current analysis. The amount of physical

activity at work question includes the following options: sedentary,

standing, physical, heavy, or unemployed. However, anyone who

responded as unemployed was re-coded as “sedentary” for the

current analysis. Smoking was coded as currently smoking or not

currently smoking. Alcohol use was coded as consumed in the past

month or not consumed in the past month (Table I).

In addition, since the inception of the project in 2007, the

participant questionnaire was updated such that the sleep question

changed from “indicate the average number of hours of sleep you

get a night” (less than 4 hr, 4–6 hr, 6–8 hr, 8 or more hours) to

“During the past 30 days, indicate the average number of hours of

sleep you get a night” (less than 4 hr, 4–6 hr, 7–8 hr, more than

8 hr). The entire Air Force cohort (n¼ 1262) and 214 (8%) of the

CPMC cohort (n¼ 2686) answered the later version of the ques-

tion. We considered the defined categories as equivalent for the

current study.
Principle Components Analysis
Given that our cohorts include individuals with diverse genetic

backgrounds, we used principle components analysis (PCA) to

correct for any potential population structure in our statistical



TABLE I. Participant Characteristics

FAytinummoc CMPC
26216862n
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)%6( 47)%6( 751)%(n ,gnikoms yltnerruc
consumed alcohol in the past month, n(%) 2233 (83%) 981 (78%)
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Native Hawaiian or other Pacific Islander 7 (<1%) 7 (1%)
)%6( 87)%2( 44yticinhte dexim

average number of hours of sleep per night < 4 hours 14 (1%) 8 (1%)
average number of hours of sleep per night  4-6 hours 528 (20%) 522 (41%)
average number of hours of sleep per night  7-8 hours 1862 (69%) 706 (56%)
average number of hours of sleep per night  => 9 hours 282 (10%) 26 (2%)

excersise regularly for at least 6 months, n(%)
recently began excercising regularly, n(%)
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modeling (described further below).We used PLINK [Purcell et al.,

2007] to generate a pruned set of relatively independent genome-

wide SNPs (R2<0.2), andweused a customR script (available upon

request) and the svd function [Team, 2014] to calculate the eigen-

values and eigenvectors of the covariance matrix of normalized

genotype data.We visualized principal components (PCs) 1–20, but

byPC7, the distributionof individuals appeared tobe all noise, sowe

retained PCs 1–6 for downstream analyses (Fig. S1a–g).
Statistical Modeling
The sleep duration variable is collected as an ordered category

that we have imposed over an assumed underlying latent variable

(sleep duration) with a continuous distribution. We, therefore,

employed ordinal logistic regression with the polr function in

the MASS library [Ripley, 2002] in R [Team, 2014] to test for

associations between sleep duration and genetic and non-genetic

variables.

Since over-parameterizing regressionmodels can lead to a better

fit simply due to the number of parameters, we conducted a step-

wise analysis of all non-genetic factors and calculated akaike

information criterion (AIC) for eachmodel using the polr function

in theMASS R package [Ripley, 2002].We retained the model with

the lowest AIC value. For the initial analysis of all participants

(from all five cohorts, n¼ 4401), we used the following model:

sleep hours� ageþ genderþweightþ physical activityþ physical

activity at workþ smoking statusþ alcohol intakeþ ethnicityþ
cohort. After identifying participant cohort as a significant variable

contributing to sleep duration (P¼ 2.6� 10�56, Wilcoxon rank

sum test, also see Table II), we designed a two phase genome-wide

analysis in which only the CPMC community cohort (n¼ 2,152)

was used in phase I, and only the Air Force cohort (n¼ 1,262) was

used in phase II. This study design, therefore, reduced the risk that

we would identify false positives due to differential environmental

or lifestyle factors related to either cohort.

Taken together, we included genetic data from 3,414 total

participants. For the phase I analysis, we used the following model

in the CPMC community cohort for all genome-wide SNPs: sleep

hours � ageþ genderþweightþ physical activityþ physical ac-

tivity at workþ smoking statusþ alcohol intakeþ ethnicityþ PC1

þ PC2þ PC3þ PC4þ PC5þ PC6þ SNP genotype. Given the

modest sample size available for the current study, we prioritized

retaining individuals and not variants for the genome-wide asso-

ciation testing, and retained 169,252 SNPs with complete genotyp-

ing data in phase I. We then tested only the most significant SNPs

(n¼ 173) in the phase II Air Force cohort with the same model. In

addition, we went back to the top candidate regions and performed

association tests of all of the genetic variants with at least 90%

complete data within 500 kb of a given candidate variant in the

CPMC cohort. SNP genotypes were coded as 0/1/2, where 0

corresponds to two copies of the reference allele, 1 corresponds

to one copy of each allele, and 2 corresponds to two copies of the

non-reference allele. Finally, we imputed missing genotypes using

Beagle Version 4.0 [Browning and Browning, 2007] with the



TABLE II. Regression Results for Demographic and Lifestyle Variables

eta coefficient SE t-value
age 0.00 0.00 1.39
gender 0.00 0.08 -0.06
weight 0.00 0.00 -4.45
exercise 0.13 0.03 5.20
physical activity at work -0.15 0.05 -2.82
smoking -0.40 0.16 -2.56
alcohol 0.17 0.09 1.83
cohort 0.99 0.10 9.60
ethnicity (African American) -0.95 0.19 -5.07
ethnicity (Native American) -1.21 0.97 -1.25
ethnicity (Asian American) -0.44 0.21 -2.11
ethnicity (Hawaiian/Pacific Islander) -1.16 0.91 -1.27
ethnicity (mixed) -0.86 0.23 -3.78
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following parameters: niterations¼ 10 and nsamples¼ 4. We ex-

cluded monomorphic SNPs, singleton SNPs, and SNPs with allelic

R2< 0.7. We retained 870,428 SNPs with imputed data for an

exploratory genome-wide association analysis in the CPMC com-

munity cohort (n¼ 2,152).
Assigning Statistical Significance
We used ordered logistic regression to maximize statistical power

for the genome-wide analysis of the community cohort and used

the polr function in R to implement the model. The output of

polr includes the eta coefficient, the standard error, and the

affiliated t-value (the coefficient divided by the standard error).

The eta coefficients are the linear predictors of the explanatory

variables, which do not follow a standard t-distribution. There-

fore, we were not able to analytically assign P-values to our

t-values. Given our sample size for the genome-wide analysis of

the community cohort (n¼ 2,152), we instead chose an absolute

t-value cutoff of 10. This cutoff roughly corresponds to the 0.1%

of the empirical tails of the t-value distribution (estimated from

169,252 SNPs with no missing genotyping data). Assuming a

normal distribution of t-values, we estimate that an absolute

t-value cutoff of 10 approximately corresponds to a P-value of

10�6. We note, however, that our t-values are asymptotically

distributed, and therefore this P-value estimate is only provided

as a very rough estimate.

Variants meeting the absolute t-value cutoff of 10 (173 SNPs)

were then tested in the Air Force cohort. From this set, 37 variants

had an absolute t-value of 2 or higher in the Air Force cohort

(n¼ 1,262), which roughly corresponds to the top 1% empirical

tail of the absolute t-value distribution. We calculated bootstrap

P-values with 1,000 bootstraps for each of the 37 variants that met

the above criteria in both cohorts.
Pathway Enrichment Analysis
We used the GREAT resource [McLean et al., 2010] to test for

molecular function, biological process, and pathway enrichment in

our set of 37 candidate loci. In particular, we included GO
molecular functions, GO biological processes, PANTHER and

MSigDB, and chose the hypergeometric gene enrichment test.

We limited our enrichment testing to categories containing at

least two candidate loci for sleep duration.
RESULTS

Non-Genetic Factors
Consistent with previously reported analyses [Krueger and Friedman,

2009], we identified several non-genetic factors that are associatedwith

the average amount of sleep reported by CPMC participants. For

example, reported non-smokers get significantly more sleep than

reported smokers (W¼ 552,877, P¼ 0.0032; Wilcoxon rank sum

test; Table SI), and women get significantly less sleep than men

(W¼ 2,430,874, P¼ 0.0485, Wilcoxon rank sum test; Table SI). We

also discovered that cohort membership has a significant association

with reported sleep (X2¼ 261.86, P< 2.20� 10�16, Kruskall–Wallis

rank sum test; Table SI). Furthermore, this result was driven by two of

the cohorts. In particular, individuals recruited into the Air Force

cohort report significantly less sleep than individuals recruited into the

CPMC community cohort (W¼ 1,251,280, P¼ 2.5666� 10�56;

Wilcoxon rank sum test; Fig. S2). We additionally modeled the

combined set of non-genetic factors using ordered logistic regression

(Table II).

Genetic Candidates
Given the striking impact of cohort membership, we designed a

two-stage analysis in which we tested a set of genome-wide SNPs in

the larger CPMC community cohort (n¼ 2,152), and tested the

subset of most associated variants (absolute(t-value) >10) in the

Air Force cohort. The 173 SNPs (Table SII) that met the phase I

threshold have t-values that roughly correspond to the most

extreme 0.1% of the empirical distribution. Table III displays

the subset of 37 variants that met our filter (absolute(t-value)

>2) in phase II, which roughly corresponds to the most extreme

1% of the empirical distribution; however, none of the tested

genetic variants reached genome-wide significance after correcting

for multiple testing. We note that for a subset of these candidate



TABLE III. Candidate Genetic Variants

nearby genes (distance away)positionchrrisk allelersIDAffy probe ID

164338732   PBX1 (-189865)1Grs4876600.0737.82.1812.122.18SNP_A-1863460

27720442   FNDC4 (-2316), GCKR (+736)2Grs81792060.033-6.55-1.82-12.17-2.17SNP_A-8593393

100490141   REV1 (-383661), AFF3 (+231904)2Grs170232560.0028.322.33-64.44-11.55SNP_A-1827021

115493714   DPP10 (-425799), ACTR3 (+846177)2Trs170434590.0628.932.49-10.22-1.81SNP_A-1964545

134064480   LYPD1 (-635999), NCKAP5 (+261551)2Trs118999940.071-7.66-2.1216.192.91SNP_A-8570874

140404285   NXPH2 (-866474)2Trs67568120.062-2.3-0.6416.753.01SNP_A-8418607

222174274   EPHA4 (+262736)2Trs99416520.062.231.8410.431.87SNP_A-8470253

237613126   COPS8 (-380958), CXCR7 (+134746)2Trs75924670.0545.361.49-10.75-1.93SNP_A-8382652

187181447   RTP4 (+95279), SST (+206754)3Grs67734710.0715.431.5114.422.59SNP_A-8553765

134930596   PABPC4L (+192307), PCDH10 (+860126)4Trs414165480.027-2.32-2.65-11.18-2SNP_A-4206074

31150659   CDH6 (-43103)5Trs169007270.06411.283.14-13.54-2.43SNP_A-1945766

111909996   APC (-163560), EPB41L4A (-154986)5Grs77365000.068-10.19-2.8110.321.83SNP_A-8298220

10983568   ELOVL2 (+61056), SYCP2L (+96504)6Trs414637460.036-6.73-1.8617.893.21SNP_A-2035288

21183421   SP8 (-356913), SP4 (-284268)7Grs7590160.037-9.36-2.616.93.02SNP_A-1833042

4894792   CSMD1 (-42464)8Trs100934350.065-2.48-2.89-15.57-2.79SNP_A-8583145

101671655   COL15A1 (-34483), GALNT12 (+101674)9Grs169056980.0534.481.25-16.11-2.88SNP_A-8372700

12759042   CCDC3 (+284662), CAMK1D (+367459)10Grs112579530.021-2.33-1.3710.141.82SNP_A-8655337

66643276   NONE10Grs414775440.069-5.78-1.6113.862.48SNP_A-4231531

106999546   ORCS3 (+598687)10Grs30116670.048-2.14-1.7-12.79-2.31SNP_A-2226856

108820205   SORCS1 (+104261)10Crs171220130.07414.964.3115.022.69SNP_A-1805117

120187299   RAB11FIP2 (-381185), PRLHR (+167861)10Grs70969480.0377.932.22-11.87-2.12SNP_A-8594117

13259561   ARNTL (-39764), RASSF10 (+228591)11Trs413484460.0867.542.110.191.82SNP_A-2007896

13026606   GPRC5A (-17350), DDX47 (+60465)12Trs169084650.0298.052.25-10.83-1.93SNP_A-1925429

22034938   KCNJ8 (-107191), ABCC9 (+54690)12Trs25444430.0729.892.7515.382.76SNP_A-8685877

47587727   AMIGO2 (-113993), FAM113B (-22278)12Trs170977090.0564.211.1710.91.95SNP_A-2301238

25988491   STXBP6 (-469396)14Trs171100340.0498.932.4817.633.17SNP_A-2036194

55016760   SAMD4A (-17570), CGRRF1 (+40173)14Crs1185157702.793.03-66.55-11.93SNP_A-4220627

3747660    ITGAE (-43123), C17orf85 (+1880)17Grs169535250.0277.462.08-10.73-1.9SNP_A-8606302

39199597   PIK3C3 (-335602)18Grs169750820.0578.22.2915.922.84SNP_A-4202739

48034355   MAPK4 (-52129), SKA1 (+132963)18Trs72429900.0036.091.7179.2614.43SNP_A-1933351

71245886   NETO1 (-711076), FBXO15 (+569214)18Trs72337170.0667.992.2412.882.34SNP_A-8498165

12378028   SPTLC3 (-611599)20Grs15435220.0524.211.17-13.98-2.5SNP_A-4262708

34101047   ERGIC3 (-28731), CEP250 (+57824)20Crs22361620.058-6.69-1.84-16.86-3.02SNP_A-8477961

34285882   ROMO1 (-1350)20Grs22978490.0222.452.0718.33.29SNP_A-2208222

50352680   NFATC2 (-193422), ATP9A (+32228)20Trs14126110.0737.252.0512.872.32SNP_A-8469723

35452236   KCNE2 (-284087), MRPS6 (+6413)21Trs119107920.018-2.19-0.61-12.48-2.23SNP_A-8366249

37321663   RUNX1 (-900068), CBR1 (-120622)21Grs10120580.0177.932.22-11.27-2.01SNP_A-8339833

Phase I 
eta coef

Phase I 
t-value

Phase II 
eta coef

Phase II 
t-value

bootstrap 
p-value
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variants, the direction of association (positive vs. negative eta

value) is not consistent between the CPMC and Air Force cohorts.

We tested for pathway enrichment using the 2 kb region surround-

ing each of the 37 variants listed in Table III and did not find any

significant enrichment after correction for multiple testing (Tables

SIII, SIV, and SV). However, we did find suggestive associations

with two GO molecular functions (GO:0008188, neuropeptide

receptor activity, uncorrected P¼ 0.00038; GO:0042923, neuro-

peptide binding, uncorrected P¼ 0.00049, also see Table SIV) and

one GO biological process (GO:0007218, neuropeptide signaling

pathway,P¼ 0.000052, also see Table SV) related to neuropeptides,
which may be of general relevance to sleep duration [Steiger and

Holsboer, 1997; Prospero-Garcia and Mendez-Diaz, 2004].
Identification of Previous Candidate Genes
While wewere not able to replicate any previously identified genetic

variants, Table III includes several variants present in or near

previously implicated candidate genes for involvement in sleep.

Rs2544443,an intronicSNP locatedwithin theATP-bindingcassette

sub-family Cmember 9 (ABCC9) gene, is one of the 37 variants that

passed our filters in both phases of the analysis (Fig. 1). The ATP
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FIG. 1. Top candidate gene regions. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/

journal/ajmgb]
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binding cassette transporter pathway was previously found to be

enriched in a pathway analysis for sleep duration [Ollila et al., 2014],

and ABCC9 has previously been implicated in a meta-analysis of

GWAS of sleep duration [Allebrandt et al., 2013]. In particular, an

intronic variant (rs11046205) reached genome-wide statistical sig-

nificance. This variant was unfortunately not present in our dataset.

However, we did test rs11046211 (eta¼�0.17, SE¼ 0.14,

t-value¼�1.18), which is also evaluated by Allebrandt et al.

[2013] (beta¼ 0.20, P¼ 9.9� 10�6) and did not find an especially

strong association signal. The closest SNP (within 50 kb) with the

strongest signal in our analysis is rs704191 (�23 kb away,

eta¼�5.37, t-value¼�11.80). One possibility for this discrepancy

is that there is more than one signal of association in the same

genomic region. Although, perhaps a simpler explanation is that the

patternsof linkagedisequilibriumbetween thepresumedunderlying

functional variant and the evaluated SNPs are not consistent across

study population samples. Indeed, the allele frequency range across
population samples included in Allebrandt et al.’s meta-analysis

[Allebrandt et al., 2013] for rs11046211 is 0.042–0.119. In addition,

the correlation (as measured with R2) between rs704191 and

rs11046205 in the 1000 Genomes EUR population sample is only

0.10 [Genomes Project et al., 2012].

Several other genic regions identified in the current analysis have

been previously implicated but did not originally reach genome-

wide significance. Rs7233717 lies �500 kb upstream of FBXO15

(Fig. 1), which was identified in a GWAS of sleep duration but did

not reach genome-wide significance in the original analysis [Byrne

et al., 2013]. The SNP identified by Byrne et al. [2013], rs2278331

was not associated with sleep duration in our analysis (eta¼�0.06,

t-value¼�0.90). In our targeted analysis of additional variants in

the region (Fig. 1), we identified rs17088578 (27�kb away from

rs2278331, eta¼ 2.88, t-value¼ 15.88), which is located �200 kb

upstream of FBXO15. Again, one possibility for this discrepancy is

that there is more than one signal of association in the same

http://wileyonlinelibrary.com/journal/ajmgb
http://wileyonlinelibrary.com/journal/ajmgb
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genomic region. Although, in this case, rs2278331 was imputed by

Byrne et al. [2013], and an alternate explanation is that there is a

biological signal in the region that is being ‘tagged’ by different

variants in the two datasets due to differences in the way that the

alleles were collected.

Inaddition,we identified rs41348446 (eta¼ 1.82, t-value¼ 10.19),

located on chromosome 11 approximately 40 kb upstream of

ARNTL (Fig. 1). ARNTL is a circadian rhythm gene that has been

associated with later sleep and wake times in an elderly cohort

[Evans et al., 2013] as well as with seasonal affective disorder

[Partonen et al., 2007]. We additionally identified a stronger

signal of association with rs931186 (�71 kb upstream of ARNTL,

eta¼ 2.76, t-value¼ 15.35).

We also identified a region on chromosome 20 that contains

four genes with suggestive relationships to sleep (Fig. 1).

Rs2256551, the SNP we identified in the GWAS is located in the

intronic region of ATPase, class II, type 9A (ATP9A), which is

upstream to spalt-like transcription factor 4 (SALL4). SALL4

mutations cause Duane radial ray syndrome (Okihiro syndrome),

which is associated with narcolepsy [Butterworth and Shneerson,

2014].ATP9A is also located 1.2Mbupstreamof teashirt zinc finger

homeobox 2 (TSHZ2), a gene that was implicated in sleep duration

in a GWAS conducted by Gottlieb et al. [2007] but did not reach

genome-wide significance in the original analysis. Finally, ATP9A

lies downstream of nuclear factor of activated T-cells, cytoplasmic,

calcineurin-dependent 2 (NFATC2), which is associated with

narcolepsy [Shimada et al., 2010]. Therefore, it appears that this

regionmay containmultiple loci involved in sleep and sleep-related

disorders.

Two more recent studies identified several additional candidate

variants associated with sleep duration. Ollila et al., [2014]

identified a SNP on chromosome 5 (rs114725) that is less than

2Mb away from one of our identified candidate SNPs (rs16900727,

Table III), and a SNP on chromosome 10 (rs10886445) that is less

than 1Mb away from another one of our identified candidate

SNPs (rs7096948, Table III). Gottlieb et al. [2014] identified a

region on chromosome 2 (position 113,785-491-113,811,454) that

is not in the tails of our empirical distribution (absolute t-values

range from 0.40–0.91). We did, however, identify a nearby region

(position 115,493,714; rs17043459) that is less than 2Mb away.

However, given the distances between the previously reported

signals of association and the current study, it is difficult to

determine whether these represent one or more suggestive signals

of association.

To increase our genomic coverage, we additionally performed

an exploratory association analysis with an expanded set of 870,428

SNPs that included imputed genotypes for individuals with miss-

ing data. The top 0.1% of the empirical distribution of absolute t-

values are included in Table SVI; however, we were not able to

replicate any previously reported genetic candidate variants for

sleep duration with the expanded association analysis.
Novel Candidate Genes
We have identified two novel genes that have been implicated in

sleep in other mammals. Rs17122013 is located in the intronic

region of Sortilin-related VPS10 domain containing receptor 1
(SORCS1) (Fig. 1) which is deleted in an inbred short sleep mouse

strain [Dumas et al., 2014]. Rs41463746 is located in the 30 UTR of

ELOVL fatty acid elongase 2 (ELOVL2) (Fig. 1), which is up-

regulated in liver tissue from hibernating winter bears [Fedorov

et al., 2009]. It is worth noting that the direction of the effect of

rs41463746 on sleep is not consistent across the CPMC and Air

Force cohorts (eta¼ 3.21 and �1.86, respectively). However, as

displayed in Figure 1, there are two additional SNPs (rs6919269,

eta¼�5.37, t-value¼�11.67; rs4713206, eta¼�5.35, t-value¼
�11.66) that are consistent across both cohorts.
DISCUSSION

Here, we leverage the data collected from the CPMC research study

to investigate putative candidate genes involved in sleep duration.

We have taken an approach that is different and complimentary to

previously reported genome-wide association studies of sleep. In

particular, we have incorporated an expanded set of lifestyle and

demographic predictor variables in our statistical modeling.

Whilewe have not replicated any previously identified candidate

variants for sleep duration, our results provide independent sup-

port for previously identified candidate genes that have (ABCC9)

and have not yet (FBOX15, TSHZ2) reached genome-wide signifi-

cance in previously reported GWAS of sleep duration [Allebrandt

et al., 2013; Byrne et al., 2013]. In addition, Allebrandt et al.

[2013] conducted a functional experiment in Drosophila mela-

nogaster ofABCC9 and demonstrated that flies with non-function-

al transcripts were sleepless for 3 hr on average more per night

compared to wild-type flies. Thus, the self-reported data collected

through the CPMC related to sleep duration as well as the lifestyle

and demographic variables included in our statistical model appear

to be robust, and our analytical approach appears to have identified

biologically meaningful associations with sleep duration.

We also find it intriguing that one of the regions identified in the

current analysis on chromosome 20 contains multiple genes with

putative biological relationships to sleep and sleepdisorders.TSHZ2

was identified as a suggestive candidate gene for sleep duration

[Gottlieb et al., 2007], and SALL4 and NFATC2 are associated with

narcolepsy [Shimadaet al., 2010;Butterworth andShneerson, 2014].

This phenomenon is not without precedent in that previous work

has identified physical clusters of genes with related biological

functions (e.g., [Scheinfeldt et al., 2011]). While ATP9A itself has

notbeenpreviously identified as a candidate gene for involvement in

sleep duration, work in rats shows that expression levels of ATP9A

in liver change as a function of time of day, andATP9A is involved in

ion transport. Some have speculated that ATP9A and other similar

genesmaybe involved inpharmacokinetics andpharmacodynamics

[Nainwal et al., 2011], which raises the possibility that ATP9Amay

mediate the effects of sleep medications.

Moreover, we found compelling evidence in the non-human

literature for a relationship between two of our strongest candidate

genes and sleep. Work in lab strains of inbred short and long sleep

mice demonstrates that SORCS1 is deleted in the short sleep strain

relative to the long sleep strain suggesting that the absence of this

genemay contribute to shorter sleep duration [Dumas et al., 2014].

Perhaps even more intriguing is the finding that ELOVL2 is up-

regulated in the livers of hibernating bears [Fedorov et al., 2009]. In
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humans, ELOVL2 is associated with aging [Garagnani et al., 2012],

and omega-3 fatty acid levels were associated with sleep in

an epidemiological study of children in the United Kingdom

[Montgomery et al., 2014]. These results suggest that ELOVL2

may be important not just during hibernation, but for routine daily

sleep in humans as well.

Taken together, six of out 37 candidate gene regions have been

previously implicated in human and/or mammalian research. As a

set, however, there is no significant enrichment of any one biologi-

cal pathway, function or process. This negative result is consistent

with the inherited component of sleep involving more than one

biological mechanism, andmore work needs to be done to identify

and test what we assume are underlying functional variants con-

tributing to sleep.

There are several limitations to the current study, the most

important being that our sample size was too modest to identify

any genome-wide significant candidate genes. Indeed, the direction

of association is not always consistent between the CPMC and Air

Force cohorts, potentially due to the limited sample sizes included in

each analysis. Furthermore, wewere limited by the included variants

in thegenome-widearray, especially in that thevastmajorityof them

are not functional variants, and instead act as proxies for what we

assume are underlying functional variants. Therefore, resequencing

studies will be necessary to identify any putative functional variants

contributing to sleep variation. Moreover, there are regions of the

genome that are not well covered with the variants included in the

current study. In addition, there are lifestyle and demographic

variables of interest that we either do not currently collect through

the CPMC (e.g., do you live with young children?) or cannot

incorporate into the model due to incomplete data (e.g., caffeine

and stimulant intake, sleep medication usage, and co-morbidities,

which aremissing for the vast majority of study participants). Error

may also be introduced when participants do not correctly report

their average sleep duration. Finally, we used a categorical self-

reported measure of sleep duration, and it will be useful to collect

continuous measures of sleep duration in the future, which may be

more powerful data for identifying signals of association.

In summary, the CPMC research study uses both genetic and

non-genetic information to customize individual risk reports for

complex diseases, and here we have leveraged those data to better

understand the role of common genetic variation in sleep duration.

Not only have we identified several candidate genes previously

implicated in sleep duration in human studies, but we have also

identified several novel putative candidate genes involved in human

sleep duration. Our approach demonstrates that using the CPMC

participant self-reported data in combination with genome-wide

genetic data is robust. Future work that explores functional variants

related to sleep duration will contribute to our ability to identify

individuals at increased risk of sleep problems and associated health

disorders and tailor recommended lifestyle changes and/or medi-

cations to improve sleep quantity and overall general health.
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