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S. aureus and S. pneumoniae are both common pathogens
that are also carried by a large proportion of healthy
individuals in the nasal and nasopharyngeal spaces. A
negative association between carriage of S. aureus and
S. pneumoniae has been reported in children in various
epidemiologic studies from different geographical regions.
Most studies found that the negative association between
S. pneumoniae and S. aureus was significant only for carriage
of vaccine-type S. pneumoniae strains. In this review, we
summarize the various suggested mechanisms of this
suggested bacterial interference, and the clinical implications
reported following PCV introduction to date in various
geographical regions.

Introduction

S. aureus and S. pneumoniae are both common pathogens that
are also carried by a large proportion of healthy individuals in the
nasal and nasopharyngeal spaces. S. aureus is a major source of
morbidity and mortality worldwide, with infections ranging
from minor skin infections to invasive infections such as endocar-
ditis and toxic shock syndrome. It is persistently carried by
approximately 25% of the healthy population.1 As with S. pneu-
moniae, carriage of S. aureus serves as the first step to infection as
well as the frequent source of transmission between one individ-
ual to another.

Over a decade ago, two studies independently reported a neg-
ative association between carriage of S. aureus and S. pneumo-
niae.2,3 During the following years multiple epidemiological
studies in different geographical regions observed similar findings
of a negative association between carriage of S. pneumoniae and
S. aureus in young children.4-8 The carriage of both species was
associated with age, with the peak S. pneumoniae carriage and
lowest S. aureus carriage at 6 months to 3 years4-10 and peak
S. aureus colonization at age <6 months and 5–7 y11 The nega-
tive association was significant even after adjusting for age, but

this interference was not observed in older children and
adults.8,12 Interestingly, most studies2,3,5,9 found that the inverse
correlation between S. pneumoniae and S. aureus was significant
only for carriage of vaccine-type S. pneumoniae strains, which
were carried more commonly before the introduction of the
pneumococcal vaccine.

This finding, together with an earlier clinical trial that
reported increased S. aureus otitis media following PCV vaccina-
tion,13 raised much concern3,7,14,15; if S. pneumoniae carriage
protects from S. aureus carriage and the introduction of the pneu-
mococcal conjugate vaccines (PCV) results in decreased S. pneu-
moniae carriage, this could potentially lead to an increase in
S. aureus carriage, and infection. In this review, we summarize
the various suggested mechanisms of this inverse correlation, and
the clinical implications reported following PCV introduction to
date in various geographical regions.

Suggested Mechanisms of Interaction between
S. pneumoniae and S. aureus

As with any bacterial interaction, the association between
S. pneumoniae and S. aureus can theoretically be caused by either
direct or indirect interactions. Direct interactions, such as direct
competition for adhesion sites, resources and receptor-mediated
interactions are unlikely in this case due to the fact that the 2 bac-
teria reside in closely located, yet different niches. Interactions
through secreted factors are more likely, as well as indirect inter-
actions mediated through other bacteria, or through the immune
system.

Suppression of S. aureus by H202 production by
S. pneumoniae

Hydrogen peroxide produced by S. pneumoniae was first pos-
tulated to have a role in the inhibition of S. aureus and other
respiratory pathogens by Mcleod and Gordon in 1922.16 Nearly
a century later Pericone et al. observed that H202 in S. pneumo-
niae culture supernatant was bactericidal against H. influenza and
N. meningitidis, and to a lesser extent against M. catarrhalis.17

Regev-Yochay et al found that the in vitro bactericidal activity of
S. pneumoniae toward S. aureus is indeed mediated through
hydrogen peroxide; The bactericidal effect was reversible with
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catalase and S. pneumoniae spxB mutants that do not produce
H202 were not bactericidal.18 Following this observation, Selva
et al. suggested that the mechanism of interference is activation
of S. aureus resident prophages by low levels of hydrogen perox-
ide produced by S. pneumoniae,19 which then lyse S. aureus cells.

In vivo murine studies that assessed this issue are conflicting.
In line with the theory of H202 interference, Park et al demon-
strated that S. aureus catalase expression contributes to its ability
to colonize and survive in the presence of S. pneumoniae in an in
vivo mouse model of nasal co-colonization.20 However, in a neo-
natal rat model, Margolis observed that S. aureus density did not
differ whether co-colonized with hydrogen peroxide producing
or non-producing S. pneumoniae, or whether catalase or non-cat-
alase producing S. aureus strains were tested.21

To assess the role of hydrogen peroxide in the patterns of
human co-colonization, Regev-Yochay et al. assessed the varia-
tion of bactericidal activity in S. pneumoniae strains isolated from
children co-colonized with S. pneumoniae and S. aureus com-
pared to those colonized only with S. pneumoniae. They showed
only a trend toward a negative correlation between co-colonizing
S. pneumoniae strains and bactericidal activity and concluded
that the variation in hydrogen-peroxide production alone does
not fully explain the pattern of co-colonization.22

Genetic bacterial determinants of interference
Melles et al. assessed the possibility of a genotype-specific

association between S. aureus and S. pneumoniae carriage and did
not find such a correlation. They suggested that only more subtle
genetic variations may possibly play a role in the interference
between the two.23 In line with this, a study by Nouwen et al.
showed that S. aureus carriage of a strain is not dependent on bac-
terial genotype, suggesting that it is instead related to host fac-
tors.24 Margolis et al. determined that the colonizing strain of
S. aureus in a neonatal rat model is determined solely by which
strain is first to colonize and not by the characteristics of that
strain.25

Interactions with other residents of the upper respiratory
tract microbiome

S. aureus and S. pneumoniae are not the only species present in
the nasopharyngeal region. Over the years, many studies have
observed interactions between various bacterial species and
viruses carried in the upper respiratory tract.26-30 These bacteria
and viruses compete for space and resources25,30,31 and in some
cases, such as influenza virus and S. pneumoniae, the virus and
bacteria act synergistically to cause increased S. pneumoniae adhe-
sion to host cells.32

The most clinically relevant and commonly studied interac-
tions and competition are those between the upper respiratory
tract pathogens, namely S. pneumoniae, S. aureus, H influenzae,
and M. catarrhalis. The prevalence of these pathogens varies
between populations, but most children are colonized by at least
one of these species in the first year of life.5,8,33-37 Positive corre-
lations between S. pneumoniae, M. catarrhalis and H. influenza,
and negative correlations between H. influenza and S. aureus
have been reported in epidemiological studies5,7,8,38,39 as well as

infection models.40,25,41 Pettigrew et al. showed that coloniza-
tion with M. catarrhalis and H. influenza together doubled the
likelihood of co-colonization with S. pneumoniae. 7

Recent advances in sequencing technology have allowed for
the detection of the entire nasal microbiome, not only of cultura-
ble strains.42 Metagenomic analyses showed the presence of a
highly diverse nasopharyngeal microbiome including up to 2042
observed operational taxonomic units and as many as 1,219,310
observed unique sequences.4,43,44 Considering the vast diversity
in the nasal microbiome with which the two pathogens interact,
the relationship between the two pathogens should take into con-
sideration the possible roles of other species in the nasal micro-
biome, possibly by inhibiting or promoting the growth of S.
aureus or S. pneumoniae.

In a study by Cremers et al., in which nasal microbiomes of S.
pneumoniae carriers and non-carriers were assessed before and
after artificial inoculation of non-carriers with S. pneumoniae,
they observed that colonization was less likely to be successful if
the individual’s microbiome was rich in Staphylococcal species.45

In line with this, Laufer et al. observed that S. pneumoniae colo-
nization was more frequently detected when the microbiome had
lower population diversity.4

S. aureus has also been shown to affect and be affected by
other species in the upper respiratory niche. Analysis of the nasal
microbiome by Lina et al. found a negative association between
Corynebacterium species and S. aureus carriage,28 and similarly,
Yan et al. found that various species of Corynebacterium were
either positively (C. accolens) or negatively (C. pseudodiphtheriti-
cum) associated with the presence of S. aureus. Evidence for these
interactions was seen in vitro44 and in vivo, as artificial inocula-
tion of S. aureus carriers with a species of Corynebacterium was
shown to eradicate a resident S. aureus species.46

Another bacteria that was also suggested to interact with
S. aureus in the nose is Staphylococcus epidermidis. Iwase et al.
showed that a serine protease produced by some S. epidermidis
strains inhibited S. aureus biolfilm formation. These inhibitory
strains were more likely to be isolated from individuals who did
not carry S. aureus, while non- inhibitory strains were isolated
from S. aureus carriers.47

The role of the immune system in the bacterial interference
While some studies focused on potential direct mechanisms of

interference, i.e. competition for space and resources30,31,46 or
direct inhibition through bactericidal factors,18,21,41,48 the fact
that S. aureus and S. pneumoniae colonize closely related, yet not
precisely the same region in the upper respiratory niche, suggests
that indirect inhibition, such as immune mediated inhibition is
more plausible. The concept of interspecies immune-mediated
cross-reactivity is not new, with some examples being cowpox
and small pox, as discovered by Edward Jenner,49 or certain
enteric commensal Escherichia coli.50

Repeated S. pneumoniae carriage episodes in early childhood
eventually induces an immune response that leads to shorter and
less dense colonization of S. pneumoniae in older children and
adults.51 In contrast, S. aureus appears to elicit a futile antibody
response, allowing the bacteria to escape immune responses and
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recurrent colonization and infec-
tions with S. aureus are com-
mon.52-54 Moreover, »20% of
healthy adult individuals are per-
sistent carriers of a single strain
for many years,55,56 while young
healthy adults are typically car-
riers of S pneumoniae only for
very short durations, even fol-
lowing experimental expo-
sures.57 Shak et al. showed that
when S. aureus carriers were arti-
ficially inoculated with
S. pneumoniae, successful coloni-
zation resulted in a decrease in S.
aureus carriage, but only 14 d
later. The authors suggested that
this delayed response may point
to an immune mediated
interaction.41

Initial suggestive data on the
role of immune-mediated inter-
ference arose from studies that
showed that S. pneumoniae –
S. aureus interference was
observed only in HIV uninfected
children, but did not exist in
HIV-infected individuals.58,59

Colonization rates with S pneu-
moniae alone have been shown
to be the same60,61 or higher62

in HIV infected compared to uninfected children, and HIV-posi-
tive patients have been shown to carry a wider range of S. pneu-
moniae serotypes.63 In HIV treated children, the interference was
once again observed as in uninfected children.64 Indeed, pneu-
mococcal-specific CD4C T cells have been found to return to
normal levels following anti-retroviral therapy.65 This suggests
that the interaction between the S. aureus and S. pneumoniae may
be CD4C T cell-mediated.

While the HIV studies may suggest that T-cell immune
response plays a role in the interference, Lijek et al. demonstrated
in an in vivo murine model that S. pneumoniae colonization inhib-
its subsequent S. aureus acquisition in an antibody-dependent
manner, via cross-reactive antibodies targeting conserved dehydro-
genases, 1-pyroline-5-carboxylate dehydrogenase (P5CDH) of S.
aureus and a putative S. pneumoniae dehydrogenase: SP_1119.66

Yet, these antibodies have not been found in humans. In addition,
other studies did not find correlations between levels of particular
S. aureus or S. pneumoniae antibodies and rates of S. aureus
colonization.67,68

S. pneumoniae pilus as a potential determinant in the
interference mechanism

Another possible mechanism of immune-mediated interac-
tion that has been suggested is through an immune response
elicited toward the pneumococcal pilus. The pneumococcal

pilus is a long filamentous structure that plays a role in host
cell adhesion and pathogenesis and has also been shown to
elicit an inflammatory immune response from the host.69,70

Vaccine-type strains were more likely to carry a pilus71 and
indeed, following vaccine implementation, the rates of car-
riage of vaccine-type strains, including piliated ones, declined.
However other piliated strains emerged, either by acquiring
the pilus, or due to expansion and unmasking.72 Piliated
pneumococcal strains have been found to be negatively asso-
ciated with S. aureus carriage regardless of whether those
strains were included in the PCV7 vaccination, but carriage
of non-piliated strains had no significant correlation with car-
riage of S. aureus.72 It is therefore possible that the negative
association between S. aureus and vaccine-type S. pneumoniae
is due to the presence of the pilus, or a pilus-associated viru-
lence factor. Since many of these new strains were then
included in PCV13,73 we have yet to see whether new pili-
ated strains will again emerge.

While different mechanisms for a potential interference
have been suggested, indirect mechanisms seem more plausi-
ble. The current reported data suggests that immune medi-
ated mechanisms elicited by S. pneumoniae either specifically
or non-specifically, directly or through other members of the
microbiome interfere with S. aureus carriage (Fig. 1). Further
studies are required to determine whether cross-reactive

Figure 1. Model of possible mechanisms for S. aureus and S. pneumoniae interference. Straight lines indicate
interactions that have been reported between S. aureus and S. pneumoniae. Dotted lines indicate interactions
and/or directionality that have been suggested, but have not yet been observed experimentally.
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antibodies, non-specific immune response elicited by a partic-
ular pneumococcal structure or other mechanisms can fully
explain this bacterial interference.

Clinical Implications of the PCV effect on the
Interference and on S. aureus Carriage

The discovery of the inverse correlation between S. aureus and
vaccine-type strains of S. pneumoniae came at a time when PCV7
was just being introduced to the pediatric national immunization
plan in many countries. Since vaccine-type strains were those
found to be correlated with S. aureus carriage, this raised much
concern that the introduction of the vaccine would indirectly
cause a rise in S. aureus carriage and infection.7,11,14,15 The idea
that external interventions in ecosystems could damage the natu-
ral equilibrium by eliminating a less virulent ‘predator’ and result
in undesirable emergence of a possibly more virulent ‘prey’ is not
new and was shown decades ago for pests and pesticides.74 The
clinical trial that first suggested interference between S. pneumo-
niae and S. aureus found a rise in S. aureus otitis media cases fol-
lowing vaccination with PCV7 compared to a non-vaccinated
group.13 Others alerted that the emergence in CA-MRSA in the
USA may be related to the introduction of PCV7 which took
place at the same time.75

Several studies have examined the dynamics of S. aureus car-
riage post-PCV introduction. Lee at al observed no changes in
S. aureus carriage rates in children from Massachusetts 3 to 7 y
following PCV7 implementation, but they did not compare their
results to pre-vaccination S. aureus carriage rates. Interestingly,
they also did not observe an inverse correlation between S. aureus
and S. pneumoniae in their sample.11 The lack of observed inter-
ference is possibly due to the low rates of vaccine-type S. pneumo-
niae in their samples which were collected following PCV7
vaccination.11,76 The correlation could also be hidden in the sam-
ple due to the large age range of children in their study ranging
from 3 months to 7 y Other studies that looked at older children,
or looked at a wide range of children without differentiating
between older and younger children did not see the individual or
population level interference either,12,77 whereas those that only
looked at children under the age of 2 y saw the interference more
clearly.10 It is therefore difficult to interpret the results of this
study regarding the effect of PCV7 on S. aureus carriage, particu-
larly since they did not observe an inverse correlation throughout
their study periods.

Two studies in the Netherlands observed temporary increases
in S. aureus carriage in children aged 11–12 months following
vaccination with PCV7.76,78 One of these was a randomized con-
trol vaccine trial done before the introduction of PCV7 in the
Netherlands health program; the other was a cross-sectional sur-
veillance study on nasopharyngeal bacterial carriage in the years
following PCV7 introduction. The observed increase in S. aureus
carriage coincides with a decrease in overall S. pneumoniae car-
riage, seen at age 11 months following vaccination with PCV7.76

In the same study population a higher bacterial diversity of the

microbiome was observed among PCV7 vaccinated children
aged 12 months compared to unvaccinated children.79 The rela-
tionship to age could be due to the fact that all 3 doses were
needed in order to decrease carriage of S. pneumoniae strains, or
it could be due to the immune maturation that occurs around
age 12 months.80

Interestingly, the cross-sectional study reported increased
parental S. aureus carriage concomitant to the rise of S. aureus
in the child (at the age of 11 months).76 However, the ran-
domized study did not observe an increase in parental carriage
and surprisingly they observed decreased parental carriage
when the child was 24 months old.78 A surveillance study
from the pre-PCV era in South Africa reported constant
maternal S. aureus colonization rates during times of dynamic
S. aureus and S. pneumoniae carriage in the child.8 The seem-
ingly conflicting results of these 3 studies may be explained by
changes in carried serotypes in the population due to herd
effects following widespread vaccination which are not
observed in clinical trials.

PCV7 implementation did not result in long-term increases in
S. aureus carriage and infection, including S. aureus otitis media
and MRSA levels, as reported in studies done in countries around
the world, including the USA, Netherlands, Israel, and
China.7,11,76-78,81-84 Studies that observed increased S. aureus
carriage in children age 11 months no longer saw this increase by
age 24 months.76

Myth or Reality

The relationship between S. aureus and S. pneumoniae is very
complex. The inverse correlation between carriage of S. aureus
and carriage of vaccine-type S. pneumoniae in young children has
been seen throughout many geographical areas, and through the
years, including post-PCV7 implementation. However, the
mechanism behind it and the clinical implications have yet to be
fully determined.

Fears that vaccinating against S. pneumoniae would cause an
increase in S. aureus, and more specifically MRSA carriage and
infection seem, as of now, to be unsubstantiated. Changes follow-
ing PCV7 introduction in overall S. aureus carriage rates were
only short-term.

Carriage rates of both S. pneumoniae and S. aureus are
dynamic. These two strains do not reside alone in the nose;
their presence or absence can be affected by other species and
other competitive factors, or external interventions such as vac-
cination or antibiotic use. It is still unclear whether the bal-
ance between the 2 species will continue to exist following
widespread vaccination, and whether further vaccination with
pneumococcal vaccines will cause a rise in S. aureus carriage
and infection. It appears that the interaction between the two
bacteria may be reduced due to vaccination, but the emergence
of new strains and the evolution of existing strains makes it
difficult to predict the implications. Many of the strains that
replaced the vaccine-type strains following PCV7
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implementation are now included in PCV13 and their preva-
lence rates are expected to decline as well. Complicating fur-
ther, if piliated strains play a major role in the interference,
determining the impact of PCVs on the prevalence of piliated
strains will define the effect on S. aureus carriage.

Since the mechanism of interaction between the two species is
not yet fully understood, it is impossible to predict whether the
implementation of newer vaccines will result in further serotype
replacement, a rise in S. aureus carriage, or a rise in a different
species altogether. Clearly, further studies are required, both on

the epidemiological effects of PCV vaccination, and on the
mechanisms of this interaction.
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