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Abstract

Whole exome and whole genome sequencing are likely to be potent tools in the study of common 

diseases and complex traits. Despite this promise, some very difficult issues in data management 

and statistical analysis must be squarely faced. The number of rare variants identified by 

sequencing is apt to be much larger than the number of common variants encountered in current 

association studies. The low frequencies of rare variants alone will make association testing 

difficult. This article extends the penalized regression framework for model selection in genome-

wide association data to sequencing data with both common and rare variants. Previous research 

has shown that lasso penalties discourage irrelevant predictors from entering a model. The 

Euclidean penalties dealt with here group variants by gene or pathway. Pertinent biological 

information can be incorporated by calibrating penalties by weights. The current paper examines 

some of the tradeoffs in using pure lasso penalties, pure group penalties, and mixtures of the two 

types of penalty. All of the computational and statistical advantages of lasso penalized estimation 

are retained in this richer setting. The overall strategy is implemented in the free statistical 

genetics analysis software MENDEL and illustrated on both simulated and real data.
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1. Introduction

Deep resequencing is emerging as a new and potent means for mapping Mendelian disease 

genes.1,2 The initial successes raise the question of whether the search for rare variants is apt 

to be as promising a route to mapping genes for common complex diseases and traits. In our 
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opinion, the answer is likely to be in the affirmative, but too few studies have been 

completed to form a strong opinion. The recent finding of an association between copy 

number variation and autism is one argument in favor of the rare variant common disease 

hypothesis.3 This association is not too surprising given the correlation between autism and 

paternal age, which is known to increase the risk of deleterious mutations. The paternal age 

argument applies to other psychiatric traits such as schizophrenia4 and bipolar disorder.5 The 

rare variant hypothesis is also more plausible on evolutionary grounds than the common 

variant hypothesis because genetic variants with a negative impact on fitness should in 

theory be driven to extinction. The lessons classical population genetics teaches about the 

balance between selection and mutation are still relevant today. Thus, there is good reason to 

explore the statistics of rare variation detection in anticipation of sequence based genetic 

studies.

Resequencing will deliver both rare and common variants. It would be counterproductive to 

discard the common variants because in reality there is no sharp dividing line between 

common and rare. Thus, statistical methods that can analyze both rare and common variants 

simultaneously are preferable. Furthermore, some form of model selection is absolutely 

necessary because the number of SNP predictors in most studies far exceeds the number of 

participants. The rare variants uncovered in resequencing will exacerbate the excess of 

predictors over responses. The recent papers10–13 have stressed the role of penalized 

estimation in statistical genetics. Lasso penalties18–20 have the interesting capacity to force 

many parameter estimates to zero. Model selection with a predetermined number of 

predictors can be achieved by tuning the strength of the lasso penalty. If model fitting is 

carried out by coordinate ascent or descent, then lasso penalized estimation is exceptionally 

fast.12,25

A particular rare disease predisposing allele may be present in only a handful of patients. 

Hence, statistical tests that capture only marginal effects are doomed to low power. This sad 

fact suggests focusing on disease gene discovery rather than disease variant discovery. One 

of the most attractive strategies for combining signals is to group variants by gene or 

pathway. Li and Leal7 proposed a group-wise test exploiting both multivariate and 

collapsing strategies that possesses higher power than a simple multivariate test or simple 

collapsing. Madsen and Browning8 extended the method by incorporating weights 

(dependent on allele frequency) into the group-wise statistics and approximating p-values by 

permutations within each group. Both methods consider rare variants with minor allele 

frequencies falling below a pre-specified threshold and exclude more common variants from 

analysis. The pooling strategy of Price et al9 circumvents the issue of arbitrarily chosen 

frequency threshold by calculating a group-wise statistic under a variety of thresholds. 

Higher power is achieved at the cost of an increased computational burden.

These methods have certain drawbacks. Environmental predictors are excluded from 

analysis even though they may contribute significantly to an association. Multiple testing 

remains an issue. More importantly, existing methods are sensitive to the classification of 

variants. If all types of variants (causal, protective, or neutral) coexist, then the various 

signals can cancel one another and potentially compromise statistical power. Our recent 

paper11 explores a remedy that groups variants by gene or pathway membership in penalized 
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regression. The encompassing multiple regression framework allows simultaneous 

consideration of genetic and environmental predictors and overcomes the unfortunate 

cancelations of causal and protective variants. Here we continue our exploration of group 

penalties, with emphasis on weighted penalties that keep both common and rare variants in 

play. In accord with the notion that variants with large deleterious effects should be rarer 

than variants with small deleterious effects, lower weights should be assigned to variants 

with lower population frequencies.8,9

In pursuing group effects, we have attempted to retain the following advantages of lasso 

penalized estimation: (a) it applies to both ordinary regression (quantitative traits) and 

logistic regression (case-control studies), (b) it puts genetic and environmental predictors on 

the same footing, (c) it keeps both rare and common SNP predictors in play, (d) it partially 

circumvents the vexing issue of multiple comparisons, (e) it is computationally very 

efficient, (f) it offers a principled approach to model selection when the number of predictors 

exceeds the number of study participants, (g) it identifies protective variants as well as 

deleterious variants, and (h) it is amenable to finding interactions among predictors. We have 

previously demonstrated that Euclidean group penalties preserve these advantages.11 Group 

penalties make it easier for related predictors to enter a model once one of the predictors 

does. Lasso penalties are retained to discourage the inclusion of neutral mutations in disease 

susceptibility genes. When disease genes harbor one or more borderline-rare variants with 

substantial risk, a mixture of lasso and group penalties performs well.

The major innovation in the current paper is the imposition of weights modulating lasso and 

group penalties. Ideally the weights should be chosen to reflect prior biological knowledge. 

In reality, we need better systems for rating the potential severity of point mutations. There 

is a severity hierarchy extending from non-synonymous mutations to synonymous mutations 

and ultimately to frameshift and protein truncating mutations. A non-synonymous mutation 

in a highly conserved codon is more important than the corresponding mutation in a less 

conserved codon. If both copies of a gene are disabled, this is a clear sign of trouble. If 

several genes in a common pathway are disabled or disregulated, the pathway as whole may 

be compromised. Integration of prior knowledge in penalized regression is an obvious 

priority, but until sequence data becomes more widely available, it is probably premature to 

pursue such elaborations.

The remainder of the paper is organized as follows. Section 2 describes the penalized 

regression framework with mixed lasso and group penalties, suggests a few plausible 

weighting schemes, and explains how both group penalties and weights can be implemented. 

Fortunately, the coordinate descent algorithms found successful in lasso penalized regression 

require trivial changes. Coordinate descent is exceptionally quick and permits optimal tuning 

of the penalty constant by cross-validation. Section 3 applies the mixed penalty method with 

weights to simulation examples. Section 4 provides a detailed description of the user 

interface to our implementation of penalized model selection in our statistical genetics 

program MENDEL. We illustrate the mechanics of problem definition using the breast cancer 

data analyzed in our previous paper.11 Finally, the discussion mentions some strengths and 

weaknesses of model selection under mixed penalties and suggests potentially helpful 

extensions.
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2. Methods

Genome-wide association testing is one application field challenging current model selection 

procedures. All generalized linear models involve an n × 1 response vector y and an n × p 

predictor matrix X. If the number of predictors p far exceeds the number of responses n, then 

some form of model selection is mandatory. Indeed, the ability to estimate parameters 

consistently requires the ratio p/n to tend to 0. Traditional model selection techniques 

include forward and backward stepwise regression and minimization of AIC (Akaike) and 

BIC (Bayesian) information criteria; the latter two lead to a combinatorial search over a 

space with 2p possible submodels. For this reason statisticians have substituted penalized 

estimation for combinatorial search. Generally the objective function being minimized is a 

convex combination of a loss function (or negative loglikelihood) and a penalty function. 

Penalty functions act like priors in Bayesian statistics and must be carefully constructed to 

steer parameter estimates in productive directions. The following reasons are cause for 

optimism in applying penalization estimation in statistical genetics:

a. Speed. Standard algorithms often choke when confronted with genomic-

scale data. Efficient algorithms such as coordinate descent have been 

devised for solving convex optimization problems.10,12,25

b. Flexibility. The modeling of complex biological phenomena is naturally 

embedded in the design of the loss and penalty functions. In association 

studies, biological meaningful units such as genes and pathways can be 

examined by introducing group penalties.11 In copy number variation 

(CNV) reconstruction, copy number should change infrequently along a 

chromosome. Such smoothness is enforced by the fused lasso penalty.15

c. Theoretical Justification. Recent advances in theoretical statistics justify 

the use of penalized estimation in high dimensional settings. Model 

selection consistency is especially relevant to association testing. Under 

certain regularity conditions, the predictors singled out by penalized 

estimation have a high probability of coinciding with the true 

predictors.16,17

d. Empirical Justification. There are many success stories of penalized 

regression methods in natural language processing, remote sensing, 

financial engineering, and other application areas outside genetics.

2.1. Penalized Regression with Weights

In lasso penalized linear regression12,18,19 estimates of the intercept μ and the regression 

coefficients βj are derived by minimizing the objective function
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where θ = (μ, β),  is the Euclidean (ℓ2) norm, and ‖z‖1 = Σj |zj| is the taxicab 

(ℓ1) norm. The sum of squares  represents the loss function minimized in 

ordinary least squares; the ℓ1 contribution ‖β‖1 is the lasso penalty function. Its multiplier λ 
> 0 is the penalty constant. The order in which predictors enter a model as λ decreases is 

roughly determined by their impact on the response. Exceptions to this rule occur for 

correlated predictors. Because the intercept is felt to belong to any reasonable model, the 

lasso penalty omits it, and the intercept freely moves off zero.

Logistic regression is handled by replacing the sum of squares by the negative loglikelihood. 

The loglikelihood amounts to

(1)

where the success probability pi for response i is defined by

(2)

Here the response yi is 0 (control) or 1 (case), and  is the ith row of the predictor matrix X. 

To put the regression coefficients on an equal penalization footing, all predictors are 

centered around 0 and scaled to have approximate variance 1. There is a parallel 

development of lasso penalized regression for generalized linear models.20 In each case the 

objective function is written as

as the difference between the loglikelihood and the lasso penalty. Because we now maximize 

f(θ), we subtract the penalty.

To construct a weighted lasso penalty, we assign a positive weight sj to each predictor j and 

substitute the sum Σj sj|βj| for ‖β‖1. A larger weight sj corresponds to a higher penalty and 

discourages the j-th predictor from entering the model. Conversely, a smaller weight sj exerts 

less penalty and encourages selection of the corresponding predictor. Eliminating a weight 

(sj = 0) forces the j-th predictor to be retained in the model. In association testing, there are 

several sources of prior knowledge pertinent to assigning lasso weights:

a. Genotyping Error. Variants that cannot be typed reliably should be 

penalized more.
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b. Allele Frequencies. In a different context, Madsen and Browning8 propose 

the weight  for a variant with population frequency p. This 

scheme assigns smaller penalties to rarer variants as suggested by classical 

population genetics theory. The more extreme weights s = p(1 – p) risk 

giving rare variants too much influence.

c. Properties of Point Mutations. Several programs predict the functional 

effects of non-synonymous changes. The SIFT software of the Venter 

Institute,22 PolyPhen-2,23 and MAPP24 represent a good start in 

quantifying the risk entailed by coding mutations.

d. Conservation Across Species. Conservation scores are particularly 

valuable for assigning weights to noncoding mutations not covered by 

SIFT.

Integrating the weights derived from different types of information is a challenge. For the 

sake of simplicity, we adopt the allele frequency weights  in our examples. 

The factor of 2 makes the weights scale between 0 and 1.

Yuan and Lin21 have suggested Euclidean penalties as a natural way to group predictors. The 

lasso penalty ‖β‖1 and the ridge penalty  separate parameters. If a parameter enters a 

model, then it does not strongly encourage or inhibit other associated parameters from 

entering the model. Euclidean penalties act more subtlely. Let G denote a group label and tG 

a corresponding group weight. The objective function

incorporates a Euclidean penalty on each group. Here βG is the subvector of the regression 

coefficients corresponding to group G. For the purposes of this paper, we take all tG = 1. In 

studies with good candidate genes or pathways, it makes sense to reduce tG for a candidate 

group. Groups with a single predictor are allowed. Singleton groups are advisable for 

dispersed variants far from any gene.

Euclidean group penalties run the risk of letting in response-neutral predictors. As soon as 

one predictor from a group enters a model, it opens the door for other predictors from the 

group to enter the model. For this reason we favor a mixture of group and lasso penalties.11 

Lasso penalties maintain the pressure for neutral mutations to be excluded, even if they 

occur in causal genes or pathways. There is no need to group SNPs that occur outside coding 

or obvious regulatory regions. Simultaneous imposition of lasso and Euclidean penalties has 

further advantages. In addition to enforcing model parsimony and selecting relevant 

parameters, both penalties improve the convergence rate in minimizing the objective 

function. Because the penalties are convex, they also increase the chances for a unique 

minimum point when the loss function is non-convex.
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2.2. Algorithms

Traditional algorithms such as Newton's method and scoring falter on high-dimensional, 

non-smooth problems. Cyclic coordinate ascent-descent is a better choice. Block relaxation, 

a generalization of cyclic coordinate descent, cycles through disjoint blocks of parameters 

and updates one block rather than one coordinate at a time. Meier et al26 use block 

relaxation to fit logistic regression with purely group penalties. The extreme efficiency of 

cyclic coordinate descent-ascent in penalized estimation stems from the low cost of the 

univariate updates and the fact that most parameters never budge from their initial value of 0. 

Here we summarize cyclic coordinate ascent-descent for linear and logistic regression with 

mixed lasso and group penalties. Full algorithmic details appear in our previous papers.10–12 

Adding weights imposes trivial changes to the algorithms.

In coordinate ascent we increase f(θ) by moving one parameter at time. If a slope parameter 

βj is parked at 0, when we seek to update it, its potential to move off 0 is determined by the 

balance between the increase in the loglikelihood and the decrease in the penalty. The 

directional derivatives of these two functions measure these two opposing forces. The 

directional derivative of L(θ) is the score  for movement to the right and the 

negative score  for movement to the left. An easy calculation shows that the 

directional derivative of λ‖βG‖2 is λ in either direction when βG = 0. In this case note that 

‖βG‖2 = |βj|. If βG ≠ 0, then the partial derivative of λ‖βG‖2 with respect to βj is λβj/|βG‖2. 

Hence, the directional derivatives both vanish at βj = 0. In other words, the local penalty 

around 0 for each member of a group relaxes as soon as the regression coefficient for one 

member moves off 0.

2.2.1. Logistic Regression—In logistic regression the penalized loglikelihood with 

group and lasso penalties is

where j ranges over all variants and G ranges over all groups. In practice, we fix the ratio of 

λL to λE and define λ = λL + λE. Formulas for the score vector ∇L(θ) and the expected 

information matrix E[−d2L(θ)] are well known11 and need not be repeated here. The 

expected and observed information matrices coincide in logistic regression.

In penalized maximum likelihood estimation, coordinate ascent is implemented by replacing 

the loglikelihood by its local quadratic approximation based on the relevant entries of the 

score and observed information. The penalty terms are likewise approximated locally by 

linear or quadratic functions in the parameter being updated. The one-dimensional updates 

are not exact, but they can be computed easily by Newton's method. To update a slope 

parameter βj, one resets βj = 0 and commences maximization. If the directional derivatives 

to the right and left of 0 are both negative, then no progress can be made, and βj remains at 
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0. Otherwise, maximization is confined to the left or right half-axis, whichever shows 

promise. Because the objective function is concave, the two directional derivatives at 0 

cannot be simultaneously positive. Newton's method almost always converges within five 

iterations. At each iteration one should check that the objective function is driven uphill. If 

the ascent property fails, then the simple remedy of step halving is available.

2.2.2. Linear Regression—In ordinary linear regression, the objective function to be 

minimized is

Coordinate descent for linear regression also yields to Newton's method. Owing to the 

discontinuities in the penalties, once again iteration is confined to the left or right half-axis, 

provided either passes the directional derivative test. In contrast to unpenalized linear 

regression, minimization takes more than a single iteration. This complication just reflects 

the fact that the group penalty is neither linear nor quadratic.

2.3. Selection of Tuning Constants

In principle, cross validation can be invoked to determine the optimal values λL and λE. As 

we show in our simulation, setting them equal works well. Given a fixed ratio of the two 

penalties, the total penalty λ = λL + λE can be adjusted to deliver a predetermined number 

of genes or SNP variants. Because the number of non-zero predictors entering a model is 

generally a decreasing function of λ, a bracketing and bisection strategy is effective in 

finding a relevant λ.10 Of course, the smaller the number of predictors desired, the faster the 

overall computation proceeds. If computing time is not a constraint, it is helpful to optimize 

the objective function over a grid of points and monitor how new predictors enter the model 

as λ decreases. Another way to choose λ is to minimize either the BIC or AIC criterion as a 

function of λ. Recall that the purpose of convex relaxation is to avoid the combinatorial 

search entailed by the traditional application of the AIC and BIC criteria. Guiding the choice 

of λ by these criteria is a better tactic.

3. Analysis of Simulated Data

Our first simulation example, admittedly a toy example, involves 1000 controls and 1000 

cases under different scenarios reflecting heterogeneity in both minor allele frequencies 

(MAF) and relative risks (RR). We assume 10 participating genes, each with 5 rare variants. 

Across the variants the MAFs are simulated from the Wright-Fisher distribution under 

balancing selection
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where c is a scaling constant such that  and σ is a selection coefficient. We take 

αs = 0.2, αn = 0.002, and σ = 15.27 For i = 1, …, 5, gene i has i causal rare variants. 

Therefore, the model has 15 causal rare variants dispersed over 5 genes and 35 neutral rare 

variants dispersed over 10 genes. All neutral variants have relative risk (RR) 1; causal 

variants' RRs are drawn uniformly from the interval [1.2,5]. The wild-type penetrance f0 is 

set at 0.01. For more details on data simulation algorithm, see our previous paper.11 Figure 1 

shows the solution paths of lasso, mixed penalty, and group penalty estimates with and 

without weights , where pj is the MAF estimated from the controls. All 

group weights are set to 1. The pure lasso penalty (λL/λ = 1) picks up significant variants 

sequentially. The pure group penalty (λL/λ = 0) picks up genes (groups) 1, 2, and 3 

sequentially. The mixed group plus lasso penalty (λL/λ = 0.50) achieves a good compromise 

between the two.

To discern the effects of weighted and unweighted penalized estimation, we repeat the same 

simulation 100 times and plot ROC curves for selected variants and genes in Figure 2. Each 

point of the ROC curves records the true and false positive rates of the selected variants (left 

panel) and genes (right panel) at a specific λ value. A true positive for selection of a gene is 

defined as choosing any true variant within that gene. In all three situations, adding weights 

improves the selection of causal variants and genes. Indeed, the ROC curves shift visibly 

toward the upper left. Also notice that for acceptable false positive rates (less than 0.05) the 

mixed-weight penalty provides the best true positive rates for selection of both variants and 

genes.

4. Software Implementation and Illustration of Real Data

The methods we have described are implemented in the statistical genetics software 

MENDEL6 and will be freely available in its next public release, version 10.5 or higher. 

MENDEL is available for Linux, MacOS, and Windows at http://www.genetics.ucla.edu/

software. Within MENDEL the SNP association option handles GWAS (genome-wide 

association study) data, both simple marginal p-value calculations and the above lasso based 

analyses.

We previously applied mixed penalized logistic regression to a familial breast cancer 

dataset11 with SNPs assigned to genes involved in double strand break repair. We now take 

advantage of these data to illustrate the mechanics of our implementation in MENDEL. The 

data originate from genotype samples of participants enrolled in the UCLA Family Cancer 

registry. We performed penalized logistic regression in which the response, breast cancer 

status (affected versus unaffected), is coded as a binary outcome. Our sample contains 399 

Caucasian participants, of whom 196 were affected and 203 were unaffected. Covariates 

include age, Ashkenazi Jewish heritage, and education level. We imputed missing non-

genetic predictors using the mean value for a continuous variable and the most frequent 

category for a categorical variable. Overall 148 SNPs from 17 genes in the DSBR pathway 

were typed and grouped by gene. Missing SNP data were imputed using the SNP Imputation 

option of MENDEL.6 For a complete description of the data, results, and insights gained from 

mixed penalized analysis, see our companion paper.11 MENDEL takes less than five seconds 
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on a standard desktop computer to complete all analyses on this dataset. On a more 

challenging dataset with 10,000 SNPs and 2,200 individuals, MENDEL completes all marginal 

and lasso analyses in under 30 seconds.

The input files used for the breast cancer and other analyses adhere to the usual MENDEL 

conventions. In particular, the compressed SNP genotype data file conforms to the standard 

binary format adopted by both PLINK and MENDEL. SNP group designations and weights are 

optional. If they are desired, then they should be deposited in the SNP definition input file 

alongside the name, chromosome, and base pair position of each SNP. If no group is 

specified for a SNP, it is considered to be a singleton group. If no weight is specified for a 

SNP, then the SNP is assigned the default weight , where p is its MAF. The user 

may specify a value for the ratio λL/λ by invoking the keyword LASSO_PROPORTION in the 

Control file. MENDEL reads all optional parameter settings from the Control file. To provide 

flexible modeling, the user can force any predictor or group to be retained in the lasso model 

by assigning to the keywords RETAINED_PREDICTOR or RETAINED_GROUP the corresponding 

predictor or group name. If a retained group is specified, then all predictors within that 

group are retained. For example, the Control file snippet

Analysis_option = SNP_Association

Model = 2

Quantitative_trait = BC

Marginal_analysis = True

Lasso_analysis = True

Desired_predictors = 50 ∷ marginal

Desired_predictors = 20 ∷ lasso

Lasso_proportion = 0.5

Predictor = Grand ∷ BC

Predictor = Age ∷ BC

Transform = standardize ∷ Age

Retained_predictor = rs11571476

Retained_predictor = Age

Retained_group = XRCC4

instructs MENDEL to perform SNP association analysis using cases and controls. The value 2 

for the keyword Model implies logistic regression; the default value 1 implies ordinary 

linear regression. The third command in the above Control file indicates that affection status 

pertains to the trait BC. Both a marginal and lasso analysis will be performed, with the top 

50 marginal predictors and the top lasso set of 20 predictors reported in a Summary output 

file. Marginal results on all predictors are always reported in another output file intended for 

plotting. For this analysis run, the ratio λL/λ ratio is set to 0.5. If the keyword 

LASSO_PROPORTION is not specified, the ratio has its default value of 1. All defined SNPs are 

always included as predictors unless specifically excluded in a SNP exclusion file. In this 

example two non-SNPs are named as predictors for the trait BC, a mandatory grand mean 

and an optional variable Age. The Transform keyword specifies that the Age variable will be 

normalized prior to analysis; we recommend normalization for all quantitative predictors. 
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Finally, the above Control file specifies that the two predictors rs11571476 and Age and all 

predictors in the group XRCC4 should be retained in the lasso model.

As mentioned, most results are presented in a Summary output file. At the top of this file 

appear the results for each predictor individually. For example, the first few rows of marginal 

results might be

PREDICTOR
NAME

MARGINAL
P-VALUE

REGRESSION
ESTIMATE

STANDARD
ERROR

HARDY-
WEINBERG

P-VALUE

MINOR
ALLELE

FREQUENCY

GENOTYPING
SUCCESS

RATE

GROUP
NAME

Grand Mean - -0.03509 - - - - -

Age 0.2347E-04 0.43700 0.10660 - - - -

rs9634161 0.00760 - - 0.19917 0.15539 1.00000 RAD52

rs16889040 0.00768 - - 0.49854 0.25815 1.00000 RAD21

rs4986763 0.01123 - - 0.20101 0.37469 1.00000 BRIP1

rs16888997 0.01298 - - 0.67786 0.25815 1.00000 RAD21

rs16888927 0.01932 - - 0.17591 0.26817 1.00000 RAD21

rs1120476 0.02024 - - 0.48503 0.43233 1.00000 XRCC4

To decrease computation time, regression estimates are only calculated for predictors with 

marginal p-values more significant than 0.001. This default threshold can be reset by the 

user. A table of false discovery rates for the marginal p-values appears after the single 

predictor summary.

The results of the lasso analysis are listed after the marginal results in the Summary file. For 

example, the first few rows of lasso results might be

PREDICTOR
NAME

MARGINAL
P-VALUE

LEAVE-ONE-OUT
INDEX

REGRESSION
ESTIMATE

HARDY-
WEINBERG

P-VALUE

MINOR
ALLELE

FREQUENCY

GENOTYPING
SUCCESS

RATE

GROUP
NAME

Age 0.2347E-04 0.1645E-05 0.50391 - - - -

rs9634161 0.00760 0.00166 -0.42841 0.19917 0.15539 1.00000 RAD52

rs2061783 0.35871 0.01508 1.46004 0.2611E-10 0.03509 1.00000 XRCC4

rs10514249 0.02687 0.02757 -0.80396 0.86985 0.43985 1.00000 XRCC4

rs2075685 0.34106 0.05623 -0.38380 0.05712 0.42105 1.00000 XRCC4

rs2887531 0.50526 0.08627 -0.24576 0.11833 0.23183 1.00000 RAD52

rs11571476 0.05510 0.08633 0.30271 0.68282 0.42481 1.00000 RAD52

Since our example Control file specified that group XRCC4 should be retained, all members 

of that group will be included in the complete lasso output set. The lasso output is sorted by 

the leave-one-out index, which is simply the p-value of the likelihood ratio test of the full 

regression model, using all predictors in the lasso set, versus the model leaving out the 

specified predictor. Because of the prior selection of predictors, the leave-one-out index is 

not a legitimate p-value.

5. Discussion

This paper presents penalized estimation as a framework for association testing in the 

presence of both common and rare variants. Our results partially vindicate the twin strategies 
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of mixed group penalties and penalty weights acting at either the single predictor or the 

group level. Penalty weights provide a flexible way of incorporate prior biological 

knowledge and have the potential to increase power in association mapping. Even choosing 

to weight individual variants by their population frequencies makes a difference in sorting 

through the confusion of causal genes and neutral variants within them. Although our 

recommended tactics improve both false positive and false negative rates, they represent an 

incremental improvement rather than a panacea. In our opinion, there is still room for further 

improvement. More progress is apt to come through more nuanced weights or propensity 

scores cumulating risks across the whole spectrum of variants within a gene or pathway. 

Replacing variant predictors by group-wise propensity scores may serve to reduce the 

number of predictors and the need for differential penalty weights altogether.
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Fig. 1. 
Solution paths of parameter estimates under lasso penalties (top row), mixed penalties 

(middle row), and group penalties (bottom row). Left column: sj ≡ 1 and tG ≡ 1 (no 

weighting). Right column:  and tG ≡ 1.
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Fig. 2. 
ROC curves based on 100 simulations using the setup of Figure 1.
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