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Abstract

Optical coherence tomography (OCT) is a promising research tool for brain imaging and 

developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides 

volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution 

and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and 

metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness 

nature, OCT enables longitudinal imaging of developing specimens in vivo without potential 

damage from surgical operation, tissue fixation and processing, and staining with exogenous 

contrast agents. In this paper, various OCT applications in brain imaging and developmental 

biology are reviewed, with a particular focus on imaging heart development. In addition, we report 

findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in 

Drosophila melanogaster. These findings contribute to our understanding of the fundamental 

mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.

Index Terms

Biological systems; Biomedical optical imaging; Brain; Cardiovascular system and Optical 
tomography

I. INTRODUCTION

Optical coherence tomography (OCT) [1–3] is one of most rapidly developed optical 

imaging modalities of the last few decades. OCT imaging is analogous to ultrasound B-

mode imaging, measuring echo time delay of backscattered light. Instead of direct 

measurement of time delay of reflected photons, OCT uses low coherence interferometry to 

map out back-scattering properties from different depths of samples. OCT is able to provide 

in situ and in vivo images of tissue morphology with a resolution approaching that of 

conventional histology, but without the need to excise or process specimens. Currently, OCT 

has been widely used clinically in ophthalmology [4–10], cardiology [11–15], endoscopy 

[16–23], dermatology [24–29] and oncology [24–29]. In recent years, there has been a 

growing need for high-speed, high-resolution optical imaging modalities for neuroimaging 

and developmental biology. Recent development of high speed and ultrahigh resolution OCT 

technologies [30–33] makes it possible to reveal fast dynamics and cellular features of the 

brain and developing embryos. These benefits, combined with label-free and non-invasive 

imaging capabilities, OCT becomes an attractive research tool for scientists working in these 

research fields.

OCT has been demonstrated as a promising neuroimaging tool [34–36]. OCT enables non-

invasive visualization of structures and functionality of the brain, which is valuable for 

fundamental research and medical diagnosis. OCT reveals fine structural details of brain 

tissues with the capability to resolve individual neurons and myelinated fibers [34]. 
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Moreover, signals originated from brain activities, such as cerebral blood flow/velocity, 

oxygen saturation and neural action potentials can be characterized using functional OCT 

[36–38]. Both structural and functional information provided by OCT has been utilized to 

study brain diseases, such as brain tumors [35] and stroke [36].

In developmental biology, OCT has been used to characterize morphological and functional 

development of organs, such as eyes [39], brain [40], limbs [41], reproductive organs [42] 

and the heart [11, 40, 43–45]. The embryonic heart especially, undergoes significant 

morphological and functional changes during development. Traditionally, structural changes 

of the developing heart were evaluated based on histological slides using standard light 

microscope. OCT is able to provide micron-scale resolution images of cardiac morphology 

and functionality in vivo without the need for heart dissection and processing. Moreover, 

OCT imaging is non-invasive, enabling longitudinal studies of the developing heart. To date, 

OCT has been used extensively to study heart development in various animal models, 

including Xenopus [11], zebrafish [40], chicken and quail [43], mouse [44] and Drosophila 
[45].

In this paper, we provide a comprehensive review of OCT applications for brain imaging and 

developmental biology. In addition, we include recent results from our group’s ongoing 

projects. We had previously shown that a circadian clock gene, Cry, plays an essential role in 

heart morphogenesis and function [45]. Here, we report the effect of another circadian gene, 

Clock, on Drosophila’s heart development. We observed that changes in the expression of 

dClock resulted in cardiac dysfunction at various developmental stages of the fly. Moreover, 

obesity is associated with many diseases, including cardiovascular diseases [46, 47]. 

Previous studies showed that high-fat-diet (HFD) induces metabolic and transcriptional 

response in Drosophila [48]. Here we report the effect of HFD on heart development in 

Drosophila. We found that HFD-induced cardiac dysfunctions include altered heart rate 

(HR) and cardiac activity period (CAP) at different developmental stages. These findings 

contribute to our understanding of the fundamental mechanisms connecting circadian genes 

and obesity to heart development and cardiac diseases.

II. OCT IN BRAIN IMAGING

Various neuroimaging modalities reveal brain structures and functions at different 

anatomical levels. Computed tomography (CT), magnetic resonance imaging (MRI), 

positron emission tomography (PET) and single-photon emission computed tomography 

(SPECT) are widely used clinical imaging modalities to evaluate brain structures and 

functions. Functional MRI (fMRI) measures hemodynamic changes associated with local 

neuronal activity and is widely used to study functional correlations of different brain 

regions [49–51]. However, limited spatial and temporal resolutions of these imaging 

modalities prohibit their utility to evaluate fast neural activities at cellular levels. 

Microelectrode arrays, electroencephalography and magnetoencephalography directly 

measure electronic signals originated from neural activities [52–57]. However, these 

methods have low spatial resolution and are susceptible to electrical noises and motion 

artifacts [58, 59].
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Optical imaging, such as confocal microscopy and two-photon microscopy, has been widely 

used in neuroscience to study neural activities at the cellular level [60–62]. Confocal and 

two-photon microscopies utilize fluorescence contrast (mostly from exogenous dyes) to 

measure neuron morphology and distribution [63], ion concentration [64] and synaptic 

release [65], cerebral blood flow and angiograms [66, 67]. OCT offers a complementary 

method for neuroimaging. Based solely on intrinsic optical contrast originating in the brain, 

OCT can distinguish various brain structures, such as corpus callosum and hippocampus [68, 

69], and reveal individual neurons and myelinated fibers [34]. Polarization-sensitive OCT 

(PS-OCT) was utilized to localize nerve fiber bundles, characterize fiber bundle orientations, 

and obtain optical tractography of the brain [70, 71]. Based on detection of Doppler shift and 

light scattering changes, OCT can be used to measure cerebral blood flow and obtain 

angiograms in vivo [36, 72, 73]. Spectroscopic OCT has been recently developed to measure 

cerebral blood oxygenation in live animals [74]. Combining blood flow and oxygen 

saturation measurements enables direct measurement of cerebral metabolism rate of oxygen 

(CMRO2) [37]. Furthermore, OCT has been used to measure small light scattering and 

phase changes associated with neuron action potentials [38]. Combining structural and 

functional information with high temporal and spatial resolutions, OCT promises to be a 

powerful imaging tool for fundamental and clinical research to understand brain functions 

and disorders.

OCT resolves details of brain morphology

Utilizing broadband light sources and high-magnification objectives, the high resolution 

extension of OCT, optical coherence microscopy (OCM) [75, 76], can achieve 1–2 µm 

resolution in tissue in all three dimensions. OCM is able to resolve individual neurons based 

on intrinsic optical contrast in rodent brains [34, 77, 78] and in human brain slices [79, 80]. 

Neurons are shown as hyposcattering regions in OCM images (Fig. 1A, C). OCM revealed 

the same individual neurons observed in confocal microscopy (Fig. 1C, D) [78], two-photon 

microscopy [34, 77] and histological slides [79, 80]. Neuron count obtained with OCM from 

3D organotypic brain cultures also showed linear correlation with confocal microscopy (Fig. 

1E) [78].

OCM can also resolve individual myelinated fibers ex vivo and in vivo [34, 81]. OCM 

revealed individual myelinated fibers, shown as hyperscattering lines, matched well with 

Gallayas myelin staining [34]. Combined with optical clearing [82], OCM was used for 

depth-resolved quantification of myelin contents several millimeters below the cortical 

surface [34]. Furthermore, impaired myelination, shown as weaker reflected signals from 

nerve fibers, were observed in peripheral nervous system of Krox20 mutant mice [81].

PS-OCT measures depth-resolved polarization information of tissues, such as phase 

retardation and optic axis orientations, in order to resolve tissue microstructures with an 

improved contrast [83–85]. PS-OCT can differentiate white matter from the adjacent gray 

matter in ex vivo rat cerebral cortex [86]. PS-OCT was sensitive to light polarization 

changes in nerve fiber bundles and was used to effectively characterize fiber bundle 

orientations in fixed rat brains [70]. In addition, PS-OCT was also used to obtain optical 

Men et al. Page 4

IEEE J Sel Top Quantum Electron. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tractography of ex vivo in rat brains [71]. Details of brain architecture and nerve fiber tracts 

were clearly resolved with PS-OCT based on tissue birefringence contrast.

Functional OCT imaging of brain activity

Brain activity, cerebral metabolism and cerebrovascular response are closely related [87]. 

Functional OCT has been used to directly measure vascular, hemodynamic and metabolic 

changes in animal brains in response to neuronal activities [37, 38].

Doppler OCT [88–91] and OCT angiograms [34, 72, 90, 92–95] measure Doppler shift and 

temporal fluctuation of light reflected from blood vessels. High-resolution angiograms of 

surface and deep cortical microvasculature have been demonstrated in rat brains in vivo [36, 

72]. Changes in cortical vessel diameter and distribution can be directly measured from OCT 

angiograms in order to characterize vascular response to neuron activities (e.g. 

neurovascular coupling [96]). In addition, absolute cerebral blood flow can also be 

quantified based on Doppler OCT measurements [73].

Spectroscopic OCT measures wavelength-dependent tissue absorption in order to obtain 

hemoglobin concentration and oxygen saturation information [97–101]. Spectroscopic OCT 

based on near-infrared light (e.g. ~800 nm center wavelength) [97, 98, 101] was not very 

sensitive to tissue oxygenation changes due to the relatively low tissue absorption in the 

near-infrared wavelength range. In the visible wavelength range (~500 nm to 600 nm), the 

absorption of oxy- and deoxy-hemoglobin is more than 40× higher than in the near-infrared 

wavelength range (~800 nm) [102]. For the same change in hemoglobin concentration or 

tissue oxygen saturation change, visible light would experience a much larger intensity 

change than near-infrared light even when propagated through only a few hundred microns 

of tissue. Recently developed visible light OCT (vis-OCT) successfully mapped oxygen 

saturation of the mouse brain with high-resolution, enabling accurate assessment of oxygen 

delivery from microvasculature to surrounding tissues [74]. Combining cerebral blood flow 

(enabled by Doppler OCT) and oxygenation (enabled by spectroscopic OCT) measurements 

would allow direct characterization of cerebral metabolic rate of oxygen (CMRO2) with 

micrometer resolutions [37].

OCT has been used in combination with optical intrinsic signal imaging (OISI) and laser 

speckle imaging (LSI) to characterize hemodynamic changes near cortical surface [103–

106]. OISI and LSI map changes of blood oxygenation and blood flow in the cortex with 

high spatial and temporal resolution. However, they lack the ability to differentiate layered 

responses of brain activities. OCT provides depth-resolved information about hemodynamic 

changes in the cortex, such as blood vessel diameter, blood flow, and light scattering, and 

complements OISI and LSI in order to better characterize neurovascular coupling [104–

107].

In addition to characterizing slow cerebral hemodynamic changes, fast signals directly 

related to neuron activities can be measured using OCT [38, 59, 103, 108–110]. Fast 

intrinsic scattering changes associated with evoked neural activities in the abdominal 

ganglion and bag cell neurons of Aplysia californica were measured with high speed OCT 

[108]. Using ultrahigh resolution OCT, phase changes in the neural cord of American 
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cockroach in response to electrical stimulation was measured [111]. Phase-sensitive OCT 

also measured depth-resolved optical path length changes during action potential 

propagations [38, 109]. Phase changes corresponding to a few nanometer membrane 

displacements were recorded on a time scale of a few milliseconds from a squid giant axon 

and correlated fairly well with recorded electrical action potentials [110]. With further 

improvement in imaging speed and phase-sensitivity, OCT holds the potential to reliably 

detect fast intrinsic optical signals, especially phase changes associated with membrane 

displacement of individual neurons during action potentials.

OCT imaging of brain pathology

High resolution OCT has been used to image various brain pathologies. Characteristic 

structural features in brain tumors, such as microcalcifications, enlarged nuclei of tumor 

cells, small cysts and enhanced vasculatures, can be clearly identified in OCT images [112, 

113]. Furthermore, tumorous tissues have distinctive optical attenuation properties compared 

to normal brain tissues [35, 113, 114]. Recently, OCT has been demonstrated to reliably 

identify brain tumor margins in vivo and in real-time in a mouse model (Fig. 2) [35]. From 

optical attenuation maps, cancer regions were clearly identified from noncancer white matter 

and meninges tissues. Residual tumor cells were identified by OCT and confirmed by 

histology at post-surgery site and at a seemingly healthy area on the contralateral side of the 

mouse brain (Fig. 2B–E). These results demonstrated the translational potential of OCT for 

rapid intraoperative margin assessment of brain cancer.

Cerebral amyloid-β (Aβ) amyloidosis, an early and critical biomarker for Alzheimer’s 

disease, has been visualized ex vivo and in vivo in Alzheimeric mouse models with OCM 

[115]. Amyloid plaques were detected up to 500 µm below the cortical surface. OCM 

revealed amyloid plaques corresponded well with immunohistochemical stained images and 

confocal images. Amyloid plaques were also visualized in longitudinal imaging. Label-free, 

in vivo OCM imaging would help characterize cerebral amyloid-β amyloidosis, 

demonstrating its potential to evaluate amyloid-β targeting therapies.

Functional OCT can provide direct measurement of hemodynamic changes caused by stroke 

in animal models [36, 116, 117]. Both acute and chronic stroke models were investigated in 

order to gain insights on the injury and brain recovery [36]. For acute stroke, absence of 

capillary perfusion, reduced regional blood flow, altered light scattering and impaired 

autoregulation were visualized and quantified with OCT. In chronic stroke models, 

redistribution of blood flow and vascular remodeling (e.g. pial collateral growth, 

angiogenesis and dural vessel dilation) were revealed one week after the injury (Fig. 3). 

These results demonstrated that OCT can be a powerful label-free imaging tool for stroke 

research, providing 3D high resolution maps of cerebral hemodynamic information in 

animal models in vivo.

Intraoperative OCT, such as catheter-based OCT, has been developed to provide high-

resolution imaging guidance during stereotactic neurosurgery in live animals [118, 119]. 

Compared with conventional pre-operative MRI, OCT offers ~100× higher spatial 

resolution, revealing cellular level details of the brain in vivo. Real-time imaging 

information provided by OCT was successfully used to guide microsurgical procedures and 
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delivery of therapeutic agents to specific regions in the deep brain with minimum 

disturbance of overlying structures [118, 119]. Intraoperative OCT has also been 

demonstrated to provide structural information of the rat brain in order to guide probe 

placement for deep brain stimulation [120].

III. OCT IMAGING IN DEVELOPMENT BIOLOGY

In developmental biology, it is desirable to have non-invasive and label-free imaging 

technologies that are capable of imaging developing specimens. OCT generates micron-

scale resolution cross-sectional and 3D images of biological samples and offers a moderate 

imaging depth of 1–2 mm in tissue. Due to its non-invasiveness nature, OCT has often been 

used to obtain time-lapsed and longitudinal images of the developing specimens over time. It 

is suitable for evaluation of morphological and functional development of organs, such as 

eyes [39], brain [40], limbs [41], reproductive organs [42] and the heart [11, 40, 43–45].

OCT has been used to characterize growth of ocular structures in zebrafish and mouse 

embryos [39, 40, 121]. Ocular features such as the cornea, iris, lens, vitreous, retina, and 

retinal pigment epithelium-choriocapillary complex were clearly observed in zebrafish 

embryos [40]. Quantitative assessment of ocular structures in mouse embryos was 

demonstrated in utero [121]. Changes of major axis diameters and volumes of embryonic 

eye lens were characterized at different developmental stages.

Development of brain morphology has been visualized with OCT in small animal models, 

such as Xenopus [122], zebrafish [40, 123] and fetal mouse [124]. Basic structures of the 

early embryonic brain, including diencephalic ventricles, midbrain and hindbrain, were 

revealed within 24 hours post fertilization in zebrafish [40]. Morphology progression of 

more sophisticated brain structures including the olfactory bulb, telencephalon, cerebellum, 

medulla, tectum opticum and optic commissure, were visualized in adult zebrafish using 

OCT [123, 125, 126], showing progression of brain morphology. Optical attenuation in 

zebrafish brain was quantified, demonstrating a negative linear correlation between optical 

signal attenuation and brain aging [123].

OCT imaging of limb development has been demonstrated in mouse embryos [41]. In late 

embryonic stages, indentations between digits and the non-uniform structure of digits were 

identified. Cartilage primordia were also observed in digits and bones.

OCT has also been applied to visualize dynamic events in reproductive organs during 

ovulation, fertilization and pre-implantation stages of embryonic development. Mouse 

reproductive organs such as the uterus, the ovary and the oviduct were observed in vivo (Fig. 

4) [42]. Key structural features such as follicles and corpora lutea in the ovary, oocytes and 

surrounding cumulus cells in oviduct ampulla and the folding pattern in oviduct isthmus 

were clearly seen with OCT, and were well correlated with histological images. Size of 

follicles and oocytes were also quantified [127]. Fine structures within pre-implantation 

stage mouse embryos such as meiotic spindles in oocytes and mitotic spindles in zygotes, 

nuclei, second polar bodies in zygotes, and cleavage planes in two-cell stage embryos were 

observed with OCT [128, 129]. These results demonstrated the feasibility of using OCT to 
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observe embryos at the very early stage of development and would help further our 

understanding of fertility and infertility.

OCT imaging of heart development

In vertebrate animals, the heart is one of the earliest organs to form and function during 

embryo development [130]. The embryonic heart undergoes dramatic morphological 

changes during development. Abnormal heart development may lead to congenital heart 

malformation [131]. OCT enables high resolution visualization and measurement of cardiac 

layers (e.g. myocardium, cardiac jelly, and endocardium) and fine structures (e.g. tethers 

connecting the endocardium to the myocardium) [132], as well as assessment of fast 

dynamics of a beating heart in vivo. Next, we focus our discussion on applications of OCT 

on heart development in various animal models, including Xenopus [11, 133–135], zebrafish 

[40, 136], avian [43, 137–144], mouse [44, 145–154]and Drosophila [45, 155–163].

Xenopus

The Xenopus is an ideal animal model for studying normal and abnormal cardiac 

development due to easy handling and partially transparency of Xenopus embryos [133, 

164]. OCT has been used for evaluation of structures and functions in the developing 

cardiovascular system of Xenopus models. OCT imaging of stage 47 Xenopus embryonic 

heart was demonstrated in vivo [11]. Atrium septation and the formation of three-chamber 

(two atria and one ventricle) structure were observed, showing the final major step of heart 

formation in Xenopus embryos. Fine microstructural anatomical details such as myocardial 

walls, lumens, trabeculae carneae were visualized, demonstrating the micron-scale 

resolvability of OCT.

With video rate imaging speed, OCT was able to resolve different phases of the heart beat 

cycle in Xenopus model [133]. Relaxation and contraction of atria and the ventricle were 

visualized. Ventral and dorsal wall movement was imaged, which were used to measure end 

diastolic/systolic dimensions, heart rates and ejection fraction. Doppler OCT was used to 

monitor blood flow and cardiac wall motion in Xenopus hearts [133–135]. Outflow of blood 

through truncus arteriosis and inter-trabecular blood flows into ventricles were visualized in 

different cardiac cycles.

Zebrafish

Zebrafish is transparent in the embryonic and early larval stage, which allows for easy 

optical observation of cardiac development. Zebrafish can survive for a week without a 

functional cardiovascular system. This allows researchers to study the functional role of 

genes during cardiac development and the mechanism of severe cardiovascular defects in 

mutant models [165, 166]. OCT has been used to image the structure and function of 

zebrafish hearts at different developmental stages in vivo [40]. A two-chambered heart 

structure was observed within the pericardial wall of zebrafish embryos after 72 hours post-

fertilization. An increase in heart chamber size and heart rate was observed throughout 

embryonic development. In addition, filling and contraction of the atrium and ventricle in 

larval heart was dynamically imaged with OCT [136]. Pulsatile flow patterns were observed 

within one cardiac cycle using Doppler OCT. Developmental cardiac defects were examined 
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in mutant zebrafish embryos [40]. An enlarged pericardial cavity and underdeveloped heart 

were observed in nok m520 mutants at 72 hours post-fertilization when compared to normal 

embryos.

Avian

Embryos of avian models, such as chick and quail, were widely used to study cardiac 

development due to their similarity to human heart development. Moreover, avian embryos 

at specific developmental stages can be easily accessed after removing their eggshells [167]. 

OCT has been used to evaluate cardiac structural and functional development and 

characterize genesis and mechanisms of cardiac defects in avian models. Particularly, 4D 

gated OCT imaging was developed to study the morphological dynamics of the beating 

embryo heart in vivo [43]. Detailed motions of avian heart beat were observed during systole 

and diastole phases (Fig. 5) [137]. Physiologic parameters, such as stroke volume, cardiac 

output, ejection fraction, and wall thickness, were measured using the 4D gated OCT system 

[138–142]. Recently, OCT images and optical maps have been obtained simultaneously to 

form conduction mappings in early embryonic quail hearts [139]. This integrated system 

allowed for correlation between heart structure and electrophysiology [139]. Doppler OCT 

was used to identify radial strain and strain rate of the myocardial wall to understand the 

biomechanical characteristics in the chick embryonic heart [140]. Cardiac defects in avian 

embryos caused by ethanol exposure at the gastrulation stage were studied with OCT. These 

defects included muscular ventricular septal defects, missing or misaligned great vessels, 

double outlet right ventricle, to hypoplastic or abnormally rotated ventricles [143, 144].

Mouse

Mouse hearts are very similar to human hearts, apart from differences in size, heart rates and 

gestational period [168]. Anatomically, both mouse and human have four-chambered 

structure. Developmental events leading to atrial and ventricular septation are comparable, 

as well as the progression of myocardium and cardiac valves. With rapid development of 

transgenic technology, mouse models have been routinely used for understanding normal 

and abnormal cardiac development and efficient phenotyping of cardiac defects in humans 

[169].

OCT has been applied to evaluation of early stage cardiac development in mouse embryos. 

Hearts were visualized in OCT images of 7.5–10.5 days post coitum (dpc) mouse embryos 

[44, 145–148]. Main cardiac structures such as heart tube at 8.5 dpc [44]; primitive atrium 

and ventricle at 9.5 dpc [145, 148]; atrium, ventricles and atrioventricular cushions at 10.5 

dpc [149] were visualized. Developmental events like heart looping were observed [147]. 

Dynamic imaging of one cardiac cycle was demonstrated at 8.5, 9.5, and 10.5 dpc [146, 148, 

149]. During dynamic imaging, blood cell circulation, phase delay between beating atrium 

and ventricle, and progression of pulse wave in outflow tract wall were observed [148]. 

Angiograms and cardiac blood flows between the yolk sac and heart (via vitelline arteries 

and veins) and in dorsal aortae were measured within early stage mouse embryos in retracted 

uterus [149] or in embryo cultures [148, 150–152]. Pulsatile pattern of blood flow was 

measured to quantify heart rate of early stage embryos [151]. OCT images of mouse 

embryonic hearts during late stage cardiac development 12.5–17.5 dpc showed a clear four-
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chambered structure [145, 149]. Vascular structures such as septated aorta and pulmonary 

trunk were clearly seen. Phenotyping of cardiac defects using OCT were demonstrated in 

transgenic mouse embryos. In one study, small heart looping angles were observed in 8.5 

dpc Wdr19 embryos, showing heart looping defects [147]. In another study, underdeveloped 

left atriums and ventricles and the missing of interventricular septum were observed in 12.5 

and 13.5 dpc HEXIM1 mutants [153]. Measured chamber volumes and wall thicknesses 

showed large variations between mutant hearts and normal ones. Quantification of chamber 

volumes and wall thicknesses can be applied in study of transgenic adult mouse [154].

Drosophila melanogaster

Drosophila models are widely used for genetic and developmental biology studies with 

unique advantages. Over 75% human disease genes have orthologs in Drosophila [170]. The 

heart tube of Drosophila is located only ~200 µm below the surface of the fly back, and the 

body is relatively transparent during early development, making it possible to perform non-

invasive imaging of the fly heart using OCT. Heart similarities of Drosophila to vertebrate 

were seen at early developmental stages [171, 172]. Molecular mechanisms and genetic 

pathways regulating heart development are conserved between Drosophila and vertebrates 

[173, 174]. Moreover, the short life cycle and low culturing cost facilitate wide use of the 

Drosophila models for scientific research. These unique advantages make Drosophila a 

powerful model system to study human heart diseases.

In 2006, OCT was used to characterize Drosophila heart function in vivo for the first time 

[156, 161]. Morphological and functional parameters, such as heart rate (HR), end systolic 

and diastolic diameters, fraction shortening, etc. were measured completely non-invasively. 

Since then, OCT has been utilized by several groups, including our group, to study 

Drosophila heart development [155, 157, 160, 175]. Heart chamber size, heart rate and 

beating behaviors of adult flies of different ages were compared [158, 160]. Retrograde and 

anterograde heart beats were observed in adult flies [158]. Additional parameters, such as 

heart wall thickness [160] and velocity [159], and cardiac activity period (CAP) [45] were 

found to be important metrics in characterizing Drosophila heart morphogenesis and 

function. Recently, our group used an ultrahigh resolution OCM system to perform non-

invasive and longitudinal analysis of functional and morphological changes in the 

Drosophila heart throughout its post-embryonic lifecycle for the first time [45]. We observed 

that the heart of Drosophila exhibits major morphological and functional alterations during 

development. Notably, the Drosophila heart rate slows down in early pupa, stops beating for 

about a day (e.g. cardiac developmental diastasis), the heart rate increases in late pupa stages 

and reaches the maximum on adult day 1 (Fig. 6) [45]. CAP was introduced as the ratio of 

on-period (when fly heart beats) to the total imaging time. We observed that both Drosophila 
HR and CAP showed significant variations during the pupa stage, while heart remodeling 

took place [45].

Drosophila has been widely used as a model organism in genetic studies of cardiovascular 

disease including heart failure and arrhythmia [161]. OCT has been used to non-invasively 

phenotype cardiac function throughout the Drosophila life cycle. OCT revealed severe heart 

defects associated with mutation of angiotensin converting enzyme-related gene in 
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Drosophila [162]. Silencing the Drosophila ortholog of human presenilins (dPsn) led to 

significantly reduced HR and remarkable age-dependent increase in end-diastolic vertical 

dimensions [160]. Moreover, using transgenic Drosophila models, our group has found that 

alterations in expression of a highly conserved Drosophila ortholog of human SOX5 gene, 

Sox102F, led to enlarged and irregular heart tube, decreased HR and reduced cardiac wall 

velocity, which may contribute to the pathogenesis of multiple cardiac diseases or traits 

[163].

The Circadian rhythm gene dCry regulates heart development

Circadian rhythms are fundamental biological phenomena that recur regularly over 

approximately a 24-hour cycle and affect living beings ranging from tiny microbes to higher 

order animals including humans [176]. Circadian rhythms are also related to cardiovascular 

functions and pathologies [177]. Cardiovascular disorders, such as myocardial ischemia, 

acute myocardial infarction, sudden cardiac death and cardiac arrhythmias, were also 

demonstrated with clear circadian rhythm related temporal patterns [178]. Circadian rhythms 

are controlled by circadian clocks [179]. The architecture of mammal clock is highly 

conserved with Drosophila [180]. The Drosophila cryptochrome (dCry) encodes a major 

component of the circadian clock negative feedback loop [179, 181]. Recently, our group 

found that RNA silencing of the dCry in the Drosophila heart and mesoderm resulted in 

slower HR, decreased CAP, smaller heart chamber size, pupal lethality and segment polarity 

related phenotypes, which indicate that dCry plays an essential role in heart morphogenesis 

and function [45].

Silencing another circadian gene, dClock, resulted in altered HR and CAP

The circadian locomotor output cycles kaput (Clock) is another crucial gene in the circadian 

clock feedback loop. It encodes CLOCK protein which plays a central role in regulating 

circadian rhythms [179]. Clock has been found to be necessary for normal cardiac function 

[182]. However, the functional role of Clock gene in cardiac development has not been 

confirmed. As a follow up study of the association between the circadian gene Cry and heart 

development, we have recently examined the effect of another circadian gene Clock on HR 

and CAP in Drosophila. The ortholog of human Clock gene in Drosophila is dClock. In this 

study, the dClock was silenced by RNAi using the UAS-GAL4 system. The UAS-dClock 

flies were mated with the 24B–GAL4 driver flies (UAS-dClock-RNAi; 24B–GAL4, 

abbreviated as dClock-RNAi). Flies that expressed a heterozygous 24B–GAL4 driver alone 

were used as control (24B–GAL4/+). HR and CAP of all the flies were measured every 24 

hours from the 2nd instar larva (L2), to 3rd instar larva (L3), pupa day 1–5 (PD1–5), and 

adult day 1 (AD1), respectively. Number of flies measured at each developmental stage is 

listed in Table 1.

Fig. 7A shows representative M-mode images of control and dClock-RNAi flies at 2nd instar 

larva, early pupa and adult day 1. Slower heartbeat at larva and early pupa stages, and faster 

heartbeat on AD1 were observed in dClock-RNAi flies (Fig. 7B). In the control flies, the HR 

decreased from 355 ± 16 beating per minute (bpm) on L2 to 4 ± 5 bpm on PD3, and then 

increased to 317 ± 86 bpm on AD1. In dClock-RNAi flies, HR changed from 234 ± 48 bpm 

at L2 to 1 ± 3 bpm on PD3, and then increased to 418 ± 51 bpm at AD1. Significant slower 
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HR (p < 0.05) were observed in dCock-RNAi flies compared to controls at L2, L3 and early 

pupa stages, while the HR was significantly higher in dCock-RNAi flies on AD1 (p < 0.05). 

CAP, in both groups (Fig. 7C), decreased significantly when the flies developed into pupa. 

From PD4, CAP started to increase and returned to ~97% on AD1. No significant 

differences were observed in CAP between dCock-RNAi and control flies. Collectively, 

RNAi silencing of dClock gene resulted in significant difference in HR at various 

developmental stages. These findings indicated that dClock affects heart development. The 

regulatory effects of two circadian genes, Cry and Clock, affirmed the important role of the 

circadian genes on heart development and function.

OCT imaging to evaluate the effect of HFD on Drosophila heart development

It was demonstrated that accumulation of lipids greatly increases the risks of diseases, such 

as cardiovascular disease, diabetes, and cancer [183, 184]. The incidence of obesity induced 

by lipid accumulation has been growing globally with the increase in the overweight adult 

population which has reached over 1.5 billion [170]. Investigating obesity induced cardiac 

diseases in animals contributes to understanding and treatment of obesity related human 

cardiac diseases. Calorically rich high-fat diet has been revealed as a major contributor to 

diabetes and cardiovascular disease [185]. A variety of animal models have been used to 

study HFD-associated cardiac diseases [186–189]. Drosophila models have been used for 

HFD study due to the conserved response mechanism to HFD as in humans [173, 174]. The 

origin of HFD induced obesity was previously studied by analyzing cardio toxic and 

metabolic phenotypes, and genetic mediators in adult flies [170]. A better understanding of 

the formation and progression of heart diseases induced by HFD at a variation of 

developmental stages would provide insights about cardiac disease mechanisms and 

pathogenesis.

In this study, we fed 24B–GAL4/+ flies with HFD and compared heart function of these 

flies with control flies (24B–GAL4/+) fed with normal diet. HFD were prepared with a 

weight ratio 30% of coconut oil (organic extra virgin coconut oil with 22% fat) to standard 

fly food [170]. Number of flies measured at each developmental stage is listed in Table 1.

Fly heart phenotypes at different developmental stages were compared between flies fed 

with high-fat-diet and normal diet. Fig. 8A shows representative M-mode OCM images at 

2nd instar larva, early pupa and adult day 1. Interestingly, as shown in Fig. 8B, significantly 

lower HR (p < 0.05) was observed in flies fed with high-fat-diet at early developmental 

stages, including larva (L2 and L3) and early pupa (PD1 and PD2). The HR was similar in 

both groups in late pupa stages and on adult day 1. On the other hand, CAP of the two 

groups showed similar trends as flies developed, except that significant differences (p < 

0.05) were only observed at L3 and AD 1 stages. The HR and CAP changes observed in 

flies fed with HFD suggested that HFD induced cardiac functional defect, especially at early 

developmental stages. Further studies are needed in order to understand the underline 

molecular mechanisms and genetic pathways involved in the process.
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IV. DISCUSSION AND OUTLOOK

One limitation of OCT is the shallow imaging depth. In most biological tissues, OCT can 

only image up to 1–2 mm below surface. Optical clearing techniques, which utilize 

chemicals to achieve tissue refractive index matching [82, 190–196], can effectively improve 

imaging depth in highly scattering biological tissues. Optical clearing has been used in 

combination with light sheet microscopy [191, 192], confocal microscopy [82, 193], multi-

photon microscopy [82, 190, 193], epifluorescence imaging [194] and optical projection 

tomography [197]. It has also been used with OCT in dermatology [198, 199] and 

ophthalmology [200]. Combining optical clearing with OCT imaging would help extend the 

needed imaging depth for brain research and developmental biology. However, most of the 

optical clearing methods to date are irreversible and invasive. Development of optical 

clearing method suitable for in vivo applications [201] would be of great value for OCT 

imaging.

High imaging speed is greatly desired for imaging fast dynamics in the brain and developing 

embryos. With rapid development of tunable laser sources, ultrahigh speed OCT imaging 

beyond 1 megahertz is becoming readily available based on swept-source OCT technologies 

[202–205]. Ultrahigh speed imaging of human eyes [206–210], fingers [211] as well as 

small animals such as Daphnia [212] has been demonstrated at up to 20M A-scans/s. 

Another approach to achieve significant improvement in OCT imaging speed is to use 

parallel imaging. Recently developed space-division multiplexing OCT (SDM-OCT) 

technique [213] and interleaved OCT (iOCT) technique [214–216] have demonstrated great 

promises. Further improvement of OCT imaging speed can be expected by combining the 

development of high speed tunable lasers and parallel imaging techniques. The 

unprecedented imaging speed makes OCT very attractive for 4D imaging of fast dynamic 

processes in biological samples, such as in a beating heart [148].

Multimodal imaging combines advantages of different imaging technologies in order to 

obtain complementary information of biological systems [2]. OCM has been combined with 

two-photon microscopy [217] to provide high-resolution registered images of brain 

patterning and morphogenesis in live zebrafish embryos. OCT has also been combined with 

photoacoustic tomography to image tissue optical scattering and absorption profiles 

simultaneously [218, 219]. A multimodal imaging system integrating OCT with two photon 

and confocal microscopy, optical intrinsic signal imaging, and laser speckle imaging, was 

recently reported to characterize multiple parameters of cerebral oxygen delivery and energy 

metabolism, including microvascular blood flow, oxygen partial pressure, and NADH 

autofluorescence [220]. Cost-effective, easy-to-use multimodal imaging systems will surely 

be valuable to image the brain and developing animals.

OCT imaging is non-invasive. Combining OCT with non-invasive stimulation or 

perturbation of biological systems would make an attractive research platform. Recent 

development of optogenetic tools [221–223] makes it possible to achieve optical stimulation 

and imaging of the brain and the heart completely non-invasively. Very recently, OCT has 

been used to monitor hemodynamic changes following optogenetic stimulation in transgenic 

mouse brain [96]. Our group demonstrated simultaneous optogenetic pacing and ultrahigh 
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resolution OCT imaging in Drosophila heart at different developmental stages of the 

specimens, including larva, pupa and adult stages [224]. More exciting research activities 

can be expected utilizing non-invasive OCT imaging and optogenetic stimulation to further 

our understanding of the brain and heart development.

V. CONCLUSIONS

In summary, OCT provides three dimensional images of biological samples without the need 

for tissue excision and processing. OCT enables label-free evaluation of morphological and 

functional information of the brain and developing embryos with micrometer resolutions and 

video rate imaging speed. Further development to achieve higher speed and multi-

functionality imaging will further enhance the capability of OCT. Combined with optical 

clearing and optogenetic technologies; it would make a powerful research platform for brain 

research and developmental biology.
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Fig. 1. 
(A) Ultrahigh resolution OCM image of an organotypic hippocampal culture on DIV 7 and 

corresponding confocal image (B). (C, D) Magnified areas indicated by brown rectangular 

boxes, highlighting individual neurons observed in both images. (E) A linear correlation (R2 

= 0.89) was observed between neuron counts obtained from OCM and confocal images. 

Scaled bars: 400 µm in (A B), and 100 µm in (C, D). Images reproduced from reference [78 

with permission.
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Fig. 2. 
In vivo brain cancer imaging in a mouse with patient-derived highgrade brain cancer 

(GBM272). Representative images of a mouse brain at the cancer site before surgery (A) and 

at the resection cavity after surgery (B). (C) Corresponding histology for the resection cavity 

after surgery. With the same mouse, control images were obtained at a seemingly healthy 

area on the contralateral, left side of the brain (D), with its corresponding histology (E). 

Black arrow in histology indicated residual cancer cells corresponding to yellow/red regions 

on optical attenuation maps. C, cancer; W, noncancer white matter; M, noncancer meninges. 

Scale bars, 0.2 mm. Images reproduced from reference [35] with permission.
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Fig. 3. 
OCT angiographs of cerebral areas of mice before (A) and after (B) one week permanent 

distal middle cerebral artery occlusion (dMCAO). (C, D) Zoomed images indicated 

significant pial collateral growth (white arrows), dural vessel dilation (dotted arrows). 

Irregular capillary bed in (D) suggested vascular remodeling and possible angiogenesis. 

Images reproduced from reference [36] with permission.
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Fig. 4. 
Cross-sectional OCT images (A, C, E) and histology (B, D, F) of the female mouse 

reproductive tract. (A, B) Follicles in the ovary. (C, D) Images across the oviduct showing 

the folds in the lumen. (E, F) Cross-section along the oviduct showing the folds of the 

oviduct arranged in nodules. All scale bars correspond to 100 µm. Images reproduced from 

reference [42] with permission.
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Fig. 5. 
Eight phases of the beating embryonic quail heart (a–i) from three different orientations 

acquired in vivo using gated OCT. Each time series progresses from systole to diastole and 

each slice is separated by 95 ms. Row 1 presents en face 2D OCT images (sagittal to the 

body). Row 2 displays eight phases from the normal OCT view (coronal to the body), while 

row 3 shows the transverse view of the heart. Images on the far right show a 3D surface 

reconstruction of the heart in phase 8 (diastole). The white plane indicates the location of the 

preceding 2D OCT images. Images reproduced from reference [137] with permission.
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Fig. 6. 
3D and M-mode OCM imaging of post-embryonic Drosophila lifecycle. (A) 3D OCM 

renderings of a control 24B-GAL4/+ fly at larva, pupa and adult stages. (B) Schematic 

representation of heart metamorphosis. (C) En face OCM projections showing heart 

metamorphosis. (D) Axial OCM sections showing heart remodeling during Drosophila 
lifecycle. * denotes the air bubble location during early hours of pupa development. (E) M-

mode images at different developmental stages showing heart rate changes across lifecycle. 
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L2, 2nd instar larva; L3, 3rd instar larva; PD1-4, pupa day 1 through day 4. Scale bars in (C) 

and (D) represent 500 µm. Images reproduced from reference [45] with permission.
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Fig. 7. 
Evaluation of the effect of a circadian gene, dClock, on Drosophila heart development. (A) 

M-mode OCM images of 24B-GAL4/+ control and UAS-dClock-RNAi; 24B-GAL4 flies at 

2nd instar larva, early pupa and adult day 1. Comparison of heart rate (B) and cardiac activity 

period (C) between 24B-GAL4/+ control and UAS-dClock-RNAi; 24B-GAL4 flies from 2nd 

instar larva to adult day 1. * denote significant difference between control and UAS-dClock-

RNAi; 24B-GAL4 flies (p < 0.05); **, p<0.01; ***, p<0.001.

Men et al. Page 34

IEEE J Sel Top Quantum Electron. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Evaluation of the effect of high-fat-diet (HFD) on Drosophila heart development. (A) M-

mode OCM images of flies (24B-GAL4/+) fed with normal diet (ND) and HFD at 2nd instar 

larva, early pupa and adult day 1. Comparison of heart rate (B) and cardiac activity period 

(C) between flies fed with normal diet and high-fat-diet from 2nd instar larva to adult day 1. 

* denote significant difference between normal diet and high-fat-diet groups (p < 0.05); **, 

p<0.01; ***, p<0.001.
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