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ROR« is a member of the nuclear receptor (NR) superfamily and analysis of the (global) RORx-deficient mouse
model revealed this NR has a role in glycemic control and fat deposition. Therefore, we generated an adipose-spe-
cific ROR« ‘gain of function’ mouse model under the control of the fatty acid binding protein 4 (FABP4) promoter
to elucidate the function of RORa in adipose tissue. The Tg-FABP4-RORa4 mice demonstrated a shift in fat distri-
bution to non-adipose tissues when challenged with a high fat diet (HFD). Specifically, we observed a subcutane-
Keywords: ous lipodystrophy, accompanied by hepatomegaly (fatty liver/mild portal fibrosis) and splenomegaly; in a
ROR& background of decreased weight gain and total body fat after HFD. Moreover, we observed significantly higher
fasting blood glucose and impaired clearance of glucose in Tg-FABP4-RORa4 mice. Genome wide expression

Subcutaneous adipose

Obesity and qPCR profiling analysis identified: (i) subcutaneous adipose specific decreases in the expression of genes in-
Hepatomegaly volved in fatty acid biosynthesis, lipid droplet expansion and glycemic control, and (ii) the fibrosis pathway as the
Fibrosis most significant pathway [including dysregulation of the collagen/extracellular matrix (ECM) pathways] in sub-
Collagen cutaneous adipose and liver. The pathology presented in the Tg-FABP4-RORa4 mice is reminiscent of human
metabolic disease (associated with aberrant ECM expression) highlighting the therapeutic potential of this NR.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction denoted as orphans. The NR, RORq, has been implicated in the regula-

Obesity and diabetes are worldwide health burdens. The incidence
of obesity has doubled since 1980 with over 1.9 billion adults over-
weight in 2014, and globally >400 million people have type 2 diabetes.
Unfortunately, existing anti-obesity and anti-diabetic therapeutic dis-
play insufficient efficacy and adverse effects (Aguiree et al., 2013).
Therefore, there is a global need for novel therapeutic targets that regu-
late excessive adiposity and glycemic pathophysiology to treat those
populations challenged by adverse clinical outcomes. The nuclear hor-
mone receptor (NR) superfamily is comprised of hormone-dependent
transcription factors that translate physiological signals into gene regu-
lation to control metabolism in an organ-specific manner. In the context
of metabolic disease, dysfunctional NR signaling results in dyslipidemia,
diabetes, and obesity. There are 48 NRs in humans, all implicated in dis-
ease, although not all with identified natural ligands; these NRs are
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tion of glucose and fat homeostasis, but has historically belonged to
the orphan class of NRs. However, interest in this specific receptor has
been stimulated by the rapid emergence of small molecule agonist
and inverse agonists (Smith and Muscat, 2006; Marciano et al., 2014).
Several studies suggest that RORa: is a constitutively active receptor.
The constitutive recruitment of coactivators such as p300, glutamate re-
ceptor interacting protein 1 and steroid receptor coactivator 1
(reviewed in Fitzsimmons et al., 2012) by RORa in the absence of exog-
enous ligands supports a state of constitutive activation of ROR« by a
common endogenous ligand (such as cholesterol metabolites and inter-
mediates) (reviewed in Fitzsimmons et al., 2012; Marciano et al.,, 2014).
For example, crystallographic and mass spectrometry studies showed
that the RORa-LBD is constitutively bound to endogenous ligands in-
cluding fatty acids, cholesterol metabolites and all trans retinoic acid
(reviewed in Marciano et al., 2014). Furthermore, the basal activity of
RORs is highlighted by the observation that natural inverse agonists
are exploited (for example ursolic acid) in RORYy reporter assays to iden-
tify agonists in reporter assays (Santori, 2015; Chang et al., 2016). Re-
cently, it was confirmed that oxygenated sterols (natural LXR ligands
and agonists) function as native ligands, but as inverse agonists for
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both RORa and RORYy (reviewed in Marciano et al., 2014; Kojetin and
Burris, 2014). Moreover, the crosstalk between the (oxysterol activated
NR) LXR and RORa/7 signaling pathways is underscored by our recent
study demonstrating decreased expression of the cholesterol 25-
hydroxylase mRNA (encodes the enzyme that produces the LXR agonist
25-hydroxycholesterol, 25-HC) and aberrant phagocytosis in the Roro-
deficient staggerer mice (sg/sg) (Tuong et al., 2013). New studies
(Tuong et al., 2016) implicate Rora in regulating lipid storage in macro-
phages in a process modulated by 25-HC levels.

The biological significance of ROR« in the regulation of important
metabolic pathways is underscored by studies on the (global) Rora-
deficient staggerer (sg/sg) mouse model. For example, analysis of the
global Rora knockout model has revealed that Rora regulates (i) adi-
posity (Lau et al., 2004, 2008), (ii) resistance to diet-induced obesity
and hepatic steatosis (Lau et al., 2008), (iii) thermogenesis and
browning/beiging of subcutaneous adipose tissue (SAT) (Lau et al.,
2015), (iv) insulin sensitivity and signaling (Lau et al.,2011), (v) inflam-
mation and phagocytosis (Tuong et al., 2013) and (vi) lipid droplet ho-
meostasis (Tuong et al., 2016).

Specifically, the Rora-deficient sg/sg mice display increased AKT sig-
naling in skeletal muscle (Lau et al., 2011), improved glucose tolerance
and insulin sensitivity. The lean phenotype in sg/sg mice is associated
with reduced serum triglyceride and cholesterol levels (Lau et al.,
2008, 2015; Kang et al,, 2011; Mamontova et al., 1998). In addition, de-
creased adiposity is associated with an increased metabolic rate and
cold tolerance in Rora-deficient sg/sg mice. This phenotype involves
browning/beiging of SAT, increased uncoupling protein 1 (Ucp1) ex-
pression (mRNA and protein) and thermogenic gene expression (Lau
et al., 2015), and significantly increased expression of the (cell-fate con-
trolling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabi-
lizes the Prdm16 transcriptional complex. However, the significance of
ROR« in the regulation of adipose physiology remains unclear as it is
difficult to dissect the contribution of this widely expressed receptor
from the complex interactions that give rise to the lean phenotype. Sev-
eral in vitro studies have suggested that ROR« transcriptional activity
acts to suppress adipocyte differentiation. Embryonic fibroblasts from
Roroa-deficient sg/sg mice displayed enhanced differentiation into func-
tional adipocytes (Duez et al., 2009) and in 3T3-L1 cells RORa
constrained differentiation via increased expression during late adipo-
genesis (Okada et al., 2009). However, these authors also report a simi-
lar differentiation potentiality in pre-adipocytes sourced from
homozygous sg/sg mice as their heterozygous sg/+ counterparts. It is
evident that an in vivo investigation of ROR« function - specifically in
adipose tissue (i.e. an organ/tissue specific mouse model) that can ac-
count for the developmental, metabolic and compartmental context, is
warranted. Therefore, we generated an adipose-specific ROR« ‘gain of
function’ transgenic mouse model in order to further understand the
adipose-specific function of RORa in (i) lipid deposition, (ii) glucose tol-
erance and insulin sensitivity, (iii) obesity, and (iv) gene regulation. This
is highly significant within the context of obesity as the capacity to ex-
pand the number of adipocyte cells to accommodate increased lipid
storage requirements is a key determinant of the degree of metabolic
dysfunction that accompanies increased adiposity.

Our studies indicate that (heterozygous, Tg-FABP4-RORa4 tg/+)
mice with adipose-specific RORa4 expression have impaired glucose
tolerance, decreased SAT, and hepatomegaly on a high fat diet, a pheno-
type often associated with obesity (Abdennour et al., 2014; Porter et al.,
2009; Tam et al., 2012). RNA-seq, targeted qPCR and canonical pathway
analysis suggests that adipose-specific RORa4 phenotype is associated
with differential regulation of the fibrosis pathway in adipose and he-
patic tissue. For example, genes that encode the extracellular matrix
(ECM) collagen proteins are down-regulated in the SAT, but increased
in tg/+ hepatic tissue. This is in accord with the role of collagen produc-
tion in adipose development and physiology, as well as adipose plastic-
ity to suit metabolic demands and changes (Mariman and Wang, 2010)
and ectopic/aberrant fat deposition (Aikio et al., 2014).

2. Materials and Methods
2.1. Transgene Plasmid Generation

hRORa4 was amplified by PCR from pSG5-RZR (courtesy of Dr. OA
MacDougald, University of Michigan Medical School, USA (Becker-
Andre et al,, 1993)) using a forward primer containing a Sall cut site:
AGCGTCGACCATGATGTATTTTGTGATCG and a reverse primer contain-
ing a Notl cut site: AATGCGGCCGCTTTACCCATCAATTTG. After Sall/Notl
double digestion, RZR was subcloned into Sall Notl double digested-
pCRII-FABP4 promoter vector (Longo et al., 2004) to generate FABP4-
RORa4 construct and verified by sequencing, prior to pronuclear
injection.

2.2. Animals and Tissue Collection

Generation of Tg-FABP4-RORa4 mice was performed by Transgenic
Animal Services Queensland. Pronuclear injection was performed in
C57BL/6/CBA mixed background mice. Founders were identified by
genotyping and FABP4-ROR4 positive transgenic mouse lines were se-
lected for phenotypic analysis after >5 generations of backcrossing to
C57BL/6 background. 16 and 32 week old WT and FABP4-RORai4 trans-
genic littermates (Tg-FABP4-RORo4) were obtained from crossing het-
erozygous tg/+ Tg-FABP4-RORa4 transgenic breeders with C57BL/6
mice. Homozygous tg/tg Tg-FABP4-RORa4 mice were generated by
crossing heterozygous Tg-FABP4-RORa4 males and females. All animals
were housed in the Queensland Bioscience Precinct Vivarium (UQ) with
a 12 h light-dark cycle. The high fat diet used in this study is as described
in (Pearen et al., 2013). Animals were weaned at 4 weeks of age and
were fed the standard chow diet ad libitum (which contains 4.6% total
fat). In contrast, the high fat diet (SF03-002 Fat Modified Rodent Diet;
very high fat modification of AIN93G) used in the study contains 36%
fat. Both diets were acquired from Specialty Feeds (Glen Forrest, West-
ern Australia). Experimental mice were weighed weekly. For tissue col-
lection, mice were fasted overnight in a new food-free holding cage and
subsequently euthanized. Tissues were collected and immediately
snap-frozen in liquid nitrogen and then stored at — 80 °C. All aspects
of animal experimentation were approved by The University of Queens-
land Animal Ethics Committee.

2.3. Intraperitoneal Glucose Tolerance Test and Insulin Tolerance Test

Blood glucose measurements were obtained from the tail vein of 6 h
fasted animals (14-16 weeks old or 22 week old mice on high fat diet)
following glucose or insulin challenge, using a blood glucose testing sys-
tem (Accu-chek Performa; Roche Diagnostics, Castle Hill, NSW, Austra-
lia) as described (Raichur et al., 2010). Glucose was administered to
each mouse at a dose of 2 g/kg and insulin was given at 1.0 U/kg.

2.4. Insulin Enzyme-linked Immunosorbent Assay (ELISA)

The ALPCO Mouse ultrasensitive Insulin ELISA assay kit was used for
the quantitative determination of insulin plasma from 6 h or overnight
fasted mice. All procedures were performed according to
manufacturer's instructions.

2.5. Protein Extraction and Immunoblot Analysis

Protein extraction from adipose tissue was previously described
(Lau et al., 2015) with modifications. Inguinal white adipose tissues
were homogenized in 1 mM EDTA, 10 mM Tris, and 0.25 M sucrose
(pH 7.5) with 1xComplete protease inhibitor and 1xPHOS-STOP
(Roche Diagnostics, Mannheim, Germany). Infranatant and pellet
were separated from the top layer of fat cake after centrifugation. Deter-
gent was then added to a final concentration of 1% Triton X-100, 1% NP-
40, and 0.1% SDS for the infranatant (cytosolic proteins) and pellet
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(nuclear and membrane proteins) separately, incubated for 30 min and
sheared eight times with an insulin syringe. The pellet was sheared mul-
tiple times using P200 pipette tips and insulin syringe. Protein concen-
tration was measured with BCA reagent (Thermoscientific; Pierce,
Rockford, IL). Immunoblot analysis was performed as described previ-
ously except that the membranes were blocked in 5% skim milk and
probed with anti-RORa (ab60134 1:1000; Abcam), anti-AKT (#9272,
1:1000; Cell Signaling Technology, Danvers, MA), pAKT (ser473)
(#4058; 1:1000; Cell Signaling Technology), anti-TBP (sc-204; 1:1000,
Santa Cruz Biotechnology), or anti-a-tubulin (#2144, 1:1000; Cell Sig-
naling Technology).

2.6. Histology

Hematoxylin and eosin (H&E) staining was performed as described
(Lau et al., 2015), on paraffin-embedded tissues fixed in 10% buffered
formalin (Sigma-Aldrich). Accustain® Trichrome Stains (Masson)
(Sigma-Aldrich) was used for staining collagen fibers in the liver accord-
ing to manufacturer's instructions. To assess macrophage infiltration
into adipose, immunohistochemistry was performed on deparaffinized
and re-hydrated sections. Enzymatic antigen retrieval was performed
using Proteinase K (20 pg/mL) in TE buffer (50 mM Tris, 1 mM EDTA,
pH 8.0) for 3 min at room temperature and rinsed with PBS. Macro-
phages were detected using a specific primary antibody for F4/80 (rat
anti-mouse, Abcam, ab6640) at 4 °C overnight. This was followed by
0.3% H,0, treatment to reduce endogenous peroxidase activity, and
staining with species-matched horseradish peroxidase-conjugated sec-
ondary antibody (goat anti-rat antibody, Santa Cruz Biotechnology) at
room temperature for 1 h. All blocking steps were performed in 0.5%
BSA/PBS in the presence of 10% species-matched anti-sera. Sections
were then counterstained using Mayer's hematoxylin and mounted
using permanent mounting media. Sections were examined using an
Olympus BX-51 microscope with a DP-70 digital camera and DP con-
troller imaging software (Olympus Imaging Systems, PA, USA).

2.7. Blood Lipid Profiling and Measurement of Hepatic Triglyceride
Concentration

Measurements of total cholesterol, triglyceride, and non-esterified
fatty acid in heparinized plasma samples were analyzed by Clinical Pa-
thology Laboratory, School of Veterinary Science, The University of
Queensland (Gatton, Queensland, Australia).

2.8. Nuclear Magnetic Resonance (NMR) and Dual-energy X-ray Absorpti-
ometry (DEXA) Scans

NMR scanning was performed using a Bruker MiniSpec LF50
(Ettlingen, Germany). Total body percentage fat and percentage lean
mass values were extracted from the analysis. DEXA scanning was per-
formed on frozen liver tissues harvested from euthanized overnight-
fasted mice (32 weeks of age) and measured for lean mass and fat
mass using a PIXImus Densitometer (GE Lunar, Madison, WI).

2.9. Genotyping and Tissue Detection of Transgene Expression

Genotyping of mice from Tg-FABP4-RORa4 transgenic lines was
performed on toe/tail/ear puncture samples using QuickExtract™ DNA
Extraction Solution (Epicentre Biotechnologies, Madison, Wisconsin,
USA) according to manufacturer's protocol. For confirmation of trans-
gene expression, RNA was extracted from tissues and cDNA synthesis
was performed as described (Pearen et al., 2009; Myers et al., 2009).
SYBR primers were designed using Primer Express (Applied Biosystems,
Foster City, CA) for the following: mouse Rora forward
CAATGCCACCTACTCCTGTCC and reverse GCCAGGCATTTCTGCAGC for
real-time endogenous expression and genotyping, and human RORa re-
verse CTACGGCAAGGCATTTCTGTAAT for real-time ectopic expression

and genotyping. The same forward primer was used for both real-time
endogenous and ectopic expression.

2.10. RNA Extraction and Purification and cDNA Synthesis

Total RNA was extracted using TRI-Reagent (Sigma-Aldrich, St.
Louis, MO) and RNA purification was performed using the RNeasy
mini kit (Qiagen, Clifton Hill, Victoria, Australia) according to the man-
ufacturers' instructions. Complementary DNA (cDNA) was synthesized
from 0.5-2 pg of purified total RNA using Superscript IIl Reverse Tran-
scriptase (Invitrogen) and random hexameric primers according to
the manufacturer's instructions.

2.11. gPCR Analysis

Relative expression of genes was determined using the Applied
Biosystems (ABI) ViiA™ 7 Real-Time PCR System (ABI, Singapore) as pre-
viously described (Lau et al., 2008; Tuong et al.,, 2013). Relative gene ex-
pression was analyzed by qPCR using either TagMan Gene Expression
Assays (ABI, Foster City, CA), or TagMan low-density arrays (TLDAs) as de-
scribed (Pearen et al., 2013), or primers designed for use with SYBR master
mix. Assay on demand primers for TagMan qPCR used are described (Lau
et al, 2004, 2015) and include the following: total RORc
(mouse + human; MmO00443103_m1), Tle3 (MmO00437097_m1),
Ehmt1 (MmO00553234_m1), Prdm16 (MmO00712556_m1),
Ucpl (MmO01244861_m1), Cpt2 (MmO00487202_m1), Pnpla2
(Mm00503040_m1), Adrb3 (Mm00442669_m1), Ndufb5
(Mm00452592_m1), Dio2 (MmO00515664 m1), and Ppara
(MmO00440939_m1). The TagMan primers for the housekeeping genes
are as follows: 18s (catalog number: 4319413E) and Gusb
(MmO00446953_m1). Primers for SYBR assays include the following:
Cidea, CAAACCATGACCGAAGTAGCC and AACCAGGCCAGTTGTGATGAG;
Acot11, GATCATGGCTTGGATGGAGAA and GGCCTCGGAAATGGAACAT;
Errat, CTCTGGCTACCACTACGGTGTG and AGCTGTACTCGATGCTCCCCT;
Mcpt1 ATCATGTATCGCCGCAAACT and CCATCTGGTAGGAGCACATGG.
Primers for Col18a1l that detects long, medium short, and all isoforms
were as published (Aikio et al., 2014). The SYBR primer sets used as endog-
enous controls are as follows: Gusb, GTGAGCAACGCCAAATATGATG and
TCCAAATGCCCATAGTCATGATAC; 18s, GATCCATTGGAGGGCAAGTCT and
CCAAGATCCAACTACGAGCTTTTT; Rplp0, AGATGCAGCAGATCCGCA and
GTTCTTGCCCATCAGCACC.

2.12. RNA-seq Analysis and CIBERSORT

Library preparation and sequencing were performed by the IMB Se-
quencing Facility at the University of Queensland. Total RNA sample li-
braries were generated using the Illumina TruSeq Stranded mRNA LT
sample preparation kit (Illumina, Part no. RS-122-2101 and RS-122-
2102), according to the standard manufacturer's protocol (Part no.
15031047 Rev. E October 2013). The mRNA denaturation and elution
was performed with 0.1 g to 0.2 pg of total RNA (depending on amount
of sample available) prior to a heat fragmentation step aimed at produc-
ing libraries with an insert size between 120 and 200 bp. cDNA was then
synthesized from the enriched and fragmented RNA using SuperScript
Il Reverse Transcriptase (Invitrogen, Catalog no. 18064014) and ran-
dom primers. The resulting cDNA was converted into double stranded
DNA in the presence of dUTP to prevent subsequent amplification of
the second strand and thus maintain the strandedness of the library.
Following 3’ adenylation and adaptor ligation, libraries were subjected
to 15 cycles of PCR to produce RNA-seq libraries ready for sequencing.
Prior to sequencing, RNA-seq libraries were qualified via the Agilent
Bioanalyzer with the High Sensitivity DNA kit (Integrated Sciences,
Part no. 4067-4626). Quantification of libraries for clustering was per-
formed using the KAPA Library Quantification Kit - Illumina/Universal
(KAPA Biosystems, Part no. KK4824) in combination with the Life Tech-
nologies Viia 7 real-time PCR instrument. Sequencing was performed
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using the I[llumina NextSeq500 (NextSeq control software v1.2/Real
Time Analysis v2.1) platform. The library pool was diluted and dena-
tured according to the standard NextSeq500 protocol and sequencing
was carried out to generate single-end 76 bp reads using a 75 cycle
NextSeq500 High Output reagent Kit (Catalog # FC-404-1005). Reads
were aligned to GRCm38.p2 (Mus musculus) using STAR (Dobin et al.,
2013), and read counts for each gene in the Ensembl annotation were
generated using htseq-count in the HTSeq python package (Anders et
al,, 2015) and the GENCODE annotation (Harrow et al.,, 2012). Differen-
tial gene expression was detected using the DESeq2 (Love et al., 2014)
packages in R. To quantify the relative expression levels of distinct cell
types from complex tissues, we utilized the CIBERSORT (Newman et
al., 2015). Variance stabilized transformed read count was generated
using the DESeq2 package (Love et al., 2014) and used as input data
for CIBERSORT. The LM22 signature was selected as a default parameter
and CIBERSORT was run with 100 permutation. Although the tool and
the embedded LM22 signature dataset were not designed for interro-
gating RNA-seq data, the authors note that “the linearity assumptions
made by our method are likely to hold, as previously suggested”. Enrich-
ment scores were transferred into the stack format as published
(Newman et al., 2015).

2.13. Ingenuity Pathway Analysis

The canonical pathways and functional analyses were generated
through the use of IPA (Ingenuity Systems) from the differential expres-
sion gene data set acquired from RNA-seq analysis. In the context of the
identification of activation or inhibition of pathways, the z-score algo-
rithm matches the direction of gene changes with expected activated/
inhibited state in the canonical pathways (orange indicates predicted
activation/positive z-score and blue indicates predicted inhibition/neg-
ative z-score).

2.14. Database for Annotation, Visualization and Integrated Discovery (DA-
VID) Analysis

The entire gene list of significantly regulated genes identified from
the RNA-seq analysis was uploaded onto the web documentation of
DAVID. Included in the documentation is a modified Fisher exact prob-
ability for ‘over-represented’ or most relevant biological terms associat-
ed with the given gene list where P < 0.05 was considered significant
(Huang da et al., 2009). Data was extracted after DAVID annotates, orga-
nizes and condenses the data into meaningful biological functions that
are associated with the gene list provided.

2.15. Statistical Analyses

Statistical analyses for all other analyses not included in the RNA-seq
workflow were performed using GraphPad Prism version 5.0
(GraphPad Software, San Diego, USA). In general, significance was cal-
culated using unpaired two-tailed Student's t-tests or two-way ANOVAs
with Bonferroni's post-tests where applicable. Correlation analysis was
tested in an assumption-free model and the R? value reports the Pear-
son correlation coefficient. The associated P-value tests whether the cor-
relation effect between groups could be due to random sampling. A
small P-value allows for the rejection of the null hypothesis that the cor-
relation is due to random sampling.

3. Results
3.1. Transgenic Overexpression of RORoA4 in Adipose Tissue

Our previous reports investigating the (global) Rora-deficient stag-
gerer sg/sg mouse model, and a transgenic muscle-specific line express-

ing dominant negative ROR« indicated that this NR regulates glycemic
control and Akt2 signaling. Further studies in the sg/sg mouse model

indicated this NR regulated fat deposition, and responses to dietary
challenges. We were interested in further investigating the specific in
vivo functional role(s) of ROR« signaling in adipose tissue, a major pe-
ripheral tissue involved in energy storage. Therefore, we pursued
targeted adipose-specific expression of ROR« in transgenic mice. We
selected the RORa4 isoform for transgenic expression, because qPCR
analysis of subcutaneous, visceral and brown adipose tissues from
wild-type (WT) C57BL/6 mice clearly demonstrated that of the two iso-
forms expressed in rodents (RORa1 and a4), RORoi4 was the most
abundantly expressed isoform in the three adipose tissue depots
(Fig. 1A).

ROR« is a constitutively active NR, and we confirmed the (transcrip-
tional) activity of native RORa4 by examining its ability to transactivate
a well-characterized RORa dependent reporter gene (mPCP2tkluc)
(Supplementary Fig. 1A). We produced transgenic mice that selectively
express a transgene encoding a native (human) RORa4 expressing con-
struct driven by fatty acid binding protein 4 (FABP4) promoter (also
known as adipocyte protein 2) to achieve adipose-specific expression.
To validate the selective expression of the transgene in adipose tissues,
RNA from major organ/tissues (skeletal muscle, liver, kidney and
spleen), including inguinal, epididymal and interscapular fat tissue
representing the subcutaneous, visceral and brown adipose depots,
was extracted from male WT and transgenic [heterozygous (tg/+) Tg-
FABP4-RORa4] mice, and ectopic RORo4 transgene expression was ex-
amined via quantitative real-time PCR (qPCR) relative to 18s rRNA
(Fig. 1B). The heterozygous transgenic mice selectively, predominantly,
and abundantly expressed the ectopic human transgene (Fig. 1B),
resulting in significantly increased total (i.e. endogenous mouse and ec-
topic human) RORa expression (Fig. 1C) in adipose tissues from tg/+
mice relative to WT littermate pairs.

As expected, significantly lower transgene expression was observed
in the non-adipose tissues (quadriceps muscle, liver, spleen, and kid-
ney) compared to the adipose tissues. For example, ectopic RORa4 ex-
pression was >50- and >500-fold greater in SAT, relative to spleen
and liver, respectively. Western blot analysis was performed to validate
ROR« overexpression using the proteins from the nuclear fractions ob-
tained from inguinal adipose tissues of WT and heterozygote tg/+ mice.
We showed that total ROR«x protein is expressed at a higher level (by
~8-fold) in heterozygote transgenic mice (tg/+ ) relative to WT siblings
in n = 2 littermate pairs (Supplementary Fig. 1B and C). Thus using the
published FABP4 promoter (He et al., 2003) for driving adipose expres-
sion, we have successfully generated an adipose-specific RORa trans-
genic mouse line (Tg-FABP4-RORa4).

3.2. Adipose-specific RORo4 Transgene Expression Decreases Weight Gain
and Subcutaneous Adiposity

We hypothesized that RORa overexpression in adipose would per-
turb energy storage and homeostasis. Hence, we compared mice on nor-
mal chow and high fat diets (HFD), and examined growth, organ
weights, fat deposition etc., after an initial phase where normal chow
diet (<10% of total calories from fat) was fed ad libitum for 16 weeks,
and a second phase where the diet was switched to an energy-dense
HFD (~40% of energy from fat) for 14-16 weeks (Fig. 1D). The control
cohort remained on chow for the entire duration.

During the growth phase (4-14 weeks of age), comparable weight
gain was observed between transgenic (FABP4-RORa4) heterozygous
tg/+ (Fig. 1E) and homozygous tg/tg mice (Supplementary Fig. 2B)
compared to WT littermates on a normal chow diet. We detected no
dramatic morphological abnormalities and the tissue weights (normal-
ized to total body weight) of the three adipose depots examined were
similar (from 16 week old mice) in WT, tg/+ (Fig. 1F and G) or tg/tg lit-
termates (Supplementary Fig. 2C), and did not display any significant
differences. We conclude that the FABP4-RORa4 transgene did not
overtly effect the growth or fat deposition in the three adipose depots
of tg/+ or tg/tg littermate mice maintained on normal chow diet.
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Fig. 1. Human RORo4 transgene tissue specificity, growth curve and tissue weights of WT versus Tg-FABP4-RORa4 mice on normal chow. (A-C) RNA was extracted from selected tissues
(kidney, quadriceps muscle, liver, SAT (inguinal fat), visceral adipose (epididymal fat) and brown adipose (interscapular fat), and examined for relative gene expression of (A) endogenous
(mouse) Rora1 and Rora4, (B) the transgene (human RORa4) and (C) total RORa (mouse and human) compared to the endogenous control (18s) using real-time PCR (n = 3 littermate
pairs in duplicate experiments). Statistical analyses were performed using unpaired two-tailed Student's t-test for (A) and two-way ANOVAs with Bonferroni's post-test applied for (B-C)
where *P < 0.05; **P < 0.01; **P < 0.001. (D) Schematic timeline of diet regime employed. (E) Body weight (in grams) of male WT (black) and tg/+ (red) mice (n = 18 littermate pairs)
measured weekly up to 14 weeks of age. Statistical analyses were performed using two-way ANOVAs with Bonferroni's post-test applied but results were not significant. (F)
Representative images of dissected WT and tg/+ littermate pair (chow diet). (G) Mean relative mass/total weight 4- S.E.M. of adipose tissues dissected from WT and tg/+ mice (n = 7
littermate pairs). Statistical analyses were performed on each tissue using unpaired two-tailed Student's t-test was performed where *P < 0.05.

The heterozygous transgenic mice were subsequently placed on
high fat diet (HFD) and examined from 17 to 32 weeks of age (relative
to chow diet fed mice as controls). After 8 weeks on HFD, both WT
and heterozygous tg/+ mice displayed significant increases in weight
gain (by ~50%) when compared to their respective chow-fed controls
(chow-fed for the same duration) (Fig. 2A and B). However, between
HFD-fed WT and tg/+ littermate pairs, we observed a marked and sta-
tistically significant divergence in weight gain from week 28 (approxi-
mately 10 weeks into the diet) and by week 30, tg/+ mice averaged
4 g less in weight than WT littermates (Fig. 2C). In corresponding sets
of mice on a normal chow diet, for the same duration, the tg/+ mice
trended toward less weight gain compared to WT littermates (Fig.
2D), however, this observation did not attain significance. Thus trans-
genic mice appear to be leaner on a HFD. Gross anatomical examination
of frontal views of mice after dissection revealed a striking decrease in
subcutaneous fat deposition in the HFD-fed tg/+ mice relative to WT

littermates (Fig. 2E). The difference in adiposity for the HFD-fed tg/+
mice is corroborated by an independent measurement of total body
fat and lean mass percentage using nuclear magnetic resonance
(NMR) scanning. This NMR analysis was performed prior to dissection
on non-fasted, live, HFD-fed mice, and showed a significant ~25% de-
crease in percentage total body fat of tg/+4 mice relative to WT litter-
mate pairs (with a corresponding increase in percentage total lean
mass) (Fig. 2F and G). Adipose depot weight analysis confirmed a signif-
icant ~40% decrease in the tissue weight of the SAT from HFD fed tg/+
mice relative to the corresponding tissue from WT littermate pairs
(Fig. 2H). However, there were no such respective differences in
weights of other adipose tissues examined [visceral (epididymal) adi-
pose tissue and brown (interscapular) adipose tissue] (Fig. 2H). This sig-
nificantly decreased subcutaneous depot mass in the tg/+ relative to
WT littermates on the HFD was further confirmed by examining the cor-
relation between the visceral (epididymal) vs. subcutaneous (inguinal)
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linear trend.

fat mass from WT and heterozygous tg/+ littermates on chow (Fig. 2I)
and HFD (Fig. 2J), respectively. We fitted the data points using correla-
tion analysis and it demonstrated the attenuated capacity of the tg/+
subcutaneous adipose depot to expand in the face of a HFD challenge,
in contrast to the WT littermate (Fig. 2]). If the overall slopes were iden-
tical during the HFD challenge, there is a ~1.4% chance of randomly
choosing data points that will fit identical slopes, concluding that the
differences between the slopes are significant. In contrast, mice fed a
chow diet in parallel did not present with any observable (and/or signif-
icant differences; ~86% chance of randomly choosing data points that
will fit the current slope) in fat deposition in WT and tg/+ littermates
on the chow diet (Fig. 21 and Supplementary Fig. 1C and D). This type
of correlation analysis has been employed previously to characterize
depot specific adipose expansion (Jeffery et al,, 2016).

In summary, our initial observations suggested that adipose-specific
RORa4 overexpression prevented overall weight gain by limiting pre-
vents subcutaneous fat expansion and deposition on a high fat diet.
The potentially selective effect of the FABP4-RORa4 transgene on SAT
fat deposition and expansion, i.e. a selective SAT lipodystrophy, is of par-
ticular interest in the light of pre-clinical studies indicating removal of
SAT induces glucose intolerance (Gentile et al., 2015), and that intra-

abdominal subcutaneous fat transplantation reverses glucose intoler-
ance induced by an energy-dense diet (Hocking et al., 2015).

3.3. Adipocytes From tg/+ Subcutaneous Fat Tissue Are significantly De-
creased in Median Size

We further characterized HFD-induced fat deposition in different
types of adipose tissues at a cellular level, by measuring the cross-sec-
tional area of adipocytes in hematoxylin and eosin (H&E)-stained sec-
tions of SAT from WT and heterozygous tg/+ mice. Staining revealed
that adipocytes from the SAT fat pad in tg/+ mice were smaller relative
to respective cells in WT littermate tissues (Fig. 3A). This difference was
confirmed by quantification, with tg/+ mice displaying a higher propor-
tion of adipocytes with smaller cell area and a significant decrease
(~50%) in median area relative to WT littermates (Fig. 3B). This pheno-
type was not observed in visceral adipose tissue, rather epididymal ad-
ipocytes from WT and tg/+ mice had a similar cross-sectional area (Fig.
3Cand D). The predictable hyperplasia in response to high fat diet feed-
ing observed in adipocytes from the visceral compartment indicated
that tg/+ mice did not have a generalized lipid storage defect, rather
that excess lipids were being directed away from SAT depots.



ZK. Tuong et al. / EBioMedicine 11 (2016) 101-117 107

A wr Inguinal Adipose Tissue tg/+ Inguinal Adipose Tissue

A )=
|91 y B

4
]
7
.
I

L+

00um: ' qooany " TALKN ) 1A

v e

2

C WT Epididymal Adipose Tissue tg/+ Epididymal Adipose Tissue

-~ e i

- oy 1. -
> :} : g g
i A [ i
2 “ hts - . A \ ol ’
) 1 ) .~
100 pm e 100 g N Y
. A i ¥ i
E Liver F c Liver Liver Lean mass G
R how 32-week Chow 32-week
Chow 32-week DEXA ey
-:« 40- * 2.07 ©
WT = D
301 raa S
© @ N
i £ @
L2 £ =
Y o
tg/+ 101 = 5
0.
WT  tg+
Liver | Spleen J
HFD 32-week HFD 32-week
| % @
WT 3
=
N
o
o
L
T

A

o
ey

B
Cross Sectional Area
of Inguinal Adipocytes Mean Median
g¥ E WI o 5000 50007
g4 RN 4000
S 3 5
% 20 T 3000 0.0542 3000
£ 2 2000 2000
g @ 1000 1000
Vegssssasatiansss S o 0
SR8IRBRESSS88S3 W fgh W fgi
Bin Center
Area (um?)
D Cross Sectional Area
of Epididymal Adipocytes Mean Median
g¥ E WT < 6000 5000
g5 o 751/ 4000
g s 4000 3000
% 10 § 2000 2000
& 2 1000
C8823232392999939999 S o 0
REBBSRIBISII3IST W fgi W fgh
Bin Center
Area (um?)
Liver Spleen Quadriceps
0.08- 0.006 *% 0.010- *
= * o 0.008
g=J 0.06 o 0.004] o g_
= 004 o i%e v & R %O
g o .
@ v 0.0021 0.004
§ 0.02 0.002
=
0.00-———— 0.000————— 0.000-
WT  tg/+ WT  tg/+ WT tg/+
Liver Spleen Quadriceps
0.107 * 0.008 0.015
= S *% .
g 008 0.0061 ]
= o° 0.0101 o o
g 0% o 2 o0 . & T
o 7 Q
m | 0oQ9 : (] %
?) 0.04 ..o o % OOO 0.0051 ...o %
‘E“ 0.02- 0.0021 L4
0.00- 0.000————— 0.000-
WT tg/+ WT  tgi+ WT  fg/+

Fig. 3. H&E staining of adipose tissue and weights of non-adipose tissues in HFD-fed WT and tg/+ Tg-FABP4-RORai4 mice. (A) Representative images of WT and tg/+ SAT stained by H&E.
(B) Quantification of cross sectional area of ~300 inguinal adipocytes from n = 4 littermate pairs of WT and tg/+ mice is shown as a histogram of the relative frequency of adipocyte sizes
with bin intervals of 1000 um? and mean and median area measurements. (C) Representative images of WT and tg/+ visceral epididymal adipose tissues stained by H&E. (D)
Quantification of cross sectional area of ~300 epididymal adipocytes from n = 4 littermate pairs of WT and tg/+ mice is shown as a histogram of the relative frequency of adipocyte
sizes with bin intervals of 2000 um? and mean and median area measurements. Significance was calculated using unpaired two-tailed Student's t-test where *P < 0.05. (E)
Representative image of liver dissected from chow-fed 32-week old WT and tg/+4 mice. (F) DEXA scanning of dissected livers from chow-fed WT and tg/+ mice (n = 7 littermate
pairs). (G) Mean relative mass/total weight 4+ S.E.M. of non-adipose tissues (liver, spleen and quadriceps muscle) dissected from chow-fed 32-week old WT and tg/+ littermate pairs
(n = 7 littermate pairs). (H-I) Representative images of (H) liver and (I) spleen dissected from HFD-fed WT and tg/+ mice. (]J) Mean relative mass/total weight + S.E.M. of non-
adipose tissues (liver, spleen and quadriceps muscle) dissected from WT and tg/+ littermate pairs after HFD (n = 9 littermate pairs). Statistical significance was calculated using

unpaired two-tailed Student's t-test for where *P < 0.05; **P < 0.01.

3.4. Transgenic Adipose Specific RORo4 Expression Leads to Hepatomegaly
and Splenomegaly

The selective decrease in inguinal (i.e. subcutaneous) adiposity after
HFD in Tg-FABP4-ROR4 transgenic mice was somewhat unexpected as
previous studies from our group and others reported decreased total

adiposity in the homozygous (global) Rora-deficient sg/sg mouse line
on both normal chow and HFD (Lau et al., 2008, 2015; Kang et al.,
2011). However, in the chow-fed study comparing non-adipose tissues
between WT and tg/+ mice, we noted that 32 week old tg/+ mice
displayed a modest decrease in relative quadriceps muscle mass
(~15%) and a pronounced enlargement of the liver and spleen (both
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~30% increased relative weight, Fig. 3E and G). Dual-energy X-ray ab-
sorptiometry (DEXA) scanning of livers from this cohort of chow-fed
mice, confirmed significantly increased fat composition (by ~30%) in
tg/+ livers compared to those of WT littermates (in contrast to no
changes in the liver lean mass composition) (Fig. 3F).

An even more striking hepatomegaly and splenomegaly was ob-
served in HFD fed tg/+ mice (Fig. 3H-]). Quantification confirmed the
significant weight increase of the liver and spleen in tg/+ mice on
HED relative to WT littermates (n = 9-10) (Fig. 3]). Notably, quadriceps
muscles were not significantly different in weight between WT and tg/
-+ mice on a HFD (Fig. 3]).

Collectively, results from the extended chow study point to an age-
dependent effect of transgenic FABP4-ROR4 overexpression on hepat-
ic and splenic lipid loading. Due to the lipodystrophy observed in the
SAT and the hepatomegaly after HFD, we focused our subsequent atten-
tion on the contribution of these tissues to the overall phenotype of the
transgenic model.

It has been shown that SAT modulates liver triglyceride accumula-
tion (Hocking et al., 2015). Moreover, failure to sustain or expand ade-
quate subcutaneous fat storage adversely impacts glucose tolerance
and contributes to ectopic fat accumulation in non-adipose organs
such as the liver, increasing susceptibility to inflammatory stress and
cancer (Gentile et al., 2015; Hocking et al., 2015; Wree et al., 2011). To
gain a histological perspective of the changes in fat deposition of tg/+
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livers, we performed H&E staining on deparaffinized liver sections
from HFD-fed WT and tg/+ mice to identify significant morphological
differences. We observed a striking increase in vacuole-like lipid bodies
in tg/+ liver relative to WT littermates (Supplementary Fig. 3A), sug-
gesting increased lipid storage in the tg/+ livers could be involved in
hepatomegaly (Fig. 3E and H).

In the liver, steatosis can be accompanied by fibrosis. To check for de-
velopment of fibrosis in the tg/+ livers, we performed Masson's
trichrome staining to visualize collagen accumulation, a hallmark of fibro-
sis. In both WT and tg/+ livers of mice (fed on a HFD for 14 weeks) we
observed signs of portal vein collagen accumulation with no signs of cen-
tral fibrosis occurring in both strains of mice (Fig. 4A). A modest increase
in collagen-positive portal veins/sites in transgenic liver was present, con-
sistent with early, mild portal fibrosis (Fig. 4A).

In summary, we observed the development of hepatomegaly and
splenomegaly with FABP4-RORo4 transgene overexpression on chow
diet. Upon HFD challenge, transgenic mice displayed decreased total
body weight associated with a specific decrease in subcutaneous adi-
posity, and hepatomegaly was further exacerbated. DEXA and histolog-
ical analyses of transgenic livers showed increased lipid accumulation.
This was accompanied by significantly increased levels of circulating tri-
glycerides and NEFA's in the Tg/+ mice (relative to WT littermates) on
the chow diet (Fig. 4B and C); however, the blood lipid profiles on the
HFD were not significantly different (data not shown). Interestingly,
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Fig. 4. Trichrome staining of HFD livers and glycemic challenge of WT and Tg-FABP4-RORo4 mice. (A) Formalin-fixed and paraffinized liver tissues of HFD-fed WT and tg/+ mice were
sectioned at 0.7 pm-step intervals and stained for (A) collagen using Masson's trichrome staining. Red denotes cytoplasmic staining and the yellow arrowheads indicate collagen
staining (blue). Representative images acquired from n = 4 littermate pairs are shown. (B and C) Analysis of mean + S.E.M. fasting plasma (B) triglyceride and (C) NEFAs from
16 weeks chow-fed WT and tg/+ mice (n = 6 littermate pairs). Significance was calculated using unpaired two-tailed Student's t-test where *P < 0.05. (D) Fasting blood glucose levels
from 6 h-fasted WT (white) and tg/+ (black) (n = 10 littermate pairs) mice in the chow study (16 weeks old). (E and F) Blood glucose was measured at various times after intra-
peritoneal administration of (E) glucose or (F) insulin (t = 0) on 6 h-fasted WT (black) and tg/+ (red) mice (16 week chow, n = 10 littermate pairs). (G) Fasting blood glucose levels
from 6 h-fasted WT (white) and tg/+ (black) mice (n = 5 littermate pairs) in the HFD study. (H and I) Blood glucose was measured at various times after intra-peritoneal
administration of (H) glucose or (I) insulin (t = 0) on 6 h-fasted WT (black) and tg/+ (red) mice in the HFD study (n = 5 littermate pairs). Statistical analyses were performed using
unpaired two-tailed Student's t-test for panels D and G and two-way ANOVAs with Bonferroni's post-test applied for panels E, F, H and [ where *P < 0.05; **P < 0.01;***P < 0.001. (J)
Plasma insulin levels of (i) 6 h-fasted (n = 5 littermate pairs) and (ii) overnight fasted WT and tg/+ littermates (n = 8 littermate pairs) from the 32-week chow study. Statistical
analysis was performed using unpaired two-tailed Student's t-test but comparisons were not significant. (K) Plasma insulin levels of overnight fasted WT and tg/+ mice in the HFD
study (n = 8 littermate pairs). Statistical analysis was performed using unpaired two-tailed Student's t-test but comparisons were not significant.
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transgenic livers appear to be susceptible to develop mild portal fibrosis,
warranting more rigorous characterization of this phenotype. Thus the
effect of HFD challenge was to alter the energy storage response in the
tg/+ mice from the traditional lipid depots (adipose tissues) to non-
conventional sites such as the liver, imposing additional stress on
these organs. This indicates a poor prognosis for the tg/+ mice because
disorders in adipose fat storage function can lead to increased liver
steatosis, glucose intolerance and cancer (Wree et al., 2011). Conse-
quently, we investigated the association between aberrant energy stor-
age and glycemic control in the FABP4-RORoi4 transgenic mouse model.

3.5. Glucose Intolerance in Tg-FABP4-RORa4 Mice

Previous studies on the global Rora-deficient staggerer (sg/sg) mu-
tant mice revealed overall improved glucose tolerance and increased in-
sulin sensitivity (Lau et al., 2011). Hence we examined the effect of
adipose-specific RORa transgene expression on these parameters.

Compared to their WT counterparts, both tg/+ (heterozygous)
(Fig. 4D) and tg/tg (homozygous) (Supplementary Fig. 2D) Tg-
FABP4-ROR4 transgenic mice fed on normal chow diets exhibited
elevated blood glucose levels after a 6 h fast. We further examined
systemic glucose metabolism and insulin sensitivity by performing
intraperitoneal glucose tolerance tests (GTTs) and insulin tolerance
tests (ITTs). Although blood glucose levels in tg/4+ mice peaked at a
similar level to WT littermate mice, glucose clearance was impaired
at the later timepoint - remaining ~40% higher than WT littermates
at the end of the time course (Fig. 4E). Interestingly, glucose clear-
ance in the homozygous tg/tg mice (that we could only obtain in lim-
ited number) was markedly impaired with a significant increase in
peak blood glucose levels (~30%) after glucose challenge and
sustained higher blood glucose levels were recorded throughout
the time course (Supplementary Fig. 2E). The blood glucose level in
tg/tg mice was ~65% higher than WT littermates at the end of the
time course (Supplementary Fig. 2E). In contrast, WT, tg/+ (Fig.
4F) and tg/tg (Supplementary Fig. 2F) mice showed similar respon-
siveness to intraperitoneal insulin, indicating normal insulin action
in the transgenic mice. Furthermore, plasma insulin levels in 6 h
and overnight fasted tg/+ mice were not significantly different
than the comparable levels in WT mice [Fig. 4](i and ii)]. Preliminary
intraperitoneal pyruvate tolerance testing also revealed no signifi-
cant differences between WT and tg/+ littermates (data not
shown), allowing us to exclude alterations in hepatic gluconeogene-
sis as a contributor to the impaired glucose clearance observed dur-
ing IP glucose challenge.

In the HFD study, tg/+ mice also displayed significantly higher
fasting blood glucose levels (~20% higher) relative to WT littermates
(Fig. 4G). After intraperitoneal administration of glucose, both WT and
tg/+ mice showed similar peak blood glucose levels (~30% increase
compared to those on chow diet) and the impairment in glucose clear-
ance (Fig. 4H). However, this was more pronounced compared to data
from the chow study in Fig. 4E (blood glucose level in HFD tg/+ mice
was ~50% higher than WT littermates at the end of the time course).
While tg/+ mice did appear to be less sensitive to insulin administra-
tion, this trend did not attain significance (Fig. 41). Fasted plasma insulin
levels were also not significantly different between WT and tg/+ mice
(Fig. 4K. Therefore, the impairment to glucose tolerance in Tg-FABP4-
RORa4 mice appears to be independent of insulin action.

In summary, these results demonstrated a dose-dependent negative
effect of adipose-RORat expression on whole body glucose clearance -
an effect that was amplified in the context of high fat diet. It is intriguing
to speculate whether the SAT lipodystrophy that is observed in this
model contributes to compromised glucose tolerance as other studies
have indicated it is essential for the maintenance of glycemic control
under both normal and high fat dietary conditions (Gentile et al.,
2015; Hocking et al., 2015).

3.6. Insights Into the Molecular Pathways Underlying the SAT
Lipodystrophy and the Hepatomegaly Phenotype in the Tg-FABP4-RORc4
Mice

In an effort to gain molecular insights into the SAT lipodystrophy and
hepatomegaly, accompanied by glucose intolerance (in the absence of
changes in whole body insulin sensitivity, we undertook broad-scale
(qPCR and RNA-seq) transcriptional profiling of SAT and the liver in
order to identify changes in underlying molecular pathways.

3.6.1. Subcutaneous Adipose Gene Expression in Tg-FABP4-RORo4 Mice

Our strategy to identify the gene expression patterns underlying the
selective SAT lipodystrophy involved a bifurcated approach, that inves-
tigated: (i) specific differences in subcutaneous relative to visceral adi-
pose in the transgenic mouse, and (ii) differences in SAT in the
transgenic relative to WT mice.

Initially, we examined the differential expression of genes in subcu-
taneous relative to visceral adipose (by qPCR) in the transgenic model
that may influence lipid homeostasis and glycemic control. This analysis
identified significantly decreased expression of several critical genes
that drive fatty acid biosynthesis, and lipid droplet expansion including
Acs14, Dgat2, Fasn and Scd?2 in SAT relative to visceral adipose tissue
from the Tg-FABP4-RORo4 (Fig. 5A-D). Moreover, we observed signifi-
cantly decreased expression of the Rab-GTPase-activating proteins
(Rab-GAPs), Tbc1d1 and AS160/Tbc1d4 (Fig. 5E and F) in the Tg-
FABP4-RORa4 SAT. Decreased expression of Rab GTPase-activating pro-
teins has been reported to correlate with decreased glucose tolerance in
an intraperitoneal GTT assay, aberrant glucose uptake and dysfunctional
carbohydrate and energy homeostasis (Hargett et al., 2016; Chadt et al.,
2015). Furthermore, we observed decreased Rab18 expression (that
failed to attain significance, P = 0.06), which has been associated with
impaired fat storage (Pulido et al., 2011), and aberrant processing of
lipids in adipose tissue (Pulido et al., 2013) (Fig. 5F). In summary, this
analysis identified the differential expression of several critical genes
in SAT (relative to visceral adipose) that provided some insights into
the subcutaneous lipodystrophic and glucose intolerant phenotype in
the Tg-FABP4-RORo4.

To gain further insights we examined the differential expression of
several metabolic genes that may contribute to decreased SAT deposi-
tion/expansion (on HFD) in the Tg-FABP4-RORa4 mouse model, rela-
tive to WT littermates. We uncovered several gene changes that are
consistent with elevated lipid mobilization and catabolism in the SAT.
For example, we identified significant up-regulation of the gene
encoding carnitine palmitoyltransferase 2 (Cpt2) in the adipose tissue
of heterozygote tg/+ mice (Fig. 6A). Cpt2 catalyzes rate-limiting steps
in fatty acid uptake and oxidation by mitochondria (Bonnefont et al.,
2004; Jogl et al., 2004). In addition, we also observed significant up-reg-
ulation of patatin-like phospholipase domain containing 2 [Pnpla2, also
known as adipose triglyceride lipase (ATGL)] in tg/+ SAT (Fig. 6B).
PNPLA2/ATGL is the rate-limiting enzyme that catalyzes the hydrolysis
of triglycerides and plays a key role in lipid droplet degradation
(Smirnova et al., 2006). Moreover, we observed increased expression
of the mRNAs encoding the 33-adrenergic receptor (Adrb3) (Fig. 6C)
in concordance with increased lipolysis and fatty acid utilization
(Ghorbani et al., 1997; Granneman et al., 2005; Mottillo et al., 2010).
Furthermore, the gene that encodes one of the critical NADH dehydro-
genases that are part of the mitochondrial complex I machinery
(Ndufb5) was significantly up-regulated in the SAT of Tg-FABP4-
RORa4 tg/+ mice (Fig. 6D). Differential and increased expression of
Cpt2, Pnplas/ATGL, Adrb3, and Ndufb5 is entirely concordant with in-
creased lipid mobilization and utilization in the SAT from Tg-FABP4-
RORo4 tg/+ mice, and would contribute to decreased fat deposition/ex-
pansion in this depot by mice that overexpress RORo4 in adipose tissue.

We subsequently investigated gene expression associated with
adaptive thermogenesis in the brown adipose tissue from the Tg-
FABP4-ROR4 transgenic mouse model, relative to WT littermates.
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Fig. 5. Tagman low density array (TLDA) analysis of mRNA expression from SAT relative to
visceral adipose tissue of Tg-FABP4-RORa4 mice on a high fat diet. Relative gene
expression (normalized against Rplp0) of (A) Acsl4, (B) Dgat2, (C) Fasn, (D) Scd2, (E)
Tbc1d1, (F) Thc1d4 and (G) Rab18. TLDAs performed as described (Pearen et al., 2012,
2013). Statistical analysis was performed on data acquired from n = 4 littermate pairs
using unpaired two-tailed Student's t-test where *P < 0.05; **P < 0.01; ***P < 0.001.

Previously, we identified that decreased adiposity in the Rora-deficient
sg/sg mice was associated with differential expression of the hierarchi-
cal adipose transcriptional regulators (Ehmt1, Tle3, Prdm16), increased
Ucp1 expression, and elevated expression of genes associated with the
induction of the thermogenic program (Lau et al., 2015). Therefore,
we performed qPCR analysis on selected key thermogenic regulatory
genes from chow-fed Tg-FABP4-RORa4 tg/+ mice, including Ehmt1,
Tle3, Prdm16, Ucp1 and the accompanying genes associated with ther-
mogenesis (e.g. Cidea, Acot11, Dio2, Erra, Pparc, and Mcpt1). We ob-
served no significant differences in the mRNA expression of the
transcriptional regulators, Ehmt1, Tle3 and Prdm16 in brown adipose tis-
sue (Supplementary Fig. 4), but we observed a significant decrease in

Fig. 6. Tagman low density array (TLDA) analysis of mRNA expression from subcutaneous
adipose and brown adipose tissue from Tg-FABP4-RORa4 relative to WT mice. Relative
gene expression of (A-D) Cpt2, Pnpla2, Adrb3, Ndufb5, respectively in SAT from HFD fed
32-week tg/+ Tg-FABP4-RORa4 and WT littermates (from n = 4). TLDAs performed as
described (Pearen et al., 2012, 2013). and presented as relative gene expression
(normalized against Gusb). Relative gene expression of Ucp1 and Cidea, respectively in
brown adipose tissue from chow (E-F) and high fat diet (G-H) fed 32-week tg/+ Tg-
FABP4-RORa4 and WT littermates (n = 4). Quantitative PCR was performed on RNA
fractionated from interscapular brown adipose tissue, and measured Ucp1 and Cidea
expression (using Tagman and SYBR assays), and presented as relative gene expression
(normalized against Gusb, and Rplp0, respectively) in samples from 32-week chow (E-F)
and high fat diet fed (G-H) Tg-FABP4-RORa4 and WT littermates (from n = 5).
Statistical analysis was performed using unpaired two-tailed Student's t-test where
*P<0.05; **P<0.01; **P < 0.001.

the expression of the mRNAs encoding Ucp1 (by ~60-70%) and Cidea
(by ~30-40%) in the brown adipose from Tg-FABP4-RORa4 tg/+
mice, relative to WT littermates on the chow and high fat diets, respec-
tively (Fig. 6E and F vs. Fig. 6G and H, respectively). However, we did not
observe any significant differences in the expression of the other genes
involved in the thermogenic program in the brown adipose from Tg-
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FABP4-ROR4 tg/+ mice, relative to WT littermates on the chow and
high fat diets, respectively (Supplementary Fig. 4). The decreased ex-
pression of Ucp1, is consistent with increased Ucpl mRNA expression
in the Rora-deficient sg/sg mouse model, and provides further evidence
for the association between RORa signaling and Ucpl mRNA expression.
Moreover, decreased Cidea expression correlates with increased lipoly-
sis, and decreased triglyceride deposition/lipid droplet formation (Puri
et al., 2008). Overall, the lipodystrophic SAT phenotype in the Tg-
FABP4-RORw4 tg/+ mice is in accord with gene expression changes
that affect lipid homeostasis.

3.6.2. RNA-seq and Pathway Analysis

We subsequently performed genome wide RNA-seq expression pro-
filing analysis on RNA collected from SAT and hepatic tissue to gain
deeper insights into the underlying molecular pathways. The analysis
identified >2400 genes/mRNA (total, after Benjamini and Hochberg cor-
rection) that were differentially expressed in the SAT in a significant
manner. We could also identify that RORa was significantly up-regulat-
ed by ~10-fold (P < 6.08 x 10~8%) in tg/+ SAT (Supplementary Table 1,
highlighted in gray). In contrast, only ~70 genes (total, after Benjamini
and Hochberg correction) in the liver were differentially expressed in
a significant manner (n = 3 littermate pairs). The top 50 up- and
down-regulated genes in SAT are listed in Supplementary Table 1 and
the up- and down-regulated genes in the liver are listed in Supplemen-
tary Table 1.

Ingenuity pathway analysis was performed to identify canonical
pathways and biological functions that were significantly enriched
with differentially expressed genes from the RNA-seq analysis. This
was performed with a cut-off value of >+1.3 fold-change (~1800
genes after cut-off). Pathway analysis on SAT identified significant en-
richment of differentially expressed genes involved in ~140 canonical
pathways in Tg-FABP4-RORa4 tg/+ mice. The analysis revealed that
the differentially expressed genes enrich approximately ~20% of each
pathway (Fig. 7A). The top 15 significantly enriched canonical pathways
and biological functions are shown in Fig. 7A. These include (the most
highly ranked pathway) hepatic fibrosis (P< 8.28 x 10 8). Interestingly,
the pathway analysis also identified significant enrichment of functions
associated with endocrine disorders and metabolic diseases, corre-
sponding to glucose metabolism disorder (P < 5.62 x 10~2%), insulin-
dependent diabetes mellitus (P < 2.39 x 10~2") and diabetes mellitus
(P < 1.44 x 10~ ') and further predicts that diabetes mellitus is in-
creased (z-score = 2.303) (Fig. 7B). Interestingly, 10 out of the top 15
significantly enriched canonical pathways are associated with immune
signaling and inflammatory response. In summary, this is in accord
with the phenotypes of impaired glucose clearance observed and high-
lights increased susceptibility in developing diabetes mellitus at the
transcript level with adipose-specific RORx expression.

Ingenuity pathway analysis of the liver is limited, identifying only 11
canonical pathways as significantly enriched with the list of differential-
ly expressed genes from RNA-seq analysis (~70 genes) between WT and
Tg-FABP4-RORw4 tg/+ hepatic tissue (Fig. 7C). Notably, hepatic fibrosis
was the most significant pathway in tg/+ liver (that displayed hepato-
megaly) as discussed previously. The pathway analysis and heatmap
depicted in Fig. 7D, also predicts that pathways associated with PPAR
signaling (P < 8.47 x 10~ 3) and PPARw activation (P < 4.69 x 10™2)
are inhibited while IL-6 signaling pathway (P< 1.52 x 10~ 2) is activated
(Fig. 7C/D). PPARs are well-known NRs that play a central role in fatty
acid metabolism (in particular lipid catabolism). IL-6 is a pro-inflamma-
tory cytokine and has been linked to development of hepatic steatosis
and hepatic insulin resistance (Sabio et al., 2008). These observations
in the hepatic tissue are in accord with increased lipid storage or possi-
ble tissue damage/fibrosis in Tg-FABP4-RORa4 tg/+ livers. Moreover,
functional DAVID pathway analysis of the liver (Supplementary Fig.
3B) revealed significant enrichment of functions that correspond to or-
ganization of collagen fibrils (P < 3.59 x 10~ '®) and inflammation of
organ (P < 2.07 x 107%),

3.6.3. RORo4 Expression and Immunity in SAT

The association between RORa4 expression and immunity in adi-
pose tissue is underscored by the pathway analysis identification of sig-
nificant activation of T lymphocytes signaling pathways, including PKC-
0 signaling in T lymphocytes (~30% of pathway enriched, z-score =
2.502, P < 7.22 x 107 %) and inducible T-cell co-stimulator (ICOS)-
[COS-ligand (ICOSL) signaling in T helper (Th) cells (~22% of pathway
enriched, z-score = 2.673, P<6.28 x 10~ %) (Fig. 8A-immune cell signal-
ing). The two significantly enriched T-cell signaling pathways com-
prised of several overlapping genes suggest that inflammatory
signaling may be activated in the SAT of Tg-FABP4-RORa4 tg/+ mice
as a result of RORa4 overexpression. The heatmap in Fig. 8B details
the fold changes of the genes involved in the two pathways accompa-
nied with expected direction of gene changes when the immune re-
sponse pathways are activated. Thus, the gene changes identified in
the RNA-seq/pathway analysis of the SAT, highlight potential changes
associated with T-cell signaling and PKC-6 signaling in tg/+4 SAT. Re-
cently, there have been several high profile publications utilizing analyt-
ical tools to allow for the discrimination of cell subsets and cell
composition in complex tissues from their gene expression profiles
(Newman et al., 2015; Qi et al., 2014). We utilized the CIBERSORT
gene expression deconvolution analytical tool (Newman et al., 2015)
on our RNA-seq data and plotted the predicted relative frequency of
the immune cell subtypes contained in the LM22 signature into a
stacked format. CIBERSORT was able to identify a significant increase
in CD4 T-cell signature (red) in the SAT from 3/4 of the tg/+ Tg-
FABP4-RORa4 mice relative to WT littermates (Fig. 8C and D).

3.6.4. RORa4 Expression, Fibrosis and Extracellular Matrix Remodeling in
SAT and Liver Tissue

Interestingly, the most significant canonical pathway in both Tg-
FABP4-RORai4 tg/+ SAT (P < 8.28 x 107%) and hepatic tissue
(P<5.11 x 10~ '3) is hepatic fibrosis (Fig. 7A and C). Although, there
is a contrast in the regulation of the genes between the two tissues,
this is in accordance with the phenotype. For example, many of the
genes that encode the extracellular matrix (ECM) collagen proteins
are down-regulated in the Tg-FABP4-RORa4 tg/+ SAT, but increased
in hepatic tissue (Fig. 9A). This is highlighted by the differential expres-
sion of collagens 4, 5, 6, 18, 19 and 23 (Fig. 9A), indicating ECM directed
molecular mechanisms are affecting fat deposition/energy storage in
adipose and liver. Collagen production and regulation is important for
adipose development and physiology, as well as adipose plasticity to
suit metabolic demands and changes (Mariman and Wang, 2010). In ad-
dition ECM reprogramming is necessary for adipose growth and expan-
sion on energy dense diets. In contrast, collagen production in liver is
associated with liver fibrosis. The role of collagens in controlling adipos-
ity is highlighted by loss of collagen XVIII (18) (significantly down-reg-
ulated in Tg-FABP4-RORa4 tg/+ SAT RNA-seq data) that results in
reduced adiposity, ectopic deposition of fat in the liver and hypertriglyc-
eridemia (Aikio et al., 2014). This effect was attributed to reduced fat
storage capacity due to perturbations in ECM remodeling and adipocyte
development associated with aberrant Wnt/B-catenin signaling (Aikio
et al., 2014). Therefore, we used qPCR to validate and demonstrate the
(~2-3-fold) significantly decreased expression of the Col18al long, me-
dium and short isoforms in SAT (Fig. 9B). In contrast, no significant dif-
ferences in expression were observed in visceral adipose tissue and
hepatic tissue (Fig. 9C and D). The recognized association between aber-
rant ECM and Wnt/B3-catenin signaling in dysfunctional fat deposition
was underscored by the RNA-seq analysis in SAT, that identified signif-
icant down-regulation of the mRNA encoding secreted frizzled-related
protein 5 (Sfrp5) by ~5-fold (P < 8.55 x 10~°%) (Supplemental Table
1, highlighted in gray). Sfrp5 is a Wnt antagonist that is typically upreg-
ulated in adipose during diet-induced obesity. Quantitative PCR analysis
further highlighted the attenuated response of Sfrp5 mRNA expression
to a high fat diet challenge in the Tg-FABP4-RORa4 relative to WT
mice, and the significantly decreased expression of Sfrp5 mRNA
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Fig. 7. RNA-seq and ingenuity pathway analysis of HFD inguinal adipose tissue and liver. RNA-seq was performed on RNA isolated from overnight fasted WT and Tg-FABP4-RORa4
(heterozygous) tg/+ mice that were in the HFD study (n = 4 littermate pairs). (A) The top 15 canonical pathways and biological functions enriched by differentially expressed genes
from the RNA-seq analysis comparing WT and tg/+ inguinal adipose tissues (HFD) highlighted by ingenuity pathway analysis. Ratio indicates the percentage of differentially
expressed genes per any given pathway and P-value threshold is set at P < 0.05 derived after Benjamini and Hochberg (B-H) multiple testing correction. (B) Significantly enriched
metabolic functions. Orange bars indicate positive z-score (predicted activation) and gray bars indicate no prediction of activation/inhibition state. (C) Significantly enriched canonical
pathways and top 10 biological functions associated with differentially expressed genes in tg/+ liver (HFD). (D) Gene expression changes in liver tissues of Tg-FABP4-RORa4 vs. WT
(n = 4 littermate pairs) comparing to expected expression direction of PPAR, IL-6 and PPARa/RXRa signaling activation.

expression in the SAT from Tg-FABP4-RORa4 relative to wild type on
the high fat diet (Fig. 9E). Overall, the difference in Sfrp5 induction in
Tg-FABP4-RORa4 tg/+ mice supports the findings of reduced weight
gain associated with specific reduction of SAT fat deposition/expansion
in HFD-fed Tg-FABP4-RORai4 tg/+ mice, and further suggests that the
ability to expand the adipose tissue may be altered in these mice.

In summary, adipose specific transgenic RORo4 expression results in
the differential expression of collagen genes (in SAT and liver) that are

critical for ECM remodeling, and aberrant Wnt signaling - both of
which are the underlying factors in altered fat deposition in adipose
and hepatic tissues. This is in accord with the very recent study demon-
strating the fat microenvironment controls depot specific expansion
and tissue mass on obesogenic diets (Jeffery et al., 2016), and
obesogenic studies on Wnt signaling (Mori et al, 2012;
Gutierrez-Vidal et al., 2015). Furthermore, the two gene expression pro-
filing approaches (qPCR and RNA-seq) identified differential expression
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Fig. 8. Activation of T-cell signaling and CIBERSORT analysis. (A) Significantly enriched immune cell signaling functions in HFD tg/+ SAT. Orange bars indicate positive z-score (predicted
activation from ingenuity pathway analysis). (B) The heatmap presents differentially expressed in SAT from Tg-FABP4-RORa4 vs. WT (n = 4 littermate pairs). Fold changes were shown in
log, scale with expected expression direction of PKC-6 and ICOS-ICOSL pathways (activation). (C-D) CIBERSORT analysis of SAT RNA-seq data for the quantification of relative levels
(percentage) of 22 immune cell subtypes (LM22 gene signature). Relative percentages are plotted in a stacked format in (C). The data specific to memory resting CD4 T cells listed in C
(red module) was extracted and an unpaired two-tailed Student's t-test was performed to calculate for significance where *P < 0.05.

of many genes involved in lipid, and glucose homeostasis coupled to
ECM remodeling, that are in accord with hepatic fibrosis as the most sig-
nificantly enriched pathway in Tg-FABP4-RORa4 tg/+ SAT and liver.
This provides molecular evidence supporting our observations of re-
duced subcutaneous adiposity, impaired glucose tolerance, ectopic fat
accumulation and liver fibrosis. This phenotype highlights important
crosstalk between the adipose tissue and the liver, under the modula-
tion of adipose-specific ROR alpha expression.

4. Discussion

The sterol-sensing ‘orphan’ NR, RORq, is expressed in a number of
metabolically active tissues and cell types, including the adipose tissue,
muscle, resident tissue macrophages and lymphocytes (Bookout et al.,
2006). This NR has been implicated in the regulation of lipid homeosta-
sis and responses to energy dense diets. These factors, and the signifi-
cance of lipid distribution in adipose depots and lean tissue suggested
a potentially important role for ROR« in obesity and inflammation. Ad-
ipose tissue is important for the regulation of energy homeostasis, in
part due to its role in storing triglyceride and secreting many endocrine

signaling proteins (Scherer, 2006). The local and systemic effects of
overexpressing RORa in the adipose tissues of Tg-FABP4-RORa4 mice
were examined herein.

Perhaps the most striking result from this study was that Tg-FABP4-
RORa4 mice demonstrated a remarkable shift in energy storage and fat
distribution from the SAT to non-adipose tissues when challenged with
a high fat diet (HFD). Specifically, we observed a subcutaneous
lipodystrophy associated with pronounced hepatomegaly and spleno-
megaly. These changes were also accompanied with decreased overall
weight gain and decreased total body fat percentage after HFD. De-
creased adiposity and reduced weight gain were most probably a reflec-
tion of decreased fat deposition in the subcutaneous depot. Moreover,
we also observed significantly higher fasting blood glucose levels and
impaired clearance of intra-peritoneally injected glucose in chow-fed
Tg-FABP4-RORo4 mice. The glucose clearance impairment was further
exacerbated when Tg-FABP4-RORa4 mice were placed on the HFD chal-
lenge. However, there were no apparent differences in insulin sensitiv-
ity, or circulating insulin levels. Histological analysis confirmed
markedly increased accumulation of lipid bodies and signs of portal fi-
brosis throughout the liver derived from Tg-FABP4-RORa4 mice. In
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Fig. 9. Gene expression changes in the hepatic fibrosis pathway and ECM regulation. (A) Heatmap of differentially expressed genes associated with hepatic fibrosis. Data was extracted
from STAR-DESeq2 output (RNA-seq pipeline). Each column represents log, fold-changes comparing SAT and liver tissues of Tg-FABP4-RORw4 vs. WT (n = 4 littermate pairs).
Relative gene expression of Col18al in (B) SAT, (C) visceral adipose tissue, and (D) liver, respectively from tg/+ Tg-FABP4-RORa4 and WT littermates in the HFD study (n = 4-5
littermate pairs). Quantitative PCR (utilizing SYBR primers) was performed on RNA fractionated from the tissues and presented as relative gene expression normalized against Rplp0.
Statistical analysis was performed using unpaired two-tailed Student's t-test where *P < 0.05; **P < 0.01; ***P < 0.001. (E) Relative gene expression of Sfrp5 in inguinal SAT from tg/+
Tg-FABP4-RORa4 and WT mice in the HFD study (n = 4 littermate pairs). Quantitative PCR was performed using TagMan assays and presented as relative gene expression
(normalized against Gusb). Statistical analysis was performed using a two-way ANOVA with Bonferroni's post-test applied where ***P < 0.001; n.s. denotes non-significant.
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comparison, chow-fed Tg-FABP4-RORa4 mice also presented with
splenomegaly and mild hepatomegaly at the end of the study, but do
not display changes to the adipose tissues and overall growth. This sug-
gests that the Tg-FABP4-RORai4 mice do not adapt appropriately to the
physiological challenges of an energy-dense diet in the context of lipid
storage and expansion of adipose tissue, but rather are associated with
aberrant energy storage and ectopic fat deposition in other (lean
mass) organs.

We utilized two approaches to understand the molecular mecha-
nisms underscoring the observed phenotype of subcutaneous
lipodystrophy with accompanying hepatic lipid accumulation and im-
paired glucose tolerance: targeted qPCR profiling of critical metabolic
genes and RNA-seq deep sequencing coupled with pathway analyses.

Focused qPCR analysis of critical metabolic genes in the transgenic
SAT (relative to the visceral adipose tissue) identified the selective and
significantly decreased expression of several important genes that
drive fatty acid biosynthesis, and lipid droplet expansion including
Acs14, Dgat2, Fasn and Scd2 in SAT from the Tg-FABP4-RORo4 line. Fur-
thermore, we identified decreased expression of Rab 18 and the Rab-
GAPs, Tbc1d1 and AS160/Tbc1d4. This pattern of expression in adipose
tissue has been associated with impaired glycemic control, energy ho-
meostasis, and fat storage (Hargett et al., 2016; Chadt et al., 2015;
Pulido et al., 2013). The subcutaneous specific differential expression
of several critical genes provided some insights into the subcutaneous
lipodystrophic and glucose intolerant phenotype in the Tg-FABP4-
RORoA4.

Moreover, additional qPCR profiling revealed the SAT lipodystrophy
in the Tg-FABP4-RORai4 mouse model is also associated with increased
lipid mobilization and catabolism (relative to WT littermates). For ex-
ample, we identified increased expression of the genes encoding Cpt2,
Pnpla2/ATGL and Adrb3 (Bonnefont et al., 2004; Jogl et al., 2004;
Smirnova et al., 2006; Ghorbani et al., 1997; Granneman et al., 2005;
Mottillo et al., 2010). This phenotype was coupled with decreased ex-
pression of the (adaptive) thermogenic driver, Ucp1, and Cidea (a mark-
er of increased lipolysis) in brown adipose tissue. This was in accord
with increased Ucp1 and Cidea expression in the brown adipose from
RORa deficient staggerer mice.

RNA-seq and pathway analysis identified differential expression of
many genes involved in lipid localization and transport, glucose metab-
olism disorder and diabetes in Tg-FABP4-RORa4 SAT. The analysis re-
vealed fibrosis as the most significant pathway in both the SAT and
liver. Interestingly, these two tissues display dysfunctional and aberrant
(and often reciprocal) regulation of mRNAs encoding ECM collagen pro-
teins; collagen transcripts were down-regulated in the SAT and inverse-
ly up-regulated in the liver. Collagen (5, 6 and 18) production and
regulation has been implicated in adipose development and physiology,
as well as adipose plasticity to suit metabolic demands and changes
(Mariman and Wang, 2010). Aberrant regulation and expression of
the extracellular matrix has been demonstrated to drive perturbed adi-
pose reprogramming during obesity and ectopic fat accumulation (Tam
etal.,, 2012; Aikio et al., 2014), ECM-guided molecular mechanisms con-
trol the adipogenic pathways and adipocyte size. Specifically, decreased
collagen expression in the SAT is in accord with decreased adipocyte
size, decreased fat deposition and ectopic fat accumulation (Aikio et
al., 2014). In this context we observed the selective decrease in the ex-
pression of the mRNAs encoding the short, medium and long forms of
Col18al in SAT, but not in visceral adipose tissue or liver.

Furthermore, in this context we identified the significantly de-
creased expression of (the Wnt antagonist) SFRP5. Down regulation of
Wnt signaling and gene expression are associated with adipogenic dif-
ferentiation (triglyceride storage), and Wnt3A driven dedifferentiation
of adipocytes decreases the medium and long forms of Col18a1 (Aikio
et al,, 2014). In contrast, SFRP5 is normally induced during differentia-
tion to attenuate Wnt signaling (Christodoulides et al., 2009) and in-
creased during diet-induced obesity (Koza et al., 2006; Lagathu et al.,
2009; Mori et al., 2012; Okada et al., 2009). Positive Wnt/B-catenin

signaling inhibits adipogenesis and Sfrp5 is strongly induced during ad-
ipocyte differentiation to counteract it (Christodoulides et al., 2009).
Consequently, Sfrp5-deficient mice are resistant to obesity (Mori et al.,
2012). Interestingly, reduced hepatic SFRP5 (mRNA and protein) ex-
pression in morbidly obese women is associated with fatty liver disease
(Gutierrez-Vidal et al., 2015). Overall, the difference in Sfrp5 induction
in Tg-FABP4-ROR0o4 tg/+ mice supports the findings of reduced weight
gain associated with specific reduction of SAT fat deposition/expansion
in HFD-fed Tg-FABP4-RORw4 tg/+ mice, and further suggests that the
ability to expand the adipose tissue may be altered in these mice.

Conversely, ECM accumulation in the liver is a hallmark of hepatic
fibrosis and is associated with hepatic stellate cell activation due to
inflammatory signaling (Bataller and Brenner, 2005). ECM
reprogramming is necessary for adipose growth and expansion on
energy dense diets, and fibrosis in fat tissue is associated with obesi-
ty in humans. In children, the presence of collagen in fat is associated
with adipocyte size, body mass index and M2 phenotype macro-
phages, providing further evidence of the association between ECM
remodeling and innate immunity (Tam et al., 2012). Interestingly,
loss of collagen 18 (significantly down-regulated by ~2-3-fold in
Tg-FABP4-ROR4 SAT) results in reduced adiposity, ectopic deposi-
tion of fat in the liver and hypertriglyceridemia (Aikio et al., 2014).
The phenotype was attributed to reduce fat storage capacity as a re-
sult of perturbations in adipocyte development. Interestingly, subcu-
taneous lipodystrophy, liver steatosis and glucose intolerance are
observed in humans with PPAR y mutations Clearly both are NR de-
pendent, and the metabolic phenotypes have clear parallels (Savage
et al., 2003).

Another interesting feature revealed by the RNA-seq analysis sug-
gests increased T-cell involvement/recruitment in the SAT of Tg-
FABP4-RORa4 mice. While RORa is known to regulate inflammation
and influence the development of specific lymphocyte populations, for
example T helper 17 cells and group 2 innate-like lymphocytes (Halim
et al,, 2012; Mjosberg et al., 2012), the biological significance of the in-
creased lymphocyte infiltrate in this mouse model and its relation to
the phenotypes remains to be elucidated.

Overall, our collective data suggests that RORx overexpression in
the SAT inhibits adipose plasticity, reducing fat deposition and expan-
sion in the tissue, in addition to a shift in lipid homeostasis toward in-
creased lipolysis and mobilization to secondary organs. This
potentially perpetuates increased inflammatory signaling and hepatic
stellate cell activation in the liver, activating the fibrotic program. The
evident adverse effects on the liver are possibly a compensatory mech-
anism for adipose dysfunction. Pathway analysis of the liver provides
support for this hypothesis, predicting inhibition of PPAR« signaling
and activation of IL-6 signaling.

In humans, there is a positive correlation between greater amounts
of lower-body (gluteo-femoral in particular) SAT depots and protection
against glucose intolerance and insulin resistance, dyslipidemia and
atherosclerosis (reviewed in Manolopoulos et al., 2010). In this context,
our data is in line with the view that subcutaneous fat serves as a protec-
tive metabolic sink for excess energy and loss of this depot/protection
leads to ectopic fat accumulation and impaired glucose clearance. This
severely hinders normal tissue function and perpetuates considerable
amounts of stress in these organs. Moreover, recent studies report met-
abolic benefits acquired after SAT transplantation into the intra-abdom-
inal cavity in mice, effectively conferring protection against HFD-
induced glucose intolerance and hepatic lipid loading (Hocking et al.,
2015; Konrad et al., 2007; Tran et al., 2008). For example, mice im-
planted intra-abdominally with SAT, but not epididymal visceral tissues,
were protected against HFD-induced glucose intolerance. These mice
were also protected against hepatic triacylglycerol accumulation and in-
flammation after HFD. However, the underlying mechanism remains
obscure as there were no differences in weight gain, glucose uptake by
other tissues (including the skeletal muscle), or plasma adipokine con-
centrations (Hocking et al., 2015).
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In light of the metabolic benefits conferred by expansion of SAT
and transplantation of SAT into intra-abdominal cavity, it is clear
that maintenance (or even supplementation) of SAT integrity offers
protection against glucose intolerance and lipid imbalance during
metabolic disease. Failure to sustain or expand adequate subcutane-
ous fat storage adversely impacts glucose tolerance and contributes
to ectopic fat accumulation in non-adipose organs such as the liver,
increasing susceptibility to inflammatory stress and cancer (Gentile
et al, 2015; Hocking et al., 2015; Wree et al., 2011). The pathology
presented thus far in the Tg-FABP4-RORa4 transgenic mouse
model is reminiscent of metabolic dysfunction, such as those of
childhood and adolescent obesity. Obese youths typically present
with (i) decreased subcutaneous adiposity, (ii) adipose tissue dys-
function accompanied with macrophage, dendritic cells and T-cells
recruitment and pro-inflammatory signaling, (iii) increased hepatic
lipid deposition/steatosis and muscle lipid deposition, and (iv) im-
paired glucose tolerance and insulin sensitivity (Corgosinho et al.,
2012; Aguilar et al., 2013; Rigamonti et al., 2013; Burgert et al.,
2006; Santoro et al., 2013).

Finally, in the context of this adipose specific FABP4 transgenic (over
expression) mouse model phenotype, it is essential to discuss the ca-
veats of this animal model. In the last five years several reviews have
highlighted the advantages and disadvantages of the different pro-
moters (for example FABP4 vs. adiponectin) for adipose specific gain
and loss of function studies including the following: (i) physiological
implications of leaky expression in non-adipose tissues and over ex-
pression and (ii) ectopic gene position and copy number (Wang et al.,
2010; Kang et al., 2014; Jeffery et al., 2014; Wang et al., 2014; Lee et
al., 2013). Recently it has been demonstrated that the FABP4 and
adiponectin Cre produced very similar phenotypes in side by side com-
parisons (Kim et al.,, 2016). However, these qualifications we discussed
above need to be considered in the interpretation of any transgenic over
expression model.

In conclusion, this animal model study suggests that the NR, RORa4,
has a critical regulatory role in the phenotype associated with decreased
subcutaneous fat deposition, fatty liver and impaired glucose tolerance.
Thus, establishing a role for RORa in these processes will potentially
allow us to pharmacological exploit its regulation for treatment of
these conditions.
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