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Abstract

Recent studies have linked human gut microbes to obesity and inflammatory bowel disease, but 

consistent signals have been difficult to identify. Here we test for indicator taxa and general 

features of the microbiota that are generally consistent across studies of obesity and of IBD, 

focusing on studies involving high-throughput sequencing of the 16S rRNA gene (which we could 

process using a common computational pipeline). We find that IBD has a consistent signature 

across studies and allows high classification accuracy of IBD from non-IBD subjects, but that 

although subjects can be classified as lean or obese within each individual study with statistically 

significant accuracy, consistent with the ability of the microbiota to experimentally transfer this 

phenotype, signatures of obesity are not consistent between studies even when the data are 

analyzed with consistent methods. The results suggest that correlations between microbes and 

clinical conditions with different effect sizes (e.g. the large effect size of IBD versus the small 

effect size of obesity) may require different cohort selection and analysis strategies.

Introduction

Recent advances in our ability to characterize the gut microbiota have led to tremendous 

interest in identifying organisms associated with different human diseases. Two general 

categories of disease that have attracted widespread interest are obesity, diabetes and 

metabolic syndrome, and inflammatory bowel disease including Crohn's disease and 

ulcerative colitis. In both cases, significant associations with disease have been reported by 

different studies. However, conflicting signals have been seen in the taxa associated with 

each disorder (as described in more detail below).

*To whom correspondence should be addressed: Rob Knight, Professor, BioFrontiers Institute, UCB 596, University of Colorado, 
Boulder, CO 80309, USA Tel: 303-492-1984, Fax: 303-492-7744, rob@colorado.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
FEBS Lett. Author manuscript; available in PMC 2016 October 04.

Published in final edited form as:
FEBS Lett. 2014 November 17; 588(22): 4223–4233. doi:10.1016/j.febslet.2014.09.039.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A major issue with comparing the results of different studies of the gut microbiota is that 

technical differences, including differences in DNA extraction protocols, PCR primers, etc. 

can often outweigh biological differences in the samples, especially when biological effect 

sizes are small [1]. Even computational differences, including which taxonomy database is 

used and which taxonomy assignment algorithm is used, can have surprisingly large effects 

[2]. These issues can be partially overcome for 16S rRNA amplicon studies by downloading 

all the relevant data and analyzing them with consistent methods [1].

Accordingly, for studies of obesity and IBD, we utilized recent studies identifying microbial 

association with disease using amplicon sequencing, and analyzed the raw sequence data 

using a consistent set of methods to test whether these diseases, widely reported as having 

associations with the human gut microbiome, harbored consistent signatures associated with 

disease.

Methods

To test which trends at the broad phylogenetic level or at finer taxonomic resolution were 

consistent across 16S amplicon survey studies, we performed a meta-analysis of high-

throughput amplicon sequencing studies. We processed demultiplexed data (i.e. sequences 

already assigned to their samples by barcode, downloaded from each study from the QIIME 

database, http://www.microbio.me/qiime/) using QIIME 1.8.0. Mapping files containing 

clinical information were also downloaded from the QIIME database. Samples lacking BMI 

or IBD data were filtered out, and BMI data were binned into categories of normal or obese 

based upon CDC BMI criteria (http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/

index.html). The data were clustered at 97% identity against the Greengenes database 

(August 2013 release) [3]using UCLUST [4] v1.2.22q, discarding reads that failed to match 

the reference sequences, which is referred to as a “closed reference” approach to clustering. 

Taxonomies came directly from the reference database based upon the identity of the 

reference sequence clustered against. The 97% OTUs phylogenetic tree supplied with 

Greengenes was used for UniFrac [5] metrics. OTU tables were rarefied at 1000 sequences 

per sample for beta diversity (UniFrac), Kruskal-Wallis tests, and supervised learning. 

Unrarefied tables were repeatedly (×10) subsampled at 1000 sequences per sample for alpha 

diversity metrics (Observed Species, Shannon, and Phylogenetic Diversity). Data were not 

rarefied for taxonomic abundance comparisons (ratios of Firmicutes:Bacteroidetes), but low-

abundance (<1000 sequences per sample) samples were filtered out to remove samples with 

questionable PCR or sequencing yields. The reason for taking the closed-reference approach 

is due to the various PCR primers used in different studies, which covered different regions 

of the 16S amplicon, so sequences from the same 16S gene would fall into different clusters 

because of the lack of overlap in the sequences if data were clustered de novo.

Results

Microbes associated with obesity

Obesity, and its related comorbidities, is a globally prevalent issue, and is expected to affect 

over half a billion people by 2030 [6]. Although microbes are by no means the sole factor in 

the obesity epidemic, alterations in the gut microbiota have been observed in obese humans 
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[7, 8], microbial differences have been reported to classify people as lean or obese with 

∼90% accuracy [9, 10], and in mouse models the obesity phenotype is partially 

transmissible via transmitting the microbes[11, 12], establishing that microbes can 

contribute to obesity. However, the nature of the microbial changes associated with obesity 

is less clear, unlike the more obvious differences that are present in the case of IBD. 

Conflicting reports exist regarding broad, phyla-level shifts in obese human guts. Many 

studies show an increased ratio of Firmicutes:Bacteroidetes [8, 13-19] although some other 

studies show no trend, or even the opposite trend [20-24]. However these studies vary in 

their methodology for sequencing and quantifying taxa (including amplicon sequencing, 

qPCR, rtPCR, PhyloChip, and HITChip). These studies have shown significant (and 

occasionally contradictory) enrichment for more specific taxa (Table 1). The sequencing 

data utilized in this study are the subset of studies with high-throughput amplicon 

sequencing data, and these are summarized in Table 2. The relative abundance of dominant 

gut taxa in each study is shown in Figure 1. Variation on a per-study basis is considerable 

even at the phylum level. To address the question of whether the Firmicutes:Bacteroidetes 

ratio increase is significantly associated with obesity, we compared the means of the ratios 

for subjects with normal versus obese BMI (BMI category is determined using criteria from 

the Centers for Disease Control). These ratios are shown in Figure 2. In all studies except 

one [25], there is a trend showing an increase in the ratio of Firmicutes:Bacteroidetes in 

obese over lean subjects. However, no significant differences overall between obese and lean 

categories were found using Wilcoxon rank-sum tests in R 3.1.0 [26], nor was the difference 

in Firmicutes:Bacteroidetes ratio statistically significant using Fisher's Method for 

combining multiple independent tests of a hypothesis [27]. Because several studies [8, 25, 

28] used the same PCR primers yet had opposite trends between lean and obese subjects in 

their respective populations, primer bias cannot drive the differences in observed 

Firmicutes:Bacteroidetes ratio or in the overall taxa summaries in Figure 1. Differences in 

sample handling and extraction, or differences among the populations studied, could account 

for the contradictory observations. In any case, the ratio changes between normal and obese 

individuals are not statistically significant overall and therefore should not be considered a 

general feature distinguishing normal and obese human gut microbiota across populations.

Obese individuals have also been reported to have less diverse gut microbiota than normal 

weight individuals [8, 10]. Differences are shown in Figure 3 and Figure 4 below for 

observed species (count of unique species) and the Shannon metric [29], a measure of 

species abundance and evenness, for each of the studies. As Figures 3 and 4 show, there is 

no consistent alpha diversity trend across 16S amplicon surveys of human BMI, and only 

one study showed significant differences with the observed species metric. In addition to the 

OTU-level alpha diversity calculations, significance was tested with taxonomic levels from 

phylum to species across each study with the Shannon and observed species metric. Only the 

phylum level Wu et al data have a significant difference (p-value 0.039) with the Shannon 

metric. Turnbaugh et al. detected increased phylogenetic diversity (QIIME's PD_whole_tree 

metric) in lean samples versus obese samples (supplementary figure 1C of [8]). The closed-

reference data generated during this analysis did not yield significantly different alpha 

diversity with the phylogenetic diversity metric, although the Turnbaugh data processed in a 

de novo fashion (pick_otus script with default settings, using UCLUST v1.2.22q, followed 
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by alignment of representative sequences with PyNast 1.2, filtering, and phylogenetic tree 

construction with FastTree 2.1.3, all using default QIIME parameters) shows a significant 

difference in diversity, replicating the observation of Turnbaugh et al 2009, as shown in 

Figure 5. The observed species and Shannon metric did not yield significant differences with 

the de novo processed data (not shown).

These results indicate that the overall diversity of the community, at least by 16S amplicon 

surveys, does not generally distinguish communities when closed-reference OTU picking is 

employed (requiring sequences to match what is already in the sequence database), although 

the difference seen in the de novo approach could indicate that novel taxa, not represented in 

the reference database, may differentiate these communities. Additionally, overall genomic 

content, as observed by Le Chatelier et al [10], but not by Turnbaugh et al. [8], could still be 

more diverse in lean communities due to genomic variation that is not detected using the 16S 

amplicon survey approach.

Clustering of the data showed no trend based upon BMI (the data clustered strongly by 

study, but no trends were observed within each study according to BMI). The PCoA plot 

(using unweighted UniFrac distances) in Figure 6 shows clustering colored by study and by 

normal/obese BMI categories (BMI categories not significantly different via PERMANOVA 

test). These results indicate that per-study effects are much larger than the biological effects 

separating lean from obese individuals, and point to a need to control for variation among 

studies.

Next, differences between taxa (examining all taxonomic levels from phylum down to 

species) within the studies were tested using a Kruskal-Wallis test. These are shown in Table 

3. The depletion of Faecalibacterium prausnitzii in the gut microbiota of obese individuals is 

consistent with prior studies. The species of Megasphaera that is increased in obese subjects 

is unknown, but it may fill the same niche in the obese gut as the short-chain fatty acid 

producers Eubacterium and Roseburia (fermenting excess carbohydrates into fatty acids 

absorbed by the host) [30] that were previously observed to be increased in obese human 

fecal microbiota (Table 1). There is a slight, but significant depletion of an unclassified OTU 

(Clostridiaceae family) for obese subjects in the Yatsunenko study. The nearest NCBI blast 

matches of cultured taxa include members of Clostridium cluster XI, which do not have 

unified metabolic properties. The failure to replicate the prior results may be due to actual 

population differences or alternative detection/quantification methods (e.g. amplicon 

sequencing versus qPCR) yielding different results.

Application of supervised learning (a form of machine learning where each sample is placed 

into a category that is used to create a training data set) with the random forest algorithm 

[31], i.e. decision trees based upon features, such as abundance of particular taxa, were used 

to build a model for placement of samples into categories for each study (across multiple 

levels of taxa, from phylum to the OTU level) for the normal and obese BMI categories. 

These had limited predictive power over random guessing (data not shown) using the QIIME 

supervised_learning.py script with default settings. Previous work [9] showed that one was 

able to classify the samples from the Turnbaugh dataset [8] into lean or obese subjects with 

the highest accuracies when clustering was done at lower thresholds than the standard 97% 
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OTU threshold (the optimal threshold was ∼82%). To replicate this approach, we clustered 

the demultiplexed sequence data using the pick_otus.py script utilizing UCLUST [4] 

v1.2.22q as the algorithm, and specified an identity of clustering of 0.600 to 0.995 in 0.05 % 

increments, which is a finer gradation but includes the original percent identities utilized by 

Knights [9]. These analyses revealed that the current implementation of supervised learning 

in QIIME has an important limitation for datasets which have categories whose composition 

are highly similar, such as lean and obese humans: the classifier is quite sensitive to 

disparities in the sample sizes, as shown below. The Turnbaugh data were evenly sampled at 

1000 sequences per sample, and processed with QIIME's supervised_learning.py (which 

uses random forests as its method) using 10× cross-fold validation for error estimation. 

Predicted error ratios are shown below in Figure 7, which show far better results for an even 

subset of the data matching the samples utilized originally by Knights (61 lean samples and 

61 obese samples, identified in Appendix A), and marginally better results for a random 

subset (30 lean versus 30 obese samples randomly chosen 10× for each percent identity, with 

the average error ratio plotted) versus the entirety of the data (61 lean samples versus 196 

obese samples).

To handle uneven sample abundances with data that are highly similar, such as in the obese 

versus lean human fecal 16S sequence, and still generate models that can accurate classify 

samples into categories, we used the receiver operator characteristic (ROC) curve approach. 

This approach uses an area under the curve (AUC) calculation to optimize feature (in this 

case OTU) selection, which maximizes sensitivity and specificity for categorization of 

samples into lean and obese groups. The commands are listed in Appendix B (the R scripts 

are provided as supplementary files). In contrast to the results in figure 7, when ROC-based 

optimization was used, the entire Turnbaugh dataset can be classified with over 80% 

accuracy at a range of OTU thresholds, as shown in Figure 8. A ROC AUC value of 0.5 is no 

better than random guess, and 1.0 corresponds to perfect sensitivity and specificity. The 

OTU threshold identities that resulted in the best classification ranged from 77.5% to 98.0%.

Application of the ROC-based supervised learning approach to the closed-reference 97% 

OTUs across each BMI study resulted in classification that was better than random, although 

only marginally in some cases. The ROC values are listed in Table 4, and the confusion 

matrices for each study are shown in Table S1.

Taken together, examination of the broad taxonomic shifts (e.g. the Firmicutes:Bacteroidetes 

ratios), alpha diversity of communities, clustering of obese versus lean individuals, and 

shifts of taxa within communities, suggests that there are only weak and, for the most part, 

non-significant associations of particular taxa or overall diversity with the obese human gut 

that hold true across different studies. However, using supervised learning with receiver 

operator curves to maximize sensitivity and specificity, one can categorize subjects 

according to lean and obese states with in some cases considerable accuracy, indicating that 

there are features present that discriminate between the lean and obese human fecal 

microbiota within each study but that are not consistent across different studies. As these 

features are not detected by other significance tests, this indicates that numerous small 

differences are present in the communities, rather than large differences in a few microbial 

taxa.
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The methodologies for sample handling, extraction, PCR amplification, and sequencing 

technologies could all contribute to the differences observed between studies (Figures 1-2). 

However, any prior observed differences due to algorithms or reference databases have been 

eliminated in this analysis. It is clear that the obesity phenotype is transmissible via 

microbes [12, 32] and hence there exist real differences between these microbial 

communities that confer physiologically relevant effects. The actual differences, if 

detectable with 16S surveys, are likely to be found with indicator taxa, such as 

Faecalibacterium prausnitzii, or alternatively, by measurements of minute changes over the 

community.

Microbes associated with IBD

Inflammatory bowel disease (IBD), which includes Crohn's Disease and Ulcerative Colitis 

[33], has clearer reported taxonomic shifts than obesity, including a depletion of Firmicutes 

and Bacteroides and enrichment in Proteobacteria and Actinobacteria [34]. Epithelial-

associated microbes of the small and large intestine are different than fecal microbiota [35, 

36], and are more likely to be key players in the etiology of IBD because of their more direct 

interaction with the affected tissues and the mucosal immune system. Despite the disparity 

in the fecal and epithelial-associated microbiota, detectable changes in fecal microbiota are 

still present in individuals with IBD [37]. This raises two clinically important questions: can 

particular forms of IBD be diagnosed from fecal samples alone (and avoid invasive medical 

procedures), and are such potential diagnostics consistent across populations studied (i.e., 

what dataset, if any, can be used to test an incoming sample from a random individual and 

have reasonably high accuracy in predicting if the subject has a particular form of IBD)? To 

address these questions, we examined studies of IBD based on human fecal 16S high-

throughput sequencing surveys [37-40] plus a study of a Swedish cohort led by Gina 

Lamendella that is currently unpublished (summarized in Table 5). These data were 

processed with QIIME 1.8.0, using the same software packages/settings with the closed-

reference approach described in Methods above, except for the even sampling depth used for 

beta diversity, Kruskal-Wallis tests, and supervised learning, which was 1004 sequences per 

sample.

These resulting taxonomic distributions for the three variants of IBD (UC=ulcerative colitis, 

CCD=colonic Crohn's disease, ICD=ileal Crohn's disease) and healthy controls (HC) are 

shown in Figure 9, and match the expected enrichment (Actinobacteria, Proteobacteria) and 

depletion (Bacteroidetes, Firmicutes) previously observed.

Clustering of healthy controls versus IBD samples are significantly different with a p-value 

< 0.050 with PERMANOVA tests of unweighted UniFrac distances. These PCoA plots are 

shown in Figure 10. A study effect is also apparent, which is seen in other PCoA axes (not 

shown). The small intestinal Crohn's disease samples clustered the most distinctly from the 

healthy controls, and there was substantially more overlap between healthy subjects and 

ulcerative colitis samples, which again reflects previous observations including a recent 

large cross-cohort analysis [41]. Next, the significant taxa associated with IBD states were 

tested using the Kruskal-Wallis test. These taxa are listed in Table 6. These taxa appear 

generally consistent with prior observations of enrichment, although there is a interesting 
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result of increased Bifidobacterium adolescentis and Lactobacillus in ICD and CCD 

samples, as these taxa have been used to treat chemically induced colitis [42]. Most of the 

prior studies recorded decreases in the overall abundance of the Bacteroidetes phylum, 

which was observed in this analysis as well (Figure 9), although these were not detected as 

significantly different at the phylum level with Kruskal-Wallis tests.

Mycobacterium avium subspecies paratuberculosis has been implicated in IBD [43]. Two 

subjects in this analysis had detectable Mycobacterium sequences, but these were 

exceedingly rare (19 out of 496038 sequences in a subject with ileal Crohn's disease, and 1 

out of 252119 sequences in a subject with ulcerative colitis). The PCR primers used are a 

perfect match for Mycobacterium avium, and hence should have amplified this taxon. If 

Mycobacterium species are present in these IBD patients, they are not detectable in the feces 

of the subjects. Case studies of fecal microbiota transplant treatment of recalcitrant IBD 

show a considerable success rate [46], indicating a causal role for gut microbiota in causing 

or exacerbating the symptoms of IBD. The microbes may be shifted to a state of dysbiosis 

by various factors (e.g. antibiotic usage or host immune system) in the IBD subjects. 

Depletion of certain commensal taxa (Akkermansia muciniphila, Faecalibacterium 
prausnitzii, Bacteroides uniforms) in IBD (the trend is different according to disease type) 

could be responsible for inappropriate immune responses in the host [47, 48, 49], and open 

up niches for occupation by invasive or pro-inflammatory species. Increased Proteobacteria 

and Fusobacteria (and a related decrease of less oxygen tolerant taxa, including many of the 

Firmicutes) could be due to increased available oxygen in the intestinal lumen of subjects 

with IBD. These increased oxygen-tolerant taxa have the potential to produce pro-

inflammatory responses in the host through flagellin or lipopolysaccharides [50, 51]. 

Bifidobacterium may be increased in abundance due to oxygen tolerance relative to other 

taxa [52]. Previous proteomic data suggests that certain opportunistic Bacteroides sp. 

pathogens are increased in IBD subjects, at the expense of Prevotella species, which could 

explain the shifts within Bacteroidetes in our observations [53].

Alpha diversity between IBD categories was also consistent with prior observations (i.e. 

lower in subjects with IBD relative to healthy controls), and is shown in Figure 11.

Predicted disease states via fecal sequencing

The question of whether the combined IBD microbiota data can provide an accurate training 

dataset for predicting disease states was tested using supervised learning (with the same 

ROC based approach described above for BMI samples). All levels of taxonomy (phylum to 

species) were tested, with 10-fold cross validation for error rate prediction. The species level 

table performed best for almost all comparisons between healthy controls and individual 

disease states and all disease states combined, which are shown in Table 7, with one 

exception-the family level had a slightly higher AUC ROC value (only 0.00326 higher) for 

healthy controls versus ICD samples, but this is much smaller than the accuracy that would 

be lost for each of the other categories when using the family level versus the species level. 

When all four classes of samples are combined, the supervised learning accuracy drops 

(68.6%). The confusion matrix for the combined four class data is shown in Table S2.
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These tests indicate that the combined inflammatory bowel disease sequence sets are 

accurate at placing individuals into an IBD/healthy category. These tests could therefore 

serve as a complement to other, non-invasive diagnoses of symptoms (serological markers, 

bowel movement frequency, bloody diarrhea, rectal lesions, and a variety of non-

gastrointestinal tract symptoms, which by themselves also suffer from a lack of sensitivity/

specificity in diagnoses) and minimize risks (e.g. nosocomial infections) to patients. The 

AUC ROC approach requires a two class comparison, so applications of this would be most 

optimal for an initial diagnosis to determine if the subject likely has IBD or not, or to 

complement other diagnostics that suggest a particular IBD type.

Conclusions

Our meta-analyses show that studies of inflammatory bowel disease reveal clear, consistent 

differences between healthy and diseased individuals that replicate across studies and where 

the biological effects between clinical states exceed per-study effects. In contrast, the 

differences between obese and lean individuals, even though these differences can be 

transmitted to recipient gnotobiotic mice [32], are much less consistent. The ratio of 

Firmicutes:Bacteroidetes is not a consistent feature distinguishing lean from obese human 

microbiota generally (although it has frequently been observed in animal studies in a range 

of taxa from reptiles to rodents), and previous studies did not find this pattern consistently 

when comparing human obese and lean fecal 16S amplicon data. However, in these previous 

studies, assessment of taxon abundance was not performed consistently with respect the 

clustering and taxonomic assignment of sequences between studies. The approach to 

clustering and quality control (i.e., “closed reference”) used here is a conservative one, as it 

limits the potential for sequencing noise and chimeras to interfere with the results at the cost 

of perhaps discarding real, novel reads. However, as human-associated microbiota have been 

sequenced with considerable coverage, and the most up to date Greengenes reference 

database was used, the potential for large numbers of novel reads being discarded is 

minimal. As shown in the gnotobiotic mouse transplant systems, microbes can have an 

impact on obesity, so the limited significant differences observed in the taxa (Kruskal-Wallis 

tests) are surprising. It is possible that the differences between the lean and obese microbiota 

are present in the pan-genome of the microbes (not detectable by amplicon sequencing), that 

low-abundance taxa in the fecal samples are colonizing other locations in the colon (e.g. the 

proximal colon or the cecum) of the recipient animals and driving the differences observed 

in the hosts' physiology, and hence are not apparent in the fecal communities of the human 

subjects being studied, or that the differences may be multiple, small shifts in the community 

that escape detection with significance tests, but when combined can differentiate lean and 

obese communities with an approach like supervised learning.

To determine whether a consistent pattern was observable across multiple studies with IBD 

and normal versus obese individuals, all available datasets were reprocessed using the latest 

reference 16S rRNA gene database. For clinical utility, such as evaluating a particular form 

of Crohn's disease, a taxonomic signature needs to be consistent across populations. In the 

BMI data analysis, there was no significant signal in the Firmicutes:Bacteroidetes ratio or in 

overall diversity of the samples to differentiate obese and normal weight subjects. Indicator 

taxa were found within studies to be significant, although these were not found to be 
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consistently significant across studies (a trait also frequently seen with host genetic markers 

in GWAS, and also potentially due to differences in clinical phenotypes for obesity in the 

different studies). The taxa found to be significantly different in each of the BMI analyses 

may be linked to increased inflammation in individuals with high BMI (decreased 

Faecalibacterium prausnitzii) or increased extraction of energy from dietary polysaccharides 

(Megasphaera sp). In contrast, many consistent, significant shifts were detected in IBD 

subjects, which may be related to a dysregulated immune system or altered environment 

(luminal oxygen content or antibiotics). Judicious use of supervised learning, optimized to 

maximize sensitivity and minimize noise, can be used to distinguish lean and obese 

individuals with some degree of accuracy. The inflammatory bowel disease studies showed 

clearer patterns: many taxa are significantly enriched or depleted in subjects with IBD, 

significantly reduced overall diversity is present in subjects with inflammatory bowel 

disease, and significant differences are detecting when clustering IBD samples and healthy 

controls. Using the combined IBD data as a training set, a reasonably accurate assignment of 

subjects between healthy and particular IBD state is possible, but would need to complement 

other diagnostics in a clinical setting.
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Figure 1. Relative abundance of phylum-level gut microbial taxa
Studies listed below are Zupancic [25], Wu [28], Human microbiome project [44], 

Turnbaugh [8], and Yatsunenko[45].
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Figure 2. 
Ratios of Firmicutes:Bacteroidetes in normal versus obese BMI subjects. Means of ratios for 

each study/BMI category are shown. Error bars are standard error of the mean. The 

Turnbaugh study includes a number of samples with extremely low Bacteroidetes, leading to 

large standard error values.
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Figure 3. 
Alpha diversity (observed species) across studies. Metric is observed species (counts of 

unique OTUs). Sequence depth is 1000 sequences per sample, and subsampling was 

performed 10 times. P-values were calculated by using a Monte Carlo simulation with 999 

permutations
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Figure 4. 
Alpha diversity (Shannon) across studies. Metric is Shannon (abundance and evenness). 

Sequence depth is 1000 sequences per sample, and subsampling was performed 10 times. P-

values were calculated by using a Monte Carlo simulation with 999 permutations

Walters et al. Page 18

FEBS Lett. Author manuscript; available in PMC 2016 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Alpha diversity (PD) for Turnbaugh et al data [8] across clustering methods. Metric is 

phylogenetic diversity (a measure of branch length of the phylogenetic tree occupied by the 

sequences present in the samples). Sequence depth is 1000 sequences per sample, and 

subsampling was performed 10 times. P-values were calculated by using a Monte Carlo 

simulation with 999 permutations
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Figure 6. Clustering of BMI samples with unweighted UniFrac
Shape/Color: Study/BMI category

Purple square: Zupancic normal

Brown triangle: Zupancic obese

Orange square: Turnbaugh normal

Pink triangle: Turnbaugh obese

Red circle: Wu normal

Yellow diamond: Wu obese

Dark blue circle: HMP normal

Light blue triangle: HMP obese

Green triangle: Yatsunenko normal

Grey circle: Yatsunenko obese
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Figure 7. Comparison of supervised learning error ratios to clustering identity of data
Samples matching those used in Knights et al [9] replicated the improved classifications 

relative to random guessing (value of 1) for lean and obese subjects in the Turnbaugh [8] 

study, and are shown as the red line. The average error ratio for a random subsample of 30 

obese and lean samples (10× sample at each percent identity, average ratio is shown) is 

depicted in blue. The purple line shows the classification error ratio when all samples (61 

lean versus 196 obese samples), which is essentially no better than random guess for any 

clustering identity. The sequences were clustered using a de novo approach for each percent 

identity listed.
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Figure 8. Receiver operator characteristic curve values for all Turnbaugh lean and obese 
subjects
The average ROC area under the curve value (using random forest method) for each 

clustering identity was calculated by the averaging the 5× repeated (with 10-fold cross-

validation) optimized ROC values. A 0.5 value indicates no better than random guess, while 

1.0 indicates perfect sensitivity and specificity. The sequences were clustered using a de 

novo approach for each percent identity listed.
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Figure 9. Phylum-level taxa plots for IBD subjects versus healthy controls
Seven most abundant phyla shown. HC=healthy controls, UC=ulcerative colitis, 

CCD=colonic Crohn's disease, ICD=ileal Crohn's disease. Error bars indicate standard error 

of the mean.
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Figure 10. PCoA plots of healthy controls versus subjects with IBD
Distances were calculated with unweighted UniFrac. A-HC vs UC samples B. HC vs CCD 

samples C. HC vs ICD samples. Distances between healthy controls and all IBD categories 

are significantly different (p-value < 0.050 with PERMANOVA tests (999 permutations). 

Data were evenly sampled at 1004 sequences per sample.
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Figure 11. Alpha diversity for IBD subjects and healthy controls
Y-axis indicates observed species value. Healthy control samples are significantly different 

from all inflammatory bowel disease categories with a p-value of < 0.05 (Monte Carlo 

permutation test, permutations = 999). The samples were repeatedly sampled (10×) at 1000 

sequences/sample.
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Table 1
Reported taxon enrichment and depletion in the obese gut as reported in prior studies

Abundance shifts in obese guts

Taxa Increased Decreased Citation

Actinobacteria

 Bifidobacterium (genus) + [23]

  Bifidobacterium animalis + [46]

Euryarchaeota

 Methanobrevibacter smithii + + [22, 23]

Firmicutes

 Oscillospira [sp] + [24]

 Clostridium cluster XIVa + [18]

  Roseburia intestinalis + [18, 24]

  Eubacterium rectale + [15, 24]

 Faecalibacterium prausnitzii + [16, 18]

 Lactobacillus (genus) + [13, 47]

  Lactobacillus casei/paracasei + [46]

  Lactobacillus reuteri + [46]

Bacteroidetes

 Bacteroides (genus) + [15, 22]

  Bacteroides vulgates + [13, 18]

  Bacteroides uniforms + [18]

 Alistipes (genus) + [18]
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Table 2
Studies used for BMI component of meta-analysis

Study Sequencing Platform Observations

Zupancic [25] 454

Lack of correlations to BMI, however, certain taxa were positively (e.g B. ovatus, R. 
torques) or negatively (e.g. F. prausnitzii, Clostridium glycolicum) correlated to metabolic 

syndrome traits

Turnbaugh [8] 454
Reduced diversity in obese microbiome, shift to higher Firmicutes abundance in obese 

subjects

Human Microbiome 
Project [44] 454

Modest association of oral Pseudomonadaceae with BMI, not associations reported with 
gut microbiome.

Wu [28] 454

Oscillibacter genus negatively correlated to BMI, Veillonellaceae positively correlated to 
BMI. Long-term diet shaped the Prevotella (high fiber) versus Bacteroides (high fat) 

abundances in the subjects.

Yatsunenko [45] Illumina HiSeq
Reported results did not discuss BMI, although diet-specific metabolism differences were 

detected across populations
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Table 3
Significant taxa associated with BMI via Kruskal-Wallis test

FDR multiple comparison correction used. Only taxa with at least 0.5% relative abundance in at least one of 

the BMI categories were included.

Study Taxa Obese mean Normal Mean p-value

Zupancic Faecalibacterium prausnitzii 0.031914894 0.0447 0.023

Turnbaugh Megasphaera [sp] 0.006372549 3.13 × 10-5 0.004

Yatsunenko Clostridiaceae 0.00214 0.005011236 0.022
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Table 4
Receiver operator characteristic curve values for 97% closed-reference OTUs by study

Values listed are average values of 5× repeated ROC analyses, using random forest method, with 10-fold cross 

validation.

Study ROC AUC Values Standard Deviation

Turnbaugh 0.7250379 0.1488683

Amish 0.6077041 0.1103585

HMP 0.6656818 0.1295004

Wu 0.8623333 0.1638126

Yatsunenko 0.6259477 0.1033857
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Table 5
Studies used for IBD component of meta-analysis

Study Sequencing Platform Observations

Papa [37] 454
The authors observed decreased diversity in IBD patients, depletion in Firmicutes, 

increased Proteobacteria and Actinobacteria in IBD subjects.

Momozawa [38] 454

The purpose of study was to examine the differences between the microbiome of 
intestinal biopsies and stool and how extraction techniques altered the microbiome. A 

subset of subjects, with IBD, were present and used for this meta-analysis, but no 
conclusions regarding IBD itself were reported in this study.

Morgan [39] 454
The authors observed decreased Firmicutes abundance and increase Proteobacteria 

abundance in IBD subjects.

Willing [40] 454

The authors found differences among categories of IBD (e.g. ulcerative colitis and ileal 
Crohn's disease) versus healthy controls. The smallest differences were observed in 

ulcerative colitis, and the largest in small intestinal forms of IBD.

Lamendella (unpublished) Illumina MiSeq
This study is a Swedish cohort, with longitudinal stool samples along with flare-up and 

remission data.
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Table 6
Taxa associated with IBD

+ or − indicates that taxa were significantly enriched or depleted relative to healthy controls with a Kruskal-

Wallis test and Bonferroni multiple comparisons correction. Only taxa that were present in at least 0.5% of one 

of the categories (HC, UC, CCD, or ICD) were included. Data were rarefied to 1004 sequences per sample. 

The ‘Matches Study” column includes a reference with consistent observations to the abundance results 

reported in this study.

Taxonomy UC CCD ICD Matches Study

Actinobacteria + + [34,37,40]

Bifidobacterium [sp] + + [40]

Bifidobacterium adolescentis + +

Bacteroidetes

Bacteroides eggerthii -

Parabacteroides distasonis -

Parabacteroides [sp] - -

Bacteroides uniformis -

Bacteroides [sp] + +

Paraprevotella [sp] +

Prevotella [sp] - - - [40]

Prevotella copri - -

Rikenellaceae -

Barnesiellaceae [unknown genus] -

Firmicutes - [37,39]

Faecalibacterium prausnitzii - + - [34,40]

Oscillospira [sp] - -

Clostridiales (unknown family) - [37,41]

Clostridium [sp] - - -

Roseburia [sp] - [39,40]

Lachnospiraceae (unknown genus) - [34]

Coprococcus [sp] - [37]

Ruminococcus gnavus +

Ruminococcus [sp] - - [37,39]

Lachnospira [sp] - [34,37]

Blautia [sp] +

Blautia producta +

Dialister [sp] +

Veillonella dispar + [40]

Phascolarctobacterium [sp] - - [39]

Lactobacillus [sp] + [37,40]

Fusobacteria + [41]
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Taxonomy UC CCD ICD Matches Study

Fusobacterium [sp] + [41]

Gamma-Proteobacteria + [34,37,39,40,41]

Enterobacteriaceae + [37,39,40,41]

Verrucomicrobia - -

Akkermansia muciniphila -
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Table 7
Predicting IBD state via supervised learning

Values listed are average values of 5× repeated ROC analyses, using random forest method, with 10-fold cross 

validation. Healthy controls versus each individual category of disease are shown as well as healthy controls 

versus all IBD categories combined. A ROC AUC value of 0.5 is no better than random guess, whereas 1.0 

indicates perfect specificity and sensitivity.

Categories Compared ROC AUC value ROC AUC stdev

Healthy controls versus ulcerative colitis 0.92258803 0.04239816

Healthy controls versus colonic Crohn's disease 0.87879176 0.07375804

Healthy controls versus ileal Crohn's disease 0.96996245 0.0378

Healthy controls versus all IBD categories 0.92404109 0.04297096
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