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Abstract

Alteration of the gut microbial community structure and function through antibiotic use increases 

susceptibility to colonization by Clostridium difficile and other enteric pathogens. However, the 

mechanisms that mediate colonization resistance remain elusive. As the leading definable cause of 

infectious diarrhea, toxigenic C. difficile represents a burden for patients and health care systems, 

underscoring the need for better diagnostics and treatment strategies. Next-generation sequence 

data has increased our understanding of how the gut microbiota is influenced by many factors 

including diet, disease, aging and drugs. However, a microbial-based biomarker differentiating C. 
difficile infection from antibiotic-associated diarrhea remains elusive. Metabolomics profiling, 

which is highly responsive to changes in physiological conditions, have shown promise in 

differentiating subtle disease phenotypes that exhibit a nearly identical microbiome community 

structure, suggesting metabolite-based biomarkers may be an ideal diagnostic for identifying 

patients with CDI. This review focuses on the current understanding of structural and functional 

changes to the gut microbiota during C. difficile infection obtained from studies assessing the 

microbiome and metabolome of samples from patients and murine models.
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Introduction

Clostridium difficile is the major cause of infectious diarrhea in the United States, causing 

12.1% of health care-associated infection (1, 2). The mortality rate for health-care associated 

C. difficile infection (CDI) is estimated at 9.3%, contributing to 29,000 deaths in the U.S. 

(3). C. difficile pathogenicity is attributed to the production of two enterotoxins, TcdA and 
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TcdB that inactivate GTP binding proteins, triggering a cascade of events culminating in 

diarrhea and colitis that can range from mild to life-threatening illness (4–7). The host 

immune response to C. difficile toxins is reported to modulate CDI susceptibility (8–10) and 

an inadequate humoral immune response to C. difficile toxins and/or a lack of anti-toxin 

antibodies influences development of CDI (9–12).

Disruption of the gut microbiota is another underlying component of Clostridium difficile 
pathogenesis. Therefore, it is not surprising that both established and proposed risk factors 

for developing CDI are associated with an altered intestinal ecosystem (Table 1, Fig. 1). Two 

major risk factors for CDI; antibiotic exposure and advanced age are both known to impact 

the gut microbiome and metabolome (13–16). Compared to healthy adults, the gut 

microbiota of the elderly and individuals receiving antibiotics display decreased microbial 

diversity, evenness and richness. Moreover, taxonomic changes within the microbiomes 

share similar characteristics including, enrichment of Proteobacteria and decreased 

abundances of Firmicutes and Bifidobacteria (Table 1) (13–15, 17). Decreases in microbial 

diversity and comparable taxonomic alterations are reported for other CDI risk factors, 

including inflammatory bowel disease, chemotherapy and use of proton pump inhibitors 

(Table 1). Microbiome dysbiosis likely increases CDI susceptibility by altering several 

aspects of colonization resistance (18–20), including but not limited to antimicrobial 

production (21), competition for nutrients (22–25) and bile acid metabolism (26–30). 

Moreover, altered communication between the immune system and the microbiome may 

also contribute to increased susceptibility to CDI following antibiotic exposure (31–35).

Understanding how alterations to the gut microbiota contribute to CDI susceptibility is 

expected to identify novel therapeutic strategies and biomarkers that may predict treatment 

outcome and improve diagnostics. The currently preferred diagnostic platform, nucleic acid 

amplification of the C. difficile toxin-encoding genes, cannot distinguish between 

colonization and disease (36). Not only have the rates of CDI steadily increased since 

adoption of this method (37–40), a recent study found that up to 25% of patients were 

misdiagnosed for CDI (41). Although, inclusion of the toxin immunoassay (42, 43) and/or 

glutamate dehydrogenase (44) assay with nucleic acid amplification provides results that 

correlate better with clinical disease (40), there is currently no clinical diagnostic available 

that quickly and reliably identifies patients at risk for CDI recurrence. Several studies 

suggest that 15–35% of patients who initially respond to therapy will experience a recurrent 

episode following cessation of antibiotics (45–47). Subsequently, up to 50% of these patients 

will experience further relapse resulting in substantially higher morbidity and mortality (48). 

Frequent readmission to a primary care facility are common, contributing to an economic 

burden that is up to three times higher for recurrent CDI than what is estimated for primary 

CDI (3, 49).

In addition, therapeutics for primary and recurrent CDI are lacking. First line therapy 

typically includes vancomycin or off-label use of metronidazole while fidaxomicin is 

currently considered the best practice for treating a recurrent infection. However, efficacy of 

fidaxomicin treatment decreases significantly with each recurrent episode underscoring the 

need to identify patients at risk for recurrence as indiscriminant treatment of all primary 

cases with fidaxomicin may be cost prohibitive (50–53).
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The clinical success of Fecal Microbiota Transplantation (FMT), which involves the transfer 

of fecal bacteria from a healthy donor to a CDI patient, presents some of the strongest 

support for the modulation of C. difficile susceptibility by the microbiome (54–61). Most 

recurrent CDI patients receiving FMT have repeatedly failed antibiotic-therapy and recover 

clinically with disease eradication after one treatment. A defined cocktail of well-studied 

organisms is expected to be safer and have fewer consequences. Moreover, if at-risk patients 

can be identified, it is likely that a prebiotic could prevent an initial infection. Here we 

discuss what is currently known about the structure and function of the microbiome during 

C. difficile infection.

C. difficile and the gut microbiome

Several recent studies utilized next generation sequencing to compare the microbiome 

profiles of individuals without diarrhea (NDC) to patients with CDI and patients with C. 
difficile negative diarrhea (CDN) (62–64). Although these studies identify clear differences 

between NDC and active diarrhea, they do not readily distinguish CDI from CDN (63, 64). 

Compared with controls, both CDI and CDN samples exhibit lower diversity and decreased 

species richness, as well as a high degree of heterogeneity among individual samples (62–

64). In addition, the diarrheal samples exhibit a low abundance of Bacteroidiaceae, 

Lachnospiraceae and Ruminococcaceae, which dominate the microbiomes of NDC samples. 

Specimens from patients with active diarrhea have increased abundances of 

Lactobacilliaceae, Enterococcaceae, Streptococcaceae and Proteobacteria compared to 

controls (Fig. 1) (62–64). Notably, decreases in Clostridiales have also been reported in 

patients with diarrhea (62, 63) and patients at risk for developing CDI (65). The nonspecific 

disruption of the gut microbiota, regardless of C. difficile status, may suggest that many 

patients with active diarrhea are susceptible to CDI and that the presence of C. difficile does 

not alter the fecal microbiome structure.

Inclusion of asymptomatic carriers, toxigenic C. difficile positive patients receiving 

antibiotics without signs of diarrhea, is likely to provide important epigenetic information 

regarding CDI susceptibility. A recent study by Zhang et al. found that samples from 

asymptomatic carriers exhibited decreased diversity, similar to samples obtained from CDI 

patients, but were structurally more similar to healthy control samples (66). The 

asymptomatic carrier specimens contained fewer Proteobacteria than CDI samples and a 

greater abundance of Bifidobacteria, which were completely lacking in the CDI specimens 

(66). These data suggest that the presence or absence of certain microbial taxa is more 

important than microbial diversity when considering CDI susceptibility. Another study 

found microbial taxa belonging to the Clostridium XIVa group correlated with C. difficile 
carriage, but not development of CDI, in a population of patients with similar levels of alpha 

diversity and who received chemotherapy and antibiotics (67). It is also possible that a 

protective toxin immune response contributes to adult asymptomatic C. difficile carriage in 

the absence of microbial diversity.

Low microbial diversity and asymptomatic carriage of toxigenic C. difficile is also prevalent 

during the first year of life (68–71) when the gut microbiome is dominated by 

Bifidobacterium and Lactobacillus (72–75). Although passive transfer of maternal 
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antibodies (76, 77) and a lack of toxin receptors have been proposed (78), the mechanism for 

asymptomatic C. difficile carriage in this population remains unknown. A single study 

characterized the intestinal microbiota of children with CDI aged 28–48 months (79) and 

reported changes in the microbiota that were similar to changes in adult specimens. They 

observed that fecal microbiota diversity and richness in children with CDI was significantly 

reduced and exhibited greater heterogeneity compared to samples from healthy children 

(79). The pediatric CDI samples also displayed similar taxonomic alterations; reduced 

Bacteroidiaceae, Ruminococcaceaa, and Lachnospiraceae and increased Enterococcaceae, 

Enterobacteriaceae, Streptococcaceae and Lactobacillaceae (79). However, asymptomatic 

carriage of C. difficile is highest in infants (<12 mo), which were not included in this study 

(68, 70).

Few studies have investigated structural changes within the gut microbiome of recurrent 

patients. A recent study comparing samples from healthy, primary and recurrent CDI 

patients reported that recurrent CDI samples were significantly less diverse that primary CDI 

samples. Similar findings were reported by a 2008 study comparing 16S clone libraries (80, 

81). Allegretti et al. also found that both primary and recurrent samples contained 

significantly fewer Clostridiales and members of the Collinsella genus than the healthy 

control specimens (81). However, the majority of next generation sequence data regarding 

the gut microbiome of recurrent CDI patients has largely been provided by studies analyzing 

changes to the gut microbiota following FMT. Similar to primary CDI and antibiotic 

associated diarrhea, pre-FMT samples show decreased diversity, richness and evenness 

compared to healthy donors and post-FMT samples (54, 56, 57, 61, 82, 83). In addition, pre-

FMT samples exhibit reduced levels of Bacteroidiaceae, Lachnospiraceae and 

Ruminococcaceae and are enriched for Enterococcaceae, Streptococcaceae and 

Veillonellaceae compared to donors and samples collected following FMT (56, 57, 61, 82, 

83). While these studies clearly demonstrate the importance of the microbiome in 

modulating CDI and provide unique insight into recovery of the gut microbiota following 

this therapy, they do not provide insight into disease recurrence as these studies lack 

longitudinal samples. Moreover, the majority of pre-FMT samples are collected during 

vancomycin administration which will further alter the gut microbiota.

Disease susceptibility and the gut metabolome

The inter-individual variability of the human gut microbiota (84) is a major hindrance to 

identifying species that can either function as biomarkers of CDI or provide colonization 

resistance. Because different microbial communities can provide similar functions, 

examining the metabolic status of health and disease may be more useful in terms of 

identifying biomarkers of disease susceptibility than microbial community structure. In 

support of this, a recent CDI study was able to differentiate three similar patient groups 

irrespective of age, gender, antibiotic use, disease duration or medical history through global 

metabolic profiling (85). A comparison of patients with diarrhea that were: (1) positive for 

C. difficile and toxin production, (2) positive for C. difficile but negative for toxin 

production, and (3) C. difficle negative, identified metabolites that were C. difficile specific, 

such as N-palmitoyl glutamic acid, phlorizin, ceramide and Leonuriside A. They also found 

that toxin production was associated with deficiencies in choline and acetyl-putrescine. 
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Notably, these differences were only observed in stool samples that were pre-treated with 

sonication and multiple centrifugation steps to obtain a sample consisting mostly of 

microbial cells. Analysis from non-pretreated stool samples did not differentiate these three 

groups (85).

The majority of metabolite data has been obtained from murine models and has identified 

pathways that may be important for CDI susceptibility including bile acid metabolism, 

amino acid metabolism and carbohydrate fermentation (Fig. 1).

Bile acid metabolism

The contribution of altered bile acid metabolism due to administration of antibiotics is one 

mechanism C. difficile may exploit during infection. It is proposed that, in a healthy 

microbiota, the primary bile acid, chenodeoxycholate and secondary bile acids, 

deoxycholate and lithocholate, inhibit spore germination and growth of C. difficile in the 

large bowel. However, administration of antibiotics alters microbial structure and bile acid 

metabolism. As a result, chenodeoxycholate concentration and transformation of cholate to 

deoxycholate is reduced, creating a colonic environment that favors spore germination and 

bacterial expansion (Fig. 1). Several studies report increased tauro-conjugated primary bile 

acids and decreased secondary bile acids, including deoxycholate, following antibiotic 

administration in animal models (16, 28–30) and patient samples (83). These results are 

supported by in vitro (86) (87–90) and in vivo studies (26, 91) assessing the effects of 

primary and secondary bile acids on C. difficile growth and germination. Strong evidence 

for modulation of CDI susceptibility by fecal bile acid composition was recently described 

by Weingarden. They reported that secondary bile acids, lithocholate, deoxycholate and 

isodeoxycholate, were absent in pre-FMT samples while primary bile acids, cholate and 

chenodeoxycholate, were significantly decreased in post-FMT and donor samples (83). 

Similarly, Allegretti et al. found that specimens from primary and recurrent CDI patients 

contained significantly higher levels of primary bile acids and lower levels of secondary bile 

acids compared to samples obtained from healthy controls. They also noted that primary bile 

acids were significantly elevated in samples from recurrent cases compared to samples 

obtained from patients experiencing the first episode of CDI (81).

Amino acids

Like bile salts, amino acids play an important role in the life cycle of C. difficle. Glycine, in 

combination with certain bile acids, promotes C. difficile germination (88, 92). In addition, 

histidine and to a lesser extent, arginine, aspartic acid and valine, can further enhance 

germination in the presence of both glycine and conjugated bile acids (93). An increased 

abundance of histidine was associated with patient samples that were C. difficle positive but 

not those that were C. difficle negative (85) while glycine and valine, among other amino 

acids, are associated with the cecal contents of C. difficile susceptible animals (29). In 

addition, N-acetylated forms of methionine, leucine and isoleucine were increased in the 

cecal contents of antibiotic-treated susceptible mice while n-acetylated aspartate decreased 

(30). Global metabolic profiling also suggests that metabolism of another amino acid, 

tryptophan, may play a role in colonization resistance. The intestinal microbiota synthesize 
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several compounds from tryptophan (30, 94, 95), including indol-containing metabolites, 

such as inole-3-propionic acid and kynurenate, which were decreased following antibiotic 

treatment during a time period where mice were susceptible to C. difficile colonization (30).

During this time period, other tryptophan metabolites, indole lactate and N-acetyltryptophan, 

which presumably result from host enzyme activity, concurrently increased, suggesting that 

in the absence of microbial activity, tryptophan becomes available for utilization by host 

proteins (30). Unlike amino acids, microbial-derived tryptophan products increased when 

colonization resistance was restored suggesting tryptophan metabolism may serve as a 

biomarker for colonization resistance. Other investigators have observed increased levels of 

tryptophan in the cecal contents of CDI-susceptible mice (29, 30) and in the feces of 

antibiotic treated rats (96).

Carbohydrate fermentation

Microbial fermentation of diet and host-derived carbohydrates is the major source of short 

chain fatty acids (SCFAs) in the gut. SCFAs are reduced following antibiotic treatment in 

both humans and animal models (96–100) and have been linked to C. difficile colonization 

resistance (18, 29, 30, 101, 102) (Fig. 1). They also inhibit growth of C. difficile in vitro 
(102). One possible mechanism for regulation of C. difficile susceptibility by SCFA is 

modulation of luminal pH. When concentrations of SCFAs decline, pH increases, resulting 

in an environment that is favorable for growth of Enterobacteriaceae and Clostridia, 

including C. difficile (103–105).

Another possible mechanism is through production of the SCFA, butyrate. Butyric acid has 

anti-inflammatory effects, decreases permeability through modulation of tight junction 

protein production and increases antimicrobial peptide levels and mucin production (Fig. 1) 

(106, 107). Butyrate-producing bacteria are found within the Lachnospiraceae and 

Ruminococcaceae families; taxa that are greatly reduced in stool specimens from 

hospitalized patients at risk for developing CDI and patients with diarrhea, including those 

diagnosed with CDI (62–65). However, data assessing the role for SCFAs in C. difficile 
infection using animal models have yielded mixed results (102, 108, 109).

Succinate, an organic acid resulting from microbial carbohydrate fermentation is an 

important intermediate metabolite in the gut (110) that promotes infection by C. difficle in 
vivo (111). Studies utilizing a B. thetaiotamicron mono-colonized mouse on a 

polysaccharide-rich diet exhibited increased levels of succinate and upregulated transcript 

levels of genes involved in conversion of succinate to butyrate by C. difficile. Furthermore, a 

C. difficile succinate transporter mutant exhibited decreased proliferation in the B. 
thetaiotamicron mono-colonized mouse and mice treated with streptomycin or polyethylene 

glycol, compounds that increase cecal succinate levels, suggesting that the inability to utilize 

succinate negatively affects proliferation of C. difficile in the gut (111).

Discussion

There is a strong association between perturbation of the gut microbiota and susceptibility to 

C. difficile infection. These important, early studies using patient samples and animal 
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models have characterized the structural, and to a lesser degree, functional changes within 

the microbiota during CDI (56–58, 62–66, 79). However, much remains to be done. To date, 

the studies assessing the gut community structure are limiting and cannot address the role of 

the microbiome in CDI risk and prevention and offer little insight into recurrent CDI. The 

increased morbidity, mortality and lack of treatment options associated with recurrent CDI 

underscore the importance of characterizing the intestinal ecosystem of this population. 

Studies including longitudinal samples encompassing primary and recurrent episodes may 

identify microbial or metabolic markers that are predictive of disease relapse. Moreover, 

inclusion of samples prior to and following treatment failure may identify biomarkers that 

are predictive of treatment outcome allowing earlier and more precise utilization of the 

limited treatment options available. Not only would this be particularly instructive when 

considering treatments like fidaxomicin, it would provide much-needed insight into the basis 

of disease relapse and treatment failure.

Currently, there is a paucity of data examining the microbiome structure and function of 

pediatric CDI patients despite the continued rise of CDI among children (112–114). 

Furthermore, molecular diagnostics remain problematic due to concerns about detection of 

colonization rather than true disease. A study by Leibowitz et al. found that hospitalized 

children aged 1–18 years (19% with diarrhea and 24% without diarrhea), tested positive for 

C. difficile by tcdB-specific PCR (115). Furthermore, high rates of C. difficile colonization 

have been reported in pediatric populations with additional co-morbidities, such as cancer 

and IBD (112–114). The ability to identify symptomatic CDI in a population with high rates 

of asymptomatic C. difficile carriage would improve diagnostics and treatment for at-risk 

children. Furthermore, a better understanding of disease resistance in the infant population 

represents a unique opportunity to identify key host and microbial metabolic pathways, and 

microbial species that may protect young children from developing clinical disease despite a 

lack of microbial diversity.

Pyrosequencing has advanced our understanding of biodiversity and microbial community 

structures considerably. However, there are multiple potential sources of bias in 16S rDNA 

sequencing and analysis, including DNA extraction technique (116, 117), PCR parameters 

(118, 119), 16S variable region primers (120, 121), 16S rDNA copy number (122) and 

clustering algorithm (123, 124). Moreover, the short read length limits resolution of some 

bacterial species. Moving beyond 16S rDNA sequencing will provide important information 

regarding the roles of microbes in CDI. Unlike 16S rDNA sequencing, whole genome 

sequencing (WGS) provides functional information derived from assessing gene content and 

allow taxonomic classification at the species level. The utility of determining changes to 

gene content was highlighted recently by Buffie et al. who found increased abundance of the 

bile acid inducible operon (bai), but not genes predicted to encode bile salt hydrolases, in 

specimens obtained from asymptomatic C. difficile carriers compared CDI specimens (67). 

Sorg and Sonnenshein demonstrated that bile acid transformation by the bai-containing 

Clostridium scindens negatively affected C. difficile germination (86). This strain provided 

moderate protection from disease in a murine model of CDI (67) suggesting that bai+ 

bacteria may be useful in probiotic mixtures used as therapy or for prevention of CDI. Data 

obtained from metabolomics will also assign functional information to microbiome studies 

and because metabolites are highly responsive to changes in physiological conditions, they 
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are ideally suited to distinguish subtle disease phenotypes. Ultimately, a systems biology 

approach combining metabolomics and metagenomics is expected to elucidate the 

epigenetic influences of microbiome-mediated CDI susceptibility and resistance.

The currently published data describing the microbiome changes associated with CDI using 

murine models and patient samples has provided the basis for future studies that will offer 

insight into disease susceptibility through identification of species-level community changes, 

alterations in genetic pathways and differences in metabolic by-products associated with gut 

metabolism. Not only will these studies broaden our understanding of how the microbiome 

contributes to health and disease but should identify therapeutic and diagnostic targets for 

CDI and other diseases modulated by the intestinal ecosystem.
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Figure 1. Microbial and metabolite status during health and disease
A healthy large intestine characterized by commensal bacteria and short chain fatty acids, 

chenodeoxycholate and deoxycholate; a metabolic environment that inhibits germination of 

C. difficile spores, expansion of vegetative cells and subsequent colonization (Left). 

Following exposure to CDI risk factors, the microbiome is altered, exhibiting increased 

abundances of Enterobacteriaceae, Enterococcaceae and Streptococcaceae, and a metabolic 

state enriched in amino acids and primary bile acids that favor C. difficile germination, 

colonization and toxin production (Right). Following Fecal Microbiota Transplantation 

(FMT), the structure and function of the intestinal ecosystem is restored to a disease-

resistant state.
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Table 1

Taxonomic alterations associated with CDI risk factors as compared to a healthy gut microbiome

CDI Risk Factor Decreased Taxa Increased Taxa References

Advanced age Ruminococcaceae, Bifidobacterium, 
Lactobacillus, Faecalibacterium

Bacteroidetes, Proteobacteria, (125–128)

Antibiotic exposure Bacteroidiaceae, Clostridiales, 
Ruminococcaceae, Lachnospiraceae, 
Bifidobacteria

Enterobacteriaceae, Enterococcaceae, Lactobaciliaceae, 
Streptococcaceae

(14–16, 63, 64)

IBD Firmicutes, Lachnospiraceae, 
Rumonicoccaceae, and Clostridiales; 
Bifidobacteria

Enterobacteriaceae, including E. coli; Fusobacterium, 
Mycobacterium

(129–140)

Proton Pump Inhibitors Ruminococcacae, Clostridiales Lactobacillales, Enterobacteriaceae, Streptococcaceae, 
Enterococcaceae

(141–143)

Chemotherapy Clostridiales, Lachnospiraceae, 
Ruminococcaceae, 
Bifidobacteriaceae

Bacteroidetes, Enterococcaceae Enterobacteriaceae (144, 145)
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