Skip to main content
. 2016 Oct 5;7:447. doi: 10.3389/fphys.2016.00447

Figure 2.

Figure 2

VdTRPA1L and TmTRPA1b are able to complement the functions of DmTRPA1 for thermotactic behavior of Drosophila melanogaster. (A) The distribution of wild type, trpA11, and trpA11 expressing either DmTRPA1 (trpA1>DmTRPA1; trpA11), VdTRPA1L (trpA1>VdTRPA1L; trpA11), VdTRPA1S (trpA1>VdTRPA1S; trpA11), or TmTRPA1b (trpA1>TmTRPA1b; trpA11) under trpA1-Gal4 was recorded along a thermal gradient (14–37°C). The recording was repeated three times for each group. The mean value with error bar (± SEM) is shown for each temperature section. (B) The percentage of fruit flies in the area of 28–37°C (Wild type: 4.1 ± 0.9%; trpA11: 43.8 ± 2.5%; trpA11 expressing DmTRPA1: 2.0 ± 0.4%; trpA11 expressing VdTRPA1L: 8.0 ± 7.1%; trpA11 expressing VdTRPA1S: 42.2 ± 5.8%; trpA11 expressing TmTRPA1b: 13.3 ± 0.8%) of the thermal gradient. Asterisks (**) are significantly different from wild type, and P-values for both trpA11 and trpA11 expressing VdTRPA1S are < 0.00003 and < 0.00007, respectively.