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Ketotifen has recently been reported to inhibit the growth of both asexual and sexual malaria parasites. A
parasite transporter, PfgABCG2, has been implicated in its mechanism of action. Human dihydrofolate
reductase (hDHFR) is the most commonly used selectable marker to create transgenic Plasmodium fal-
ciparum cell lines. Growth assays using transgenic P. falciparum parasites with different selectable
markers revealed that the presence of hDHFR rather than the absence of PfgABCG?2 is responsible for a
shift in the parasite's sensitivity to ketotifen. Employing a range of in vitro assays and liquid
chromatography-mass spectrometry we show that ketotifen influences hDHFR activity, but it is not
metabolised by the enzyme. Our data also highlights potential pitfalls when functionally characterising
transgenic parasites.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ketotifen, a tricyclic antihistamine, suppresses the proliferation
of rodent malaria parasites in vivo (Milner et al., 2012) and human
malaria parasites (P. falciparum) in vitro (Eastman et al., 2013). Both
ketotifen and its metabolite norketotifen kill schizonts and liver-
stage P. berghei parasites (Milner et al., 2012). Ketotifen and other
antihistamines have also been shown to reverse chloroquine
resistance in P. falciparum (Basco et al., 1991) and in P. yoelii (Singh
and Puri, 2000). The potential of ketotifen as an antimalarial is
therefore of significant interest.

Dihydrofolate reductase (DHFR) converts dihydrofolate (DHF)
into tetrahydrofolate (THF) in the folate pathway. This pathway is
essential for DNA synthesis and amino acid metabolism in the
parasite (Hyde, 2005) and DHER inhibitors such as pyrimethamine
have been widely used for the treatment of malaria. Another anti-
folate, WR99210, inhibits P. falciparum growth by inhibiting
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P. falciparum DHFR (Kinyanjui et al., 1999) and is used as a selectable
marker for the transfection of P. falciparum. Human dihydrofolate
reductase (hDHFR) is insensitive to WR99210 (De Koning-Ward
et al., 2000; Fidock and Wellems, 1997) and parasites transfected
with a plasmid containing the gene encoding hDHFR are resistant
to WR99210 and survive WR99210-selection pressure.

Eastman et al. reported that disruption of the gene encoding the
ABC-transporter PfgABCG2 reduces the sensitivity of asexual blood-
stage 3D7 parasites to a range of tricyclic compounds, including
ketotifen (Eastman et al., 2013). From this, the authors concluded
that PfgABCG2 plays a role in the parasite response to these com-
pounds. In this study, we investigated the sensitivity to ketotifen of
an independently-generated 3D7 parasite line lacking PfgABCG2
(Tran et al., 2014), comparing it with that of a number of other
parasite lines.

2. Material and methods
2.1. Parasites

Transfections were performed on chloroquine sensitive 3D7
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Fig. 1. Expression of the selectable marker hDHFR antagonises the inhibition of P. falciparum parasite proliferation by ketotifen. The proliferation of asexual blood-stage
parasites in the presence of a range of ketotifen concentrations was assessed over 72 h. Selectable marker cassettes integrated into the genome are indicated by (i), selectable
marker cassettes located on episomal plasmids are indicated by (e). A) Sensitivity of parasites to ketotifen is independent of the presence of PfgABCG2. Wild-type: 3D7 parental line;
APfgABCG2-hDHFR (i): PfgABCG2 knock-out parasites expressing the hDHFR selectable marker. APFD1170c-hDHFR (i): PFD1170c knock-out parasites expressing the hDHFR
selectable marker. APfgABCG2-hDHFR (i)/PfgABCG2-BSD (e): PfgABCG2 knock-out parasites expressing the hDHFR selectable marker and PfgABCG2 expressed from an episomal
plasmid, under the control of the PfgABCG2 promoter, using blasticidin-S deaminase (BSD) as the selectable marker. B) Sensitivity to ketotifen is modulated by the presence of
hDHFR. BSD (e): parasites expressing actin II (tagged by red fluorescent protein) and the blasticidin-S deaminase (BSD) selectable marker from an episomal plasmid. hDHFR (e):
parasites expressing the hDHFR selectable marker from an episomal plasmid. Mean and standard deviation (SD) values of biological triplicates are shown.

wild-type parasites as previously described with some modifica-
tions (Fidock and Wellems, 1997; Rug and Maier, 2013). Six
different lines were used (Table S1): (I) wild-type parasites; (II)
parasites containing an episomal human dihydrofolate reductase
(hDHFR) selection cassette (hDHFR (e)) (Tran et al., 2014) ((e)
referring to an episomal locus, (i) to integration into the genome);
(1) PfgABCG2 knock-out parasites generated by genomic integra-
tion of the hDHFR selection cassette into the gene encoding
PfgABCG2 (APfgABCG2-hDHFR (i)) (Tran et al, 2014); (IV)
APfgABCG2 parasites complemented with an episomal copy of
gABCG2 (APfgABCG2-hDHFR (i)/PfgABCG2-BSD (e)) (Tran et al.,
2014); (V) PFD1170c knock-out parasites (APFD1170c-hDHFR (i))
(Nguyen et al., manuscript in preparation), generated by genomic
integration of the hDHFR selection cassette into the gene encoding
PFD1170c (an exported protein unrelated to PfgABCG2; see
Supplementary Fig. S1 for the integration strategy); and (VI)
PF14_0124-RFP-BSD (e) parasites, containing an episomal plasmid
PRREP-4/PF14_0124 (see Supplementary Fig. S2 for a schematic
representation of the episomal plasmid) expressing both Aspergillus
terreus blasticidin-S deaminase (BSD) and P. falciparum actin Il
(encoded by PF14_0124) fused to red fluorescent protein (BSD (e)).
BSD confers resistance to blasticidin-S (Yamaguchi et al., 1965;
Mamoun et al., 1999) and the gene encoding BSD thereby serves

as a selectable marker.

The parasites were cultured using standard methods (Trager and
Jensen, 1976) with slight modifications (Maier and Rug, 2013).
Parasites and erythrocytes were grown in RPMI 1640-Hepes me-
dium with Glutamax (ThermoFisher Scientific #72400120) sup-
plemented with 10 mM glucose (Sigma), 480 uM hypoxanthine
(Sigma), 20 pg/ml gentamicin (ThermoFisher Scientific), 0.25% (w/
v) Albumax II (ThermoFisher Scientific), and 5% heat inactivated
human serum. The use of human erythrocytes was approved by the
ANU Human Ethics committee 2011/266. Ring-stage parasites were
synchronized by sorbitol treatment (Lambros and Vanderberg,
1979).

2.2. In vitro proliferation assay

Synchronous ring-stage cultures (100 pL, 0.2% parasitemia, 2%
haematocrit) were incubated with ketotifen fumarate (Sigma) at a
range of concentrations for 72 h at 37 °C, after which parasitised
erythrocytes were stained with 1 pM SYTO16 (Invitrogen) at 37 °C
for 30 min, then counted using a flow cytometer (BD LSR II, BD
Biosciences) on the FITC channel (488/525 nm). Each parasite cell
line was assayed in triplicate and 50,000 events (total RBCs) were
counted for each sample and processed using Flow]Jo v887
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Fig. 2. Recombinant hDHFR does not modify ketotifen in an in vitro enzyme assay.
DHF or ketotifen fumarate (100 uM) was incubated in the presence or absence of re-
combinant hDHFR (100 nM) for 10 min at 27 °C. The LC/MS trace shown is repre-
sentative of those obtained in three independent experiments. A) In the presence of
recombinant hDHFR, the substrate 7,8-dihydrofolate (DHF), was broken down. B)
Ketotifen is not broken down in the presence of recombinant hDHFR.

software. The drug concentrations were log-transformed, the
parasite number was normalised relative to the percentage of no-
drug control and sigmoidal curve-fitted. The drug responses were
graphed using GraphPad Prism 5.0 and the 50% inhibitory con-
centrations (IC50) were calculated and compared using best-fit
values and t-test.

2.3. Biochemical assays

The possible metabolism of ketotifen by hDHFR was investi-
gated using liquid chromatography-mass spectrometry, as
described by Chooi et al. (2015).

The effect of ketotifen on the conversion of DHF to THF by re-
combinant hDHFR was investigated using an in vitro assay (Bailey
and Ayling, 2009; Loveridge et al., 2009). Reactions were carried
out at 27 °C in a flat bottom 96-well plate containing 0.1 M K3POy,
01 M NaCl, pH 70; 01 mM NADPH, (Sigma), 50 mM 2-
mercaptoethanol, 100 nM purified recombinant hDHFR (Creative
Biomart) and a range of concentrations of ketotifen fumarate
(Sigma). The reduction of NADPH, to NADP" was measured at
OD340.

3. Results and discussion

In order to compare the ketotifen-sensitivity of parasites with or
without PfgABCG2 we performed an in vitro proliferation assay
(Fig. 1A). As has been reported previously (Eastman et al., 2013),
parasites in which the PfgABCG2 gene was disrupted showed a
significant reduction in ketotifen-sensitivity, relative to parental
3D7 parasites. The IC5q¢ (i.e. the concentration at which parasite
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Fig. 3. Ketotifen increases the activity of hDHFR. A) Schematic outline of the con-
version of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) through the
enzymatic action of human dihydrofolate-reductase (hDHFR). The reaction involves
the oxidation of NADPH,, which can be measured at OD340. B) Ketotifen (KETO) caused
a significant concentration-dependent increase in the conversion of DHF to THF (as
measured by oxidation of NADPH, over 10 min) by recombinant hDHFR. The NADPH,
oxidation is indicative of hDHFR activity. The bars indicate mean values at equilibrium
of biological triplicates and are shown + standard deviation. *** (p < 0.001) and **
(p < 0.01) indicate a statistically significant difference in hDHFR activity in the pres-
ence of ketotifen, relative to the activity measured in the absence of ketotifen (Stu-
dent's unpaired t-test). Time courses for the conversion of DHF to THF are shown in
Supplementary Fig. S3.

proliferation was reduced by 50%) for inhibition of the proliferation
of APfgABCG2-hDHEFR (i) parasites by ketotifen was ten-fold higher
than that for the parental 3D7 line (p < 0.001, unpaired Student's t-
test). However, a similar ten-fold increase in the ICsq for inhibition
of proliferation by ketotifen was seen also for a cell-line in which an
entirely unrelated protein (PFD1170c) was knocked out using the
same selectable marker (hDHFR) (APFD1170c-hDHER (i)). Further-
more, the sensitivity of the APfgABCG2-hDHFR (i) parasites to
ketotifen was not restored by transfection with a functional
episomal copy of the PfgABCG2 gene under the influence of the
endogenous promoter (APfgABCG2-hDHFR (i)/PfgABCG2-BSD (e)).
These parasites retain the hDHFR selection cassette in the disrupted
endogenous PfgABCG2 locus. These findings are consistent with the
expression of the selectable marker (hDHFR), rather than disrup-
tion of either of the two unrelated genes, being responsible for the
observed altered ketotifen sensitivity.

Next, we investigated the effect of hDHFR and a different
selectable marker (blasticidin-S deaminase (BSD)) on the parasite's
response to ketotifen (Fig. 1B and S2). When parasites were trans-
fected with an episomal plasmid containing the hDHFR selection
cassette (hDHEFR (e)), we detected a >10-fold decrease in ketotifen
sensitivity, similar to what was observed for the other cell lines
containing hDHFR (p < 0.001, unpaired Student's t-test). However,
when an episomal plasmid containing BSD was transfected (BSD
(e)), the parasites maintained the same sensitivity to ketotifen as
the parental wild-type cells (p = 0.1481, unpaired Student's t-test).
These data, too, are consistent with expression of hDHFR causing
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Fig. 4. Addition of DHF or THF to the culture medium increases the proliferation of P. falciparum, but does not alter the sensitivity to ketotifen. A) Growth of wild-type and
APfgABCG2-hDHER (i) P. falciparum parasites over 72 h, measured in the presence of increasing concentrations of DHF or THF and in the absence of ketotifen. Mean and standard
deviation (SD) values of biological triplicates are shown. ***, p < 0.001; **, p < 0.01; ns, not significant (Student's unpaired t-test). B) Proliferation of asexual blood-stage parasites
measured over 72 h in the presence of a range of ketotifen concentrations, and in the presence or absence of 50 nM DHF or THF. “APfgABCG2" refers to APfgABCG2-hDHFR (i)

parasites. Mean and standard deviation (SD) values of biological triplicates are shown.

decreased ketotifen-sensitivity.

One potential explanation for the effect of hDHFR on the ability
of ketotifen to inhibit parasite growth is that hDHFR metabolises
ketotifen, thereby reducing its concentration in the culture me-
dium. To explore this possibility we compared the natural meta-
bolism of DHF by hDHEFR to the effect of hDHFR on ketotifen, using
liquid chromatography-mass spectrometry (Fig. 2), as described by
Chooi et al. (2015). In the course of a 10 min incubation, the re-
combinant hDHFR metabolized DHF, as expected (Fig. 2A). Under
the same conditions, however, ketotifen remained unaltered,
consistent with it not being metabolized by hDHFR (Fig. 2B).

Since hDHFR did not metabolise ketotifen, we used an alterna-
tive approach to investigate the possibility of an interaction be-
tween the two molecules. For this we used recombinant hDHFR in
conjunction with an in vitro assay for the hDHFR-mediated con-
version of DHF to THF (Fig. 3A) (Bailey and Ayling, 2009). The
oxidation of NADPH, to NADP' was measured at ODsg4q. As the
ketotifen concentration was increased from 0 to 100 uM, hDHFR
activity increased (p > 0.001) (Fig. 3B), consistent with there being
an interaction between ketotifen and hDHFR.

The possibility that hDHFR counters the growth-inhibitory ef-
fect of ketotifen by increasing the intracellular concentration of THF

was explored by testing the effect of exogenously-supplied DHF and
THF on parasite growth. The addition of 50 nM DHF or THF to the
culture medium significantly increased the proliferation of
P. falciparum parasites (p = 0.0015, 0.0006 respectively, unpaired
Student's t-test) (Fig. 4A), indicating (i) that the supplemented DHF/
THF (or metabolites thereof) are taken up by the parasites and (ii)
that the folate concentration is growth-limiting under our experi-
mental conditions. However, the addition of exogenous DHF or THF
was without significant effect (p = 0.6632, 0.8020; unpaired Stu-
dent's t-test) on the growth-inhibitory effect of ketotifen (Fig. 4B).
These data argue against the hypothesis that the protective effect of
hDHFR is a consequence of increased THF levels within the parasite.

To test the possibility that hDHFR antagonizes the anti-
plasmodial activity of ketotifen by acting as a ‘sink’ and thereby
reducing its effective concentration, we measured the anti-
plasmodial activity of ketotifen in the presence and absence of
extracellular hDHFR (100 nM). The addition of hDHFR to the me-
dium did not influence the antiplasmodial activity of ketotifen
(Fig. S4), indicating that, under these conditions at least, hDHFR
does not act as a substantial sink for ketotifen.

In summary, the observation of decreased ketotifen sensitivity
of parasites in which the gene encoding the transporter PfgABCG2
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is disrupted (Eastman et al., 2013) is due not to the absence of the
protein but, rather, to the presence of the selection marker, hDHFR.
We have some evidence for an interaction between hDHFR and
ketotifen including a moderate increase in hDHFR activity in the
presence of ketotifen; however the nature and significance of this
interaction is unknown. Our observations serve as a reminder of the
potential pitfalls associated with interpreting functional assays
when selectable markers are used.
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