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Abstract

We present a hydrogel-based affinity microsensor for continuous glucose measurements. The 

microsensor is based on microelectromechanical systems (MEMS) technology, and incorporates a 

synthetic hydrogel that is attached to the device surface via in situ polymerization. Glucose 

molecules that diffuses into and out of the device binds reversibly with boronic acid groups in the 

hydrogel via affinity binding, and causes changes in the dielectric properties of the hydrogel, 

which can be measured using a MEMS capacitive transducer to determine the glucose 

concentration. The use of the in situ polymerized hydrogel eliminates mechanical moving parts 

found in other types of affinity microsensors, as well as mechanical barriers such as 

semipermeable membranes that are otherwise required to hold the glucose-sensitive material. This 

facilitates the miniaturization and robust operation of the microsensor, and can potentially improve 

the tolerance of the device, when implanted subcutaneously, to biofouling. Experimental results 

demonstrate that in a glucose concentration range of 0–500 mg/dL and with a resolution of 0.35 

mg/dL or better, the microsensor exhibits a repeatable and reversible response, and can potentially 

be useful for continuous glucose monitoring in diabetes care.
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1. Introduction

Continuous glucose monitoring (CGM), which involves highly frequent and repetitive 

measurements of glucose, can detect abnormal glucose concentrations in diabetes patients in 

a timely manner. Existing CGM devices often rely on electrochemical detection of 

enzymatic reactions1–3. While commonly used for glucose sensing, these devices are 

typically hindered by large drift and insufficient accuracy because of the irreversible, 
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consumptive nature of electrochemical reactions. Affinity sensors, which are based on non-

reactive equilibrium binding of glucose with a specific receptor4, 5, can potentially overcome 

these limitations. Affinity glucose sensing can be implemented in microsensors, which have 

used measurements of affinity binding-induced changes in physical properties such as 

volume6, 7, viscosity8, 9, fluorescence10, 11 and electric conductivity12. However, these 

efforts have required the use of a semi-permeable membrane as a physical barrier or 

mechanically movable structures, which can increase the complexity and limit the reliability 

of the devices. In contrast, affinity dielectric sensors that detect the glucose-dependent 

dielectric properties can effectively address these limitations.

Affinity sensors that are based on dielectric measurements have been used in applications 

such as detecting or quantifying biochemical targets under excitations at various frequencies. 

Example of these applications include determination of protein concentration13, 14, detection 

of DNA15, 16, and monitoring of bacteria17, 18. Affinity glucose microsensors utilizing 

dielectric measurements have however not been widely explored. We have previously 

reported measurements of the permittivity of a polymer solution as the polymer binds to 

glucose microsensors19–21. While demonstrating the potential in sensitive and selective 

detection of the glucose through dielectric measurements both in vitro and in vivo, the 

polymer solution required sealing using a semi-permeable membrane that significantly 

increased the complexity, limited the level of miniaturization, and affected the reliability of 

the microsensor.

This paper presents an affinity microsensor that measures glucose concentrations via the 

dielectric response of a hydrogel embedded in a capacitive transducer. The microsensor is 

fabricated using microelectromechanical systems (MEMS) technology, and the hydrogel is 

synthetically prepared, non-toxic and polymerized in situ in the device. Reversible affinity 

binding of glucose with boronic acid groups in the hydrogel changes the dielectric properties 

of the hydrogel, which can be measured using a MEMS capacitive transducer to determine 

the glucose concentration. The design of the microsensor eliminates the use of mechanical 

moving parts found in other types of affinity microsensors that are not amenable to 

miniaturization7, 22. The hydrogel is directly immobilized onto the surface of the transducer 

and will be stable over time, allowing the device to eliminate the use of a semipermeable 

membrane that are otherwise required to hold the glucose-sensitive material20, and 

potentially offer improved tolerance to biofouling during implanted operation. Experimental 

results demonstrate that in a glucose concentration range of 0–500 mg/dL and with a 

resolution of 0.35 mg/dL or better, the hydrogel-based microsensor is capable of measuring 

glucose in a repeatable and reversible manner, and holds promise to enable CGM in a stable, 

accurate and rapid manner.

2. Method

2.1. Principle and design

The affinity glucose microsensor utilizes a synthetic glucose-sensitive hydrogel, which 

consists of N-3-acrylamidophenylboronic acid (AAPBA) as the glucose-sensing component, 

and acryl N-Hydroxyethyl acrylamide (HEAA) as the hydrophilic component. The hydrogel 

uses tetraethyleneglycol diacrylate (TEGDA) as the cross-linker and 2,2′-Azobis (2-
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methylpropionamidine) dihydrochloride (AAPH) as the polymerization initiator. When 

glucose binds reversibly to the phenylboronic acid moieties in the AAPBA segments to form 

strong cyclic boronate ester bonds, a change in the dielectric properties of the hydrogel 

occurs and can be measured to determine the glucose concentration.

The dielectric properties of the hydrogel can be represented by the complex permittivity: ε* 

= ε′ – ε″, where the real permittivity ε′ represents the ability of the hydrogel to store 

electric energy, while the imaginary permittivity ε″ is related to dissipation of energy. When 

the gap between the electrodes of a parallel-plate transducer is filled with the hydrogel 

(Figure 1), the transducer can be represented by a capacitor (effective capacitance: Cx ) and 

resistor (effective resistance: Rx ) connected in series. Correspondingly, the real and 

imaginary parts of the complex permittivity are related to these parameters by ε′ = Cx/C0 

and; ε″ = 1/(ωRxC0), where C0 is the capacitance when the electrode gap is in vacuum. The 

interactions of the hydrogel with glucose in general cause changes in its composition and 

conformation, and hence changes in its dielectric properties ε′ and ε″. Thus, the 

transducer’s effective capacitance and resistance will hence change and can be measured to 

determine the glucose concentration.

The transducer is enabled by MEMS technology and uses a pair of parallel electrodes 

sandwiching the hydrogel (Figure 2). The upper electrode is perforated to allow passage of 

glucose molecules, and is passivated within a perforated diaphragm to avoid direct contact 

with the hydrogel. The perforated electrode and diaphragm are supported by microposts so 

that they do not collapse onto the lower electrode on the substrate. Glucose molecules 

reversibly bind with the hydrogel, thereby changing the hydrogel’s complex permittivity. 

While changes in the real and imaginary parts of the complex permittivity can be used to 

determine the glucose concentration, we in the present work focus on the real permittivity, 

which can be interrogated via measurement of the capacitance between the electrodes, to 

determine the glucose concentration.

2.2. Fabrication

To fabricate the MEMS capacitive transducer, a chrome (Cr)/gold (Au) film (5/100 nm) was 

deposited by thermal evaporation and patterned to form the lower electrode (500 μm×500 

μm) on a SiO2–coated wafer. The patterned gold electrode was then passivated with Parylene 

(1 μm). This was, followed by deposition of an S1818 sacrificial layer (5 μm) and an 

additional Parylene layer (1.5 μm). Another Cr/Au (5/100 nm) film was patterned to form 

the upper electrode and passivated by another Parylene layer. An SU-8 layer was then 

patterned to form a channel and anti-collapse microposts between the electrodes. The 

Parylene diaphragm was patterned with reactive ion etching (RIE) to form perforation holes 

that allow glucose permeation. The sacrificial photoresist layer was removed with acetone to 

release the diaphragm. The device fabrication process is shown in Figure 3(a).

The hydrogel was prepared in situ in the capacitive transducer. First, a mixture of the 

hydrogel components (AAPBA, HEAA, TEGDA, and AAPH) in solution was deoxygenated 

by nitrogen gas for 30 minutes, and was then injected into the device, filling the gap between 

the parallel electrodes. The device was placed in a nitrogen environment and heated for 4 

hours at 70°C. The hydrogel was formed between the parallel electrodes, as shown in Figure 
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3(d). The hydrogel-integrated device was rinsed with water and ethanol to remove unreacted 

monomer and reagents.

2.3. Materials

The hydrogel was synthesized in house via free radical polymerization with AAPBA and 

HEAA monomers. An HEAA to AAPBA molar ratio of 9 (or approximately 10% AAPBA 

content among all monomers) was adopted. Then a solution consisting of AAPBA (1.1% 

w/v), HEAA (5.5% v/v), TEGDA (0.08% v/v), and AAPH (0.16% w/v) in distilled water 

was prepared for polymerization. A stock solution (0.1 M) of glucose was prepared by 

dissolving D-(+)-glucose (0.9 g) in distilled water to 50 mL. Glucose solution at varying 

concentrations (40, 70, 90, 180, 300, and 500 mg/dL) was prepared by diluting the stock 

solution.

2.4. Experimental setup

During testing, we placed the device in an acrylic test cell (2 mL in volume) filled with 

glucose solution (Figure 4). The device was connected to a capacitance/voltage 

transformation circuit driven by a sinusoidal input from a function generator (Agilent, 

33220A), which imposes an AC electric field on the electrodes of the device to induce a 

glucose concentration-dependent change in the permittivity of the hydrogel. The resulting 

changes in the effective capacitance Cx of the capacitance/voltage transformation circuit are 

determined by measuring the output voltage (Uout) from a given input AC voltage (Uin). All 

experiments were conducted at frequencies in a range of 1 to 100 kHz as allowed by a lock-

in amplifier (Stanford Research Systems, SR844) used in output voltage measurements.

3. Results and Discussion

We first investigated the microsensor response to different glucose concentrations under bias 

voltages of different frequencies (Figure 5). First, we observed that, at each of a series of 

physiologically relevant glucose concentrations (0–500 mg/dL), the effective capacitance of 

the device, and hence the permittivity of the hydrogel, decreased with increasing frequency 

over the entire frequency range tested (1–100 kHz) (Figure 5a). This is consistent with the 

dielectric relaxation of the hydrogel, in which the dielectric properties of the hydrogel have a 

momentary delay with respect to a changing electric field23. The dielectric properties of the 

hydrogel in an electric field are in general influenced by a number of mechanisms of 

polarization (i.e., shift of electric charges from their equilibrium positions under the 

influence of an electric field24), such as electronic polarization, ionic polarization, dipolar 

polarization, counterion polarization, and interfacial polarization. Electronic polarization and 

ionic polarization involve the distortion of electron clouds with nucleus and the stretching of 

atomic bonds, while counterion polarization and dipolar polarization reflect redistribution of 

ions and reorientation of electrical dipoles25, 26.

At a given frequency, the effective capacitance of the hydrogel increased consistently with 

glucose concentration in the entire range tested (0–500 mg/dL). This is clear from the 

device’s frequency response (Figure 5a), and can be more conveniently examined when the 

device’s response is plotted versus the glucose concentration (Figure 5b). For example, at 30 
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kHz, the effective capacitance increased from 16.2 pF to 24.8 pF as the glucose 

concentration increased from 0 mg/dL to 500 mg/dL. This reflected that the binding between 

the hydrogel and glucose significantly influences the polarization of the hydrogel, which 

may include changes in the hydrogel’s structural conformations, permanent dipole moments, 

elastic resistance to the dipole rearrangement in the electric field, and electric double layer 

characteristics. These effects, which are highly complex and require elucidation through 

further in-depth studies, combine to result in the glucose concentration dependence of the 

hydrogel’s dielectric properties, explaining the observed variation of the device’s effective 

capacitance with glucose concentration.

It can be seen from Figure 5b that the dependence of the effective capacitance on glucose 

concentration is in general nonlinear over the full glucose concentration range tested (0–500 

mg/dL). Thus, in practical applications, a calibration curve represented by a lookup chart or 

nonlinear equation27 can be used to determine the glucose concentration from a measured 

effective capacitance value. Meanwhile, it is interesting to note that this dependence became 

considerably more linear in glucose concentration ranges that are moderately smaller but of 

strongest relevance to continuous glucose monitoring. For example, in a range of 40–300 

mg/dL, the effective capacitance at a given frequency was approximately linear with glucose 

concentration as indicated by the linear fits. In such a range, a linear calibration equation 

may hence be adequate for the determination of glucose concentration from measurement 

results.

We conducted the above-mentioned experiments in triplicates to examine the ability of the 

microsensor to measure glucose concentrations in a repeatable manner and with adequate 

sensitivity (Figure 5b). At all glucose concentrations, the standard error in the effective 

capacitance was less than 0.91 pF (2.3%), indicating excellent repeatability. In addition, at 

all of the measurement frequencies used, the resolution and range of glucose measurement 

resolution were found to be appropriate for continuous glucose monitoring. Considering 30 

kHz for example, the sensitivity of the microsensor was approximately 15 fF(mg/dL)−1 in 

the glucose concentration range of 0–40 mg/dL. With a capacitance measurement resolution 

of 3 fF as allowed by our measurement setup, the device’s resolution for glucose 

concentration measurement was correspondingly estimated to be 0.2 mg/dL. At a signal-to-

noise ratio of 3, this yielded a detection limit of 0.6 mg/dL, well below the physiologically 

relevant glucose concentration range (typically greater than 40 mg/dL28). For glucose 

concentrations within 40–300 mg/dL, the sensitivity was approximately 23 fF(mg/dL)−1, 

corresponding to an estimated resolution of 0.12 mg/dL. At higher glucose concentrations 

(300–500 mg/dL), the nonlinear sensor response experienced a gradual declination in 

sensitivity and resolution (respectively to 8.4 fF(mg/dL)−1 and 0.35 mg/dL at 500 mg/dL) as 

an increasingly small number of binding sites remained available in the hydrogel. These 

sensor characteristics, appropriate for practical applications, are comparable to those of 

commercially available electrochemical sensors (e.g., 1 mg/dL over a glucose concentration 

range from 0 to 400 mg/dL29, 30 or 500 mg/dL31) as well as other research-stage boronic 

acid-based affinity sensors (e.g., 0.3 mg/dL32 over a range from 0 to 300 mg/dL33 or 540 

mg/dL34) for continuous glucose monitoring.
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We investigated the response of the hydrogel-based microsensor to glucose as compared to 

its response to potential interferents. Nonspecific molecules exist in interstitial fluid and can 

interact with boronic acid, which is the glucose sensitive component of our hydrogel. These 

molecules include fructose (~1.8 mg/dL), galactose (~1.8 mg/dL), lactate (~9 mg/dL), and 

ascorbic acid (~1.32 mg/dL). We tested the hydrogel-based microsensor on these molecules 

and found that the resulting response was substantially lower than that to glucose. For 

example, at the same concentration of 90 mg/dL, the effective capacitance change (measured 

at 30 kHz) due to fructose, galactose, lactate and ascorbic acid was found to be 17%, 38%, 

32% and 28% of that due to glucose, respectively (Figure 6a). Here, the effective 

capacitance change is calculated according to ΔC = C – C0 where C is the effective 

capacitance at a given glucose (or interferent) concentration, and C0 is the effective 

capacitance in the absence of glucose and interferents. Considering that the physiological 

concentrations of the potential interferents were about one order of magnitude lower than 

that of glucose, the microsensor was determine to be sufficiently selective for measurements 

of glucose in interstitial fluid for CGM applications.

While boronic acid binds to all diol-containing molecules, the selective response of the 

microsensor to glucose over the potential interferents could be attributed to the unique 

binding behavior between boronic acid and glucose. At a 1:1 ratio, boronic acid in fact binds 

more strongly to fructose than glucose. However, with a high concentration of boronic acid 

moieties (which was the case for our hydrogel), boronic acid can bind with glucose at a 2:1 

ratio35–37. We exploited this property in previous work and developed solution-phase, 

viscometrically based affinity microsensors37, 38. In this work, we postulate that the 

existence of 2:1 binding between glucose and boronic acid moieties played a major role in 

the microsensor response, by causing additional crosslinking of the hydrogel that could lead 

to the augmentation of elastic resistance to electric field-induced dipole reorientation. The 

rather insignificant device response to the potential interferents (fructose, galactose, ascorbic 

acid and lactate) could, on the other hand, be attributed to a lack of this 2:1 binding mode.

We also studied the role of boronic acid in glucose recognition to gain further insight into 

the principle and operation of the microsensor. Using hydrogels containing with and without 

AAPBA content, we obtained the dependence of the effective capacitance on glucose 

concentration at a fixed measurement frequency (e.g., 30 kHz, Figure 6b). It also can be seen 

that when using an AAPBA-free hydrogel, the microsensor exhibited negligible changes in 

the effective capacitance in response to glucose concentration changes. This is in contrast to 

the strong glucose-induced response of the microsensor when it was equipped with the 10%-

AAPBA hydrogel (shown in Figure 5b and reproduced in Figure 6b), indicating that boronic 

acid moieties in the hydrogel were critically responsible for the desired recognition of 

glucose by the microsensor.

Finally, we tested the device with time-resolved glucose concentration measurements to 

assess its ability to track glucose concentration changes in a consistent and reversible 

manner. The measured microsensor output at 30 kHz varied from 16.5 pF at 0 mg/dL to 24.8 

pF at 500 mg/dL (Figure 7). In particular, when the device was exposed to a glucose 

concentration after experiencing another sample that was either higher or lower in 

concentration, virtually the same effective capacitance value was consistently obtained. For 
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example, the effective capacitance at 40 mg/dL over the two periods (from 20 to 38 minutes, 

and from 321 to 341 minutes) were respectively 16.87 pF and 16.73 pF, agreeing within 

0.8%. Similarly, the reversibility was within 3.4% and 1.3% for the measurement data at 

glucose concentrations of 180 and 300 mg/dL, respectively. This indicates that because the 

binding between glucose and boronic acid moieties in the hydrogel, the microsensor 

possesses excellent reversibility in response to glucose concentration changes. The time 

constant of the response (i.e., the time for the sensor to reach 63% of the steady state 

response) was approximately 16 min. This time constant was attributable to the relatively 

large thickness of the hydrogel in the proof-of-concept device (~200 μm), through which 

glucose molecules must diffuse to interact with the capacitive transducer. As the glucose 

diffusion time decreases with the square of the hydrogel thickness, it is expected that thinner 

hydrogels can be used to effectively obtain more rapid time responses.

4. Conclusions

We have presented a hydrogel-based affinity glucose microsensor that measures glucose 

concentration through dielectric transduction. The device consists of a pair of thin-film 

parallel capacitive electrodes sandwiching a synthetic hydrogel. Glucose molecules 

permeate into the hydrogel through electrode perforations, and bind reversibly to boronic 

acid moieties of the hydrogel. This induces changes the dielectric polarization behavior, and 

hence the complex permittivity, of the hydrogel. Thus, the effective capacitance between the 

electrodes, which is directly related to the real part of the complex permittivity, can be 

measured to determine the glucose concentration. The use of an in situ polymerized 

hydrogel simplifies the design of the microsensor, facilitates its miniaturization and robust 

operation, and can potentially improve the tolerance of the device, when implanted 

subcutaneously, to biofouling. Testing results showed that the effective capacitance of the 

device, in a measurement frequency range of 1–100 kHz, responded consistently to glucose 

concentration changes ranging from 0 to 500 mg/dL. At a given frequency, the effective 

capacitance increased consistently with glucose concentration, suggesting that the affinity 

binding between glucose and boronic acid moieties caused the real permittivity of the 

hydrogel to increase. At 30 kHz, the measurement resolution of the microsensor was 

estimated to be 0.2, 0.12 and 0.35 mg/dL in the glucose concentration ranges of 0–40, 40–

300, and 300–500 mg/dL, respectively. When subjected to time varying glucose 

concentration changes in the full 0–500 mg/dL range, the microsensor response was 

consistent and reversible. The time constant of this response was approximately 16 min, 

which can be readily improved by using thinner hydrogels for reduced glucose diffusion 

distances. These results have demonstrated that the microsensor can potentially allow 

accurate and consistent measurement of glucose concentration in interstitial fluid for 

continuous glucose monitoring.
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Highlights

• An affinity microsensor is presented for continuous glucose 

monitoring.

• The device surfaces are functionalized with a hydrogel via in situ 
polymerization

• Glucose is detected by its affinity binding to the hydrogel’s boronic 

acid moieties.

• Glucose detection has been made in 0–500 mg/dL range at 0.35 mg/dL 

resolution.
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Figure 1. 
Principle of hydrogel-based microsensor.
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Figure 2. 
Schematics of the affinity microsensor: (a) top view and (b) side view.
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Figure 3. 
Chip fabrication: (a) standard fabrication procedures and (b) image of a fabricated capacitive 

transducer. In situ polymerization: (c) hydrogel integration in the transducer and (d) image 

of the hydrogel-integrated device.
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Figure 4. 
Experimental setup: (a) Schematics of a testing setup. (b) Image of the testing setup. (c) 

Experimental setup. (d) A capacitance/voltage transformation circuit.
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Figure 5. 
Effective capacitance of the microsensor averaged from triplicate measurements. (a) 

Dependence of effective capacitance on measurement frequency. (b) Dependence of 

effective capacitance on glucose concentration, where error bars reflect standard errors and 

linear fits (solid lines) have a coefficient of determination R2 ranging from 0.993 to 0.995. 

(Data points are connected by dashed lines to guide the eye.)
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Figure 6. 
Selectivity and role of boronic acid for the microsensor: change of the effective capacitance 

calculated with reference to measurement in the absence of glucose or interferents 

(frequency: 30 kHz). (a) Ratio of the interferent-induced effective capacitance change to the 

glucose-induced effective capacitance change (concentration: 90 mg/dL for glucose and 

each of the interferents including fructose, galactose, ascorbic acid and lactate). (b) Effective 

capacitance change to glucose when boronic acid moieties were present (10% AAPBA 

content) or absent in the hydrogel (data points are connected by dashed lines to guide the 

eye).
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Figure 7. 
Time-resolved device response to time-varying glucose concentration. (Bias voltage 

frequency: 30 kHz.)
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